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Abstract
The asymmetric synthesis of gymnastatin H has been achieved by using the photoisomerisation of a conjugated ester to its β,γ-

unsaturated isomer through the protonation of a in situ generated dienol as key step. Thanks to diacetone D-glucose used as a chiral

alkoxy group, the protonation occurred well onto one of the two diastereotopic faces with very high yields and selectivities.

Moreover, by this way the configuration of the C-6 centre of the target molecule was controlled.
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Introduction
The photodeconjugation of α,β-unsaturated esters 1 – which

bear at least one hydrogen atom on γ-position – allows a

straightforward access to β,γ-unsaturated isomers 2 [1]. This

reaction was first reported by Jorgenson [2,3] and has been

extensively studied by different groups in a mechanistical point

of view. For example, Weedon et al. were able to trap an inter-

mediate species identified as a photodienol (its formation

resulting from a [1,5]-sigmatropic rearrangement). It was shown

that the efficiency of the isomerisation process is highly

dependent on the nature of the solvent and on the presence of

various additives (e.g., amines) which could catalyse the

reketonisation of the transient dienol [4] (Scheme 1).

Despite the potential interest in β,γ-unsaturated acid derivatives,

until recently only a few applications of this photochemical

transformation in total synthesis appeared in the literature.

However, the scope of the photochemical isomerisation has

been greatly enhanced thanks to the development of diastereo-

and enantioselective versions. Starting from α-substituted esters

3 in the presence of a catalytic amount of an enantiomerically

pure bicyclic amino alcohol 4 – derived from camphor –, the

protonation of the prochiral photodienol can be achieved with

an ee up to 91% [5]. This value is one of the highest values

observed for an enantioselective protonation transformation
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Scheme 2: Enantio- and diastereoselective photodeconjugation reactions.

Scheme 1: Principle of the photodeconjugation process.

reaction. However, as the selectivities were highly dependent on

the substrate, an alternative diastereoselective version has been

developed. By using cheap and commercially available

diacetone D-glucose (DAG-OH) as chiral alkoxy group and di-

methylamino alcohol as additive, a selective protonation of one

of the two diastereotopic faces of the transient dienol was

achieved which lead to esters 7 with a d.r. better than 97.5:2.5

[6] (Scheme 2). This transformation allowed the formation of a

new allylic stereogenic centre and found already a direct appli-

cation to the asymmetric synthesis of different natural products

including (R)-lavandulol (8), (R)-arundic acid (9) and

2-fluoroacids or lactones [7-9] (Figure 1).

Figure 1: Natural products prepared by photodeconjugation.

Filamentous fungi are the source of a wide range of secondary

metabolites which possess very promising biological activities.

Among them, gymnastatins 10 constitute a family of com-

pounds isolated from Gymnascella dankaliensis which grows in

symbiosis with the marine sponge Halichondria japonica [10]

(Figure 2).

Gymnastatins 10 possess a common unsaturated fatty acid

residue connected to a tyrosine subunit. These compounds have

been reported to exhibit antibacterial activity and cytotoxities

against cultured P388 cancer cells. Interestingly, the same acid

chain with an R-configuration has been identified in other struc-

tures like dankastatins [11] isolated from the same source,

aranorosin (11) isolated from Pseudoarachniotus roseus [12]

and manumycin C (12) isolated from Streptomyces parvulus

[13]. Different groups have investigated the synthesis of

gymnastatins 10a–c [14-16], compounds 11 [17] and 12 [18]. In

most cases, the lateral acid chain was prepared starting from

(R)-2-methyloctanal by iterative Wittig reactions to build the
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Figure 2: Natural amides possessing the same (6R)-fatty acid side chain.

dienoate chain. The configuration at the C-2 carbon atom of this

precursor was controlled by using a diastereoselective alkyl-

ation of an acyl oxazolidinone. In some cases, a Claisen con-

densation took place and afforded a β-ketoamide in noticeable

amounts diminishing the overall yield of the sequence [15]. In

this context, we have considered an alternative synthetic route

to the fatty acid common to all gymnastatins according to a

photoisomerisation–diastereoselective protonation sequence

involving catalytic amounts of an achiral organocatalyst (e.g.,

amino alcohol 4b). Our goal was to describe the first de novo

total synthesis of gymnastatin H (10c).

Results and Discussion
Ethyl ester 14,  readily prepared from hexanal by a

Wittig–Horner reaction, was saponified and esterified under

DCC activation with commercially available diacetone

D-glucose (Scheme 3). Irradiation of 16 at 254 nm in methylene

chloride at −60 °C delivered the β,γ-unsaturated ester 17 in 90%

yield as an inseparable mixture of E- and Z-isomers. Hydrogen-

ation of the double bond lead to the saturated ester 18 for which

a 95:5 diastereomeric ratio was measured by 1H NMR spectro-

scopy. Next, a two-step sequence delivered 2-methyloctanal

(20) in 58% overall yield. The configuration of the newly

created centre was first assigned as R by applying a model we

disclosed earlier and was confirmed by comparison with optical

rotation values published in the literature [19]. Aldehyde 20 was

submitted to a Wittig condensation with phosphorane 13b at

reflux of toluene to deliver ester 21 only as the E-isomer. It

should be pointed out that the Wadsworth–Emmons variant

using 2-phosphonatoester 13a led mainly to the Z-isomer, a

phenomenon which was already observed with α-substituted

aldehydes [20]. The reduction of the ethyl ester into the corres-

ponding allylic alcohol 22 followed by the oxidation with

Dess–Martin periodinane (DMP) [21] afforded aldehyde 23

which was converted into the known ethyl ester (E,E)-24 by a

subsequent Wittig–Horner reaction. The comparison of the

optical rotation with literature data confirmed the (R) configur-

ation at the C-6 carbon. By saponification under mild condi-

tions, 24 was converted into carboxylic acid 25 which was im-

plicated into a free-epimerising amidation procedure with HOBt

[22] and the readily available O-protected tyrosine derivative

26. Finally, the TBS group of the amino ester moiety was

removed under standard conditions to deliver compound 10c.

The measured spectroscopic data were identical to those

reported for gymnastatin H [10]. Interestingly, the optical rota-

tion of the synthetic product showed a higher value ([α]D
25 =

+104 (0.3, CHCl3)) than those measured for the isolated natural

product ([α]D
25 = +42.3 (0.76, CHCl3)). Similar discordances

have been already observed in the case of gymnastatin N and

were shown to be a consequence of a partial epimerisation at

the C-2’ carbon of the natural compound's amino ester subunit

[15].

Conclusion
In conclusion, we have achieved the total synthesis of (6R)-

gymnastatin H in 14 steps and 4.3% overall yield by using a

highly diastereoselective photodeconjugation of a diacetone

D-glucose ester as key step (de >95%). Now, work is underway

to prepare parent structures that either possess an opposite con-

figuration on the stereogenic centre or a modified geometry of

the two double bonds. Furthermore, the biological activities of

these novel structures are going to be studied.
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Scheme 3: Reagents and conditions: (a) NaH, 13a, THF, 25 °C, 83%. (b) KOH, EtOH/H2O (95/5), Δ, 97% (E/Z: 90/10). (c) DAG-OH, DCC, DMAP,
CH2Cl2, 0 °C then rt, 76%. (d) hν (254 nm), 4b (0.3 equiv), CH2Cl2, −60 °C, 90%. (e) H2 (1 atm), PtO2 (cat.), Et2O, 99%. (f) LiAlH4, Et2O, 0 °C, 83%.
(g) DMP, CH2Cl2, 0 °C, 70%. (h) 13b, PhMe, 80 °C, 80% (E-only). (i) Dibal-H (2 equiv), THF, 0 °C, 99%. (j) DMP, CH2Cl2, 0 °C, 75%. (k) 13c, NaH,
THF, rt, 60%. (l) LiOH, MeOH, THF, H2O, 70%. (m) 26, DCC, HOBt, CH2Cl2, 57%. (n) TBAF, THF, 0 °C, 96%.
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