Hydrogenation and Dimerization of Bicyclo[2.2.1]hepta-2,5-diene Catalyzed by Cobalt(I) Complexes

Hiroyoshi Kanai,* Yoshiyuki Watabe, and Taisei Nakayama Department of Hydrocarbon Chemistry and Division of Molecular Engineering, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606 (Received October 9, 1985)

Synopsis. Bicyclo[2.2.1]hepta-2,5-diene 1 was hydrogenated to bicyclo[2.2.1]hept-2-ene 2 and tricyclo[2.2.1.0^{2.6}]heptane 3 in a 70:30 ratio and dimerized to Binor-S 4 by [CoX-(PPh₃)₃]-BF₃· Et₂O catalysts (X=halogen). 1 was dimerized to 4—7 having tricyclo[2.2.1.0^{2.6}]heptane skeletons by a [Co(SCN)(PPh₃)₃]-ZnBr₂-Zn system in THF.

Conjugated dienes were selectively hydrogenated to terminal olefins by [CoX(PPh₃)₃]–BF₃·Et₂O systems (X=halogen),¹⁾ but to *cis*-olefins by [Co(SCN)(PPh₃)₃]–ZnBr₂–Zn systems.²⁾ Although bicyclo[2.2.1]hepta-2,5-diene 1 is a nonconjugated diene, π-electron systems are supposed to interact through the through-space overlap.³⁾ When 1 was treated with the [Co(SCN)(PPh₃)₃]–ZnBr₂–Zn catalyst in the presence of hydrogen in 1,2-dimethoxyethane, bicyclo[2.2.1]hept-2-ene 2 (37%) and tricyclo[2.2.1.0^{2,6}]heptane 3 (31%) were formed with dimers (32%).²⁾

The hydrogenation of 1 with a [CoBr(PPh₃)₃]-BF₃· Et₂O catalyst was attempted to give small amounts of 2 and 3 and large amounts of dimers (Table 1). The yield of hydrogenation increased slightly when 1 and

Table 1. Hydrogenation and Dimerization of 1 with [CoX(PPh₃)₃]-BF₃·Et₂O Catalysts

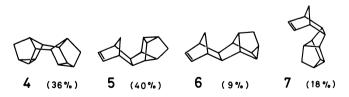
x	Time min	Yield/%		
		Hydrogenated products (2:3)	Dimers (4) ^{a)}	
Cl	60	5.5 (72:28)	84 (94)	
$\mathbf{Br}^{b)}$	90	19 (68:32)	81 (99)	

a) Selectivity of 4 in dimers. b) 1 (2.0 mmol) and BF_3 Et_2O (0.4 mmol) in C_6H_5Cl (5 ml) was added dropwise over 55 min.

Table 2. Dimerization of 1 with [CoX(PPh₃)₃]-Lewis Acid Systems

x		Solvent	Time Conv.		Yield ^{b)} /%	
	Lewis acid ^{a)}		h	%	4	Other dimers
Br	BF ₃ Et ₂ O (0.14)	C ₆ H ₅ Br	2	100	98	0
	(4.1)	• •		100	100	0
	(2.0)	C ₆ H ₅ Cl	0.17		75	0
		C_6H_5Br			85	0
		o-CH ₃ C ₆ H ₄ Cl		_	72	0
Cl	$BF_3 Et_2O(2.0)^{c}$	C ₆ H ₅ Br	10	99	95	0
	$ZnBr_2$ (1.0)		2	46	32	1.6
	(2.0)		14	50	35	1.4
	$AlCl_3$ (1.0)		2	18	2.	2 0.5
	$AgClO_4$ (2.0)		14	55	53	0

a) The number in parentheses is the ratio of Lewis acid to the cobalt complex. b) Based on 1 added. c) 1 (21.8 mmol, 1/Co=218) was reacted at 0°C.


BF₃·Et₂O were dropwise added to the cobalt complex solution. The ratio of 3/2 is lower than that (45/55) in the $[Co(SCN)(PPh_3)_3]$ –ZnBr₂–Zn system.

The dimers exclusively consist of endo-cis-endo-heptacyclo[5.3.1.1².6.1⁴.1².1³.11.0³.5.08.10]tetradecane, **4**, usually designated as "Binor-S."4) [CoX(PPh₃)₃] alone has no activity toward the reaction of **1**. When **1** was treated with [CoX(PPh₃)₃] and BF₃ in bromobenzene under a nitrogen atmosphere, **4** was selectively produced in a short time. BF₃·Et₂O is superior to ZnBr₂ and AlCl₃ as the cocatalyst (Table 2). Silver perchlorate reacted with [CoCl(PPh₃)₃] to give a cationic complex, [Co(PPh₃)₃]+,¹⁾ which was highly selective for the formation of **4** although the yield was low. Lewis acids serve as the production of cationic cobalt complexes. Only slight differences were observed on the reactivity and product composition between halogens in [CoX(PPh₃)₃].

Schrauzer et al. have stressed that the formation of 4 with $[Zn[Co(CO)_4]_2]$ proceeds via a π -complex multicenter process which involves an intermediate containing one molecule of 1 coordinated to each of two cobalt atoms.⁴⁾ However, dimerization of 1 to 4 has occurred over mononuclear cationic complexes, binuclear catalysts not being uniquely active for its formation.⁵⁾ It is now recognized that monomeric cationic d⁸ phosphine complexes including Co, Rh, and Ir are active for the selective formation of 4.⁶⁾

Haloarenes and arenes are suitable solvents for the reaction, but ethers (tetrahydrofuran and anisole) and dichloromethane are ineffective. Excess of $\mathbf 1$ had no effect on the composition of dimers unlike the case with $[Zn[Co(CO)_4]_2]$ that $\mathbf 4$ was obtained exclusively using only a high catalyst to $\mathbf 1$ ratio.^{4a)}

The dimerization of 1 with the [Co(SCN)(PPh₃)₃]-ZnBr₂-Zn system in THF gave dimers, 4—7 and an unidentified dimer(4%):

The dimers, **4—7**, consist at least of one tricyclo-[2.2.1.0^{2,6}]heptane skeleton. The catalytic activity and selectivity of the $[Co(SCN)(PPh_3)_3]$ – $ZnBr_2$ –Zn system are lower than those of $[CoX(PPh_3)_3]$ – $BF_3 \cdot Et_2O$.

Deuteration of 1 by the [Co(SCN)(PPh₃)₃]-ZnBr₂-Zn system occurs specifically via the endo-addition of deuterium.²⁾ The tricyclo[2.2.1.0^{2,6}]heptane skeleton of dimers by both Co(I) complex systems suggests the following likely intermediates:

$$\bigoplus_{CO} = \bigoplus_{CO} \xrightarrow{1} 4 - 7$$

Tetracyclo[$3.2.0.0^{2.7}.0^{4.6}$]heptane (quadricyclane) **8** was treated with [CoBr(PPh₃)₃]-BF₃·Et₂O to give **4** exclusively. **1** was detected during the formation of **4**—**7** by the reaction of **8** with the [Co(SCN)(PPh₃)₃]-ZnBr₂-Zn system.

Experimental

Chlorobenzene, bromobenzene and o-chlorotoluene were commercially purified materials and used without further purification. Tetrahydrofuran was heated over lithium aluminium hydride and distilled just before use. Boron trifluoride-diethyl ether complex, zinc bromide, aluminium chloride and silver perchlorate were used without further purification. [CoX(PPh₃)₃] (X=Cl, Br) was prepared according to the method described earlier.⁷⁾ ¹H and ¹³C NMR spectra were recorded on a Nicolet NT-300 and a JEOL FX-100 spectrometer, respectively.

Hydrogenation and Dimerization of 1 with [CoX(PPh₃)₃]-BF₃·Et₂O Catalysts. In a three-necked 100-ml flask [CoX-(PPh₃)₃] (0.1 mmol) was placed. Chlorobenzene (10 ml) was added and the flask was dipped in an ice-water bath after several freeze-thaw operations. The flask was filled with atmospheric pressure of hydrogen and BF₃·Et₂O (0.2 mmol) and 1 (2.0 mmol) were added successively. After 60 min the products were analyzed by a Shimadzu 6A gas chromatograph (column for hydrogenated products: 30% Apiezon grease L 2 m, 80 °C; column for dimers: 20% SE-30, 2 m, 160 °C, and 20% PEG-20M 2 m, 175 °C). Hydrogenated products were identified as 2 and 3.89 4 was identified by comparing its ¹H NMR spectrum with that of an authentic sample.49

Dimerization of 1 with [CoX(PPh₃)₃]-Lewis Acid. To a solution of [CoX(PPh₃)₃] (0.1 mmol) and Lewis acid in a solvent (10 ml) under nitrogen was added 1 (5.45 mmol) at r.t. and the mixture was stirred for an appropriate period.

Dimers were analyzed by GLC.

Dimerization of 1 with [Co(SCN)(PPh₃)₃]-ZnBr₂-Zn System. The catalyst was prepared in situ from the reduction of [Co(SCN)₂(PPh₃)₂] (0.3 mmol) with Zn (3.0 mmol) and ZnBr₂ (1.0 mmol) in THF (10 ml) under nitrogen at 17°C.²⁾ After the color of the solution changed from purple to brown (2—3 h), 1 (2.0 mmol) was added and the mixture was stirred at 17°C for 20 h. Dimers were separated by a preparative gas chromatograph (20% SE-30, 2 m, 175°C) and identified by comparing their ¹H and ¹³C NMR spectra with those of authentic samples.⁹⁾

References

- 1) K. Kawakami, T. Mizoroki, and A. Ozaki, J. Mol. Catal., 5, 175 (1979).
- 2) T. Nakayama and H. Kanai, Bull. Chem. Soc. Jpn., 58, 16 (1985).
- 3) R. Hoffmann, E. Heilbronner, and R. Gleiter, J. Am. Chem. Soc., 92, 706 (1970).
- 4) a) G. N. Schrauzer, B. N. Bastian, and G. A. Fosselius, J. Am. Chem. Soc., 88 4890 (1966); b) G. N. Schrauzer, R. K. Y. Ho, and G. Schlesinger, Tetrahedron Lett., 1970, 543.
- 5) a) R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 93, 3089 (1971); b) M. Ennis, R. M. Foley, and A. R. Manning, J. Organomet. Chem., 166, C18 (1979).
- 6) Schrauzer et al.⁴⁾ assumed that 1 in conjuction with BF₃·Et₂O reduced [CoCl₂(PPh₃)₂], [RhCl(PPh₃)₃], and [IrCl(CO)(PPh₃)₂] to afford [(Lig)_nM-M(Lig)_n] (M=Co, Rh, Ir, Lig=PPh₃, CO). The assumption is less probable since the addition of AgClO₄ to a [CoCl(PPh₃)₃] solution or that of PPh₃ to [Rh(NBD)₂]⁺ (NBD=1)^{5a)} results in the selective production of 4.
- 7) a) H. Kanai and K. Ishii, Bull. Chem. Soc. Jpn., 54, 1015 (1981); b) M. Aresta, M. Rossi, and A. Sacco, Inorg. Chim. Acta, 3, 227 (1969).
 - 8) P. von R. Schleyer, J. Am. Chem. Soc., **80**, 1700 (1958).
- 9) a) J. J. Mrowca and T. J. Katz, J. Am. Chem. Soc., **88**, 4012 (1966); b) N. Acton, R. J. Roth, T. J. Katz, J. K. Frank, C. A. Maier, and I. C. Paul, *ibid.*, **94**, 5446 (1972); c) T. J. Katz, J. C. Carnahan, and R. Boecke, J. Org. Chem., **32**, 1301 (1967).