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Abstract 
Five chalcone derivatives (E)-1-(2-(2-bromoethoxy)phenyl)-3-phenylprop-2-en-1-one(1), (E)-1-(2-(3-bromopropoxy)phenyl)-
3-phenylprop-2-en-1-one(2),(E)-1-(2-(4-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one(3),(E)-1-(2-(5-bromopropoxy)
phenyl)-3-phenylprop-2-en-1-one(4),(E)-1-(2-(6-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one(5) were synthesized and 
characterized by 1H NMR, HRMS. The crystalline structures of compounds 4 and 5 were further characterized by X-ray 
crystal diffraction. Among the five compounds, 1 and 2 showed inhibitory activity on α-glucosidase, but 4 and 5 increased 
the activity of α-glucosidase.

Graphic Abstract
Five chalcone derivatives were synthesized and characterized by 1H MNR and HRMS. The crystalline structures of two 
compounds were further characterized by X-ray crystal diffraction. Two of the compounds have the ability to inhibit 
α-glucosidase, and two different compounds have the ability to promote α-glucosidase.
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Introduction

Chalcones are natural organic compounds, widely found in 
plants, with applications in a variety of scientific domains, 
such as non-linear optics[1], the manufacture of dyes [2] and 
in supramolecular chemistry [3]. Additionally, various deriv-
atives of chalcones have shown promise in pharmaceutical 
applications. Because of their privileged structures, they 
may display anti-diabetes [4, 5], anti-cancer [6], anti-malar-
ial [7, 8], anti-bacterial [9, 10], anti-viral [11, 12], anti-HIV 
[13, 14], or anti-inflammatory activity [15]. Applications 
depend on the structural features, like planarity, electronic 
delocalization and substitution pattern on the aromatic rings 
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[16]. Thus, considering the potential pharmaceutical actives 
of the chalcone structural system, the modification of the 
privileged structure is an interesting goal. Toward this end, 
many studies have recently been carried out [17–19]. For 
example, chalcone derivatives were identified as potential 
α-glucosidase inhibitors [20]. 

Numerous studies reported on modifying chalcones with 
methoxy, hydroxyl, and nitro groups. However, very few 
investigations focus on chalcones with bromo side chains. 
An example is the crystal structure and quantum chemical 
investigation of chalcones with bromo butoxy side chains in 
the para position [21] and a report on the synthesis, charac-
terization and crystal structure of fluoro-containing chalcone 
derivatives [22]. In this paper, we report the synthesis of 
a series of chalcones with bromo ethoxy, propoxy, butoxy, 
pentoxy and hexyloxy side chains in the ortho-position, as 
well as the crystal structures and the effects of these com-
pounds on α-glucosidase.

Experimental

Materials and Measurements

The synthesis of 2’-hydroxychalcone was performed 
according to literature procedures [22]. α-Glucosidase 

(EC3.2.1.20) and 4-Nitrophenyl-α-d-gluocpynoaside 
(PNPG) were obtained from Sigma. Other reactants of AR 
grade were obtained commercially and used without further 
purification.1H NMR analyses were performed on a Varian 
VNMR 400 MHz. The X-ray crystal structure data were col-
lected at room temperature on a Bruker APEX II area detec-
tor diffractometer equipped with a graphite-monochromator, 
using MoKα radiation (λ= 0.71073 Å) and ψ–ω scan mode 
(Scheme 1).

Synthesis of 2′‑Hydroxychalcone and 1–5

Synthesis of 2′‑Hydroxychalcone [22]

To a solution of equimolar amounts of 2’-hydroxyacetophe-
none and benzaldehyde in ethanol was added an aqueous 
solution of 4 M NaOH. The mixture was stirred for 2–8 
h at 0 °C. The reaction mixture was neutralized with 6 M 
HCl and pH adjusted to 2. The mixture was then extracted 
with ethyl acetate, washed with water and saturated brine. 
It was further purified by either recrystallization or column 
chromatography to yield the pure compound. 1H NMR 
(400 MHz, DMSO-d6) δ 12.53 (s, 1H), 8.29–8.22 (m, 1H), 
8.06–7.99 (m, 1H), 7.92–7.87 (m, 2H), 7.87–7.80 (m, 1H), 
7.59–7.51 (m, 1H), 7.49–7.41 (m, 3H), 7.04 – 6.96 (m, 
2H). 13C NMR (100 MHz, DMSO-d6) δ 193.58, 161.90, 

Scheme 1  Synthesis and struc-
ture of chalcone derivatives
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144.74, 136.26, 134.41, 130.88, 130.83, 129.09, 128.89, 
121.68, 120.68, 119.10, 117.70. HRMS (ESI) m/z: calcd for 
 C15H12O2 for [M+1]+, calculated 225.0837, found 225.0883.

Synthesis of 1–5

1,2-Dibromoethane (8.2 g, 40.5 mmol) was added dropwise 
to a solution of 2′-hydroxychalcone (2 g, 13.5 mmol) and 
 K2CO3(3.7 g, 27 mmol) in acetone (50 mL) at room tem-
perature. The reaction mixture was stirred for 4–5 h. Com-
pletion of reaction was monitored by TLC analysis. After 
completion of the reaction, the product was extracted with 
ethyl acetate (3 × 50 mL) and dried with anhydrous  Na2SO4. 
The product was then separated by silica gel column chro-
matography to obtain compound 1 as pale-yellow oil with a 
yield of 80%. 1H NMR (500 MHz, DMSO) δ 7.79–7.74 (m, 
2H), 7.63–7.59 (m, 2H), 7.59–7.56 (m, 1H), 7.55–7.52 (m, 
1H), 7.46–7.40 (m, 3H), 7.19 (d, J = 8.4 Hz, 1H), 7.13–7.07 
(m, 1H), 4.50–4.45 (m, 2H), 3.83–3.79 (m, 2H). 13C NMR 
(125  MHz, DMSO) δ 191.96, 156.95, 142.69, 135.13, 
133.78, 130.86, 130.51, 129.39, 129.35, 129.08, 127.43, 
121.61, 113.66, 68.95, 31.73. HRMS (ESI) m/z: calcd for 
 C17H15BrO2 [M + H]+ 330.0255, found 330.0257.

Compounds 2, 3, 4, and 5 were synthesized following the 
procedure described for 1. Pale yellow crystals of 4 and 5, 
suitable for X-ray diffraction analysis, were obtained from 
ethyl acetate and acetone (V/V=1:1) with yields of 80 % and 
75%, respectively.

Compound 2: pale yellow oil; yield: 83%. 1H NMR 
(500 MHz, DMSO) δ 7.77–7.70 (m, 2H), 7.56–7.51 (m, 
3H), 7.46 (s, 1H), 7.45–7.42 (m, 3H), 7.20 (d, J = 8.2 Hz, 
1H), 7.11–7.05 (m, 1H), 4.20 (t, J = 5.8 Hz, 2H), 3.56 (t, 
J = 6.7 Hz, 2H), 2.29–2.19 (m, 2H). 13C NMR (125 MHz, 
DMSO) δ 192.46, 157.30, 142.71, 134.96, 133.63, 130.95, 
130.17, 129.46, 129.44, 128.92, 127.43, 121.27, 113.49, 
66.46, 32.31, 31.47. HRMS (ESI) m/z: calcd for  C18H17BrO2 
[M + H]+ 344.0485, found 344.0482.

Compound 3: pale yellow oil; yield: 85%. 1H NMR 
(500 MHz, DMSO) δ 7.76–7.69 (m, 2H), 7.54 (s, 1H), 
7.53–7.50 (m, 2H), 7.49 (s, 1H), 7.46–7.43 (m, 3H), 7.19 
(d, J = 8.1 Hz, 1H), 7.10–7.01 (m, 1H), 4.13 (t, J = 6.0 Hz, 
2H), 3.42 (t, J = 6.5 Hz, 2H), 1.94–1.87 (m, 2H), 1.86–1.79 
(m, 2H). 13C NMR (125 MHz, DMSO), 157.65, 142.41, 
135.06, 133.66, 130.88, 130.17, 129.45, 129.35δ 192.42, 
128.89, 127.62, 121.06, 113.52, 67.73, 34.97, 29.50, 27.93. 
HRMS (ESI) m/z: calcd for  C19H19BrO2 [M + H]+ 358.0641, 
found 358.0640.

Compound 4: pale yellow crystals; yield: 80%; m.p. 58–60 
℃; 1H NMR (500 MHz, DMSO) δ 7.76–7.69 (m, 2H), 7.53 
(s, 1H), 7.52–7.50 (m, 2H), 7.49 (s, 1H), 7.47–7.41 (m, 3H), 
7.18 (d, J = 8.2 Hz, 1H), 7.09–7.03 (m, 1H), 4.10 (t, J = 5.8, 
2H), 3.33 (t, J = 5.3 Hz, 2H), 1.76–1.65 (m, 4H), 1.50–1.41 (m, 
2H). 13C NMR (125 MHz, DMSO) δ 192.49, 157.79, 142.23, 

135.13, 133.70, 130.85, 130.17, 129.42, 129.34, 128.84, 
127.76, 121.01, 113.51, 68.42, 35.00, 32.43, 28.39, 24.89. 
HRMS (ESI) m/z: calcd for  C20H21BrO2 [M + H]+ 372.0798, 
found 372.0796.

Compound 5: pale yellow crystals; yield: 75%. m.p. 74–76 
℃. 1H NMR (500 MHz, DMSO) δ 7.77–7.67 (m, 2H), 7.53 (s, 
1H), 7.52–7.50 (m, 2H), 7.49 (s, 1H), 7.46–7.42 (m, 3H), 7.17 
(d, J = 8.1 Hz, 1H), 7.08–7.03 (m, 1H), 4.09 (t, J = 6.0 Hz, 2H), 
3.35 (t, J = 6.8 Hz, 2H), 1.73–1.65 (m, 2H), 1.60–1.53 (m, 2H), 
1.40–1.32 (m, 2H), 1.33–1.23 (m, 2H). 13C NMR (125 MHz, 
DMSO) δ 192.46, 157.84, 142.21, 135.12, 133.71, 130.87, 
130.19, 129.43, 129.31, 128.83, 127.73, 120.98, 113.46, 68.50, 
35.29, 32.47, 29.11, 27.77, 25.33. HRMS (ESI) m/z: calcd for 
 C21H23BrO2 [M + Na]+ 408.0773, found 408.0780.

Structure Determination

The crystal data for 4 and 5 were integrated using the pro-
gram SAINT and corrected for absorption effects using the 
program SADABS [23]. The structures were solved by direct 
methods and refined on F2by full-matrix least squares using 
SHELXTL-2014 software [24]. All non-hydrogen atoms were 
located by direct methods and subsequent difference Fourier 
syntheses. The hydrogen atoms bound to carbon were placed 
in calculated positions and refined using a riding model. 
Crystallographic data and refinement information are given 
in Table 1.

In Vitro α‑Glucosidase Inhibitory Activity Study

The inhibition activity of these compounds on α-glucosidase 
activity was evaluated using a micro determination model 
based on the reaction of α-glucosidase and 4-nitrophenyl-α-d-
gluocpynoaside (PNPG). The test compounds were dissolved 
in DMSO and phosphate buffer (PB) to prepare the required 
distributing (10, 20 mmol/L) concentration.  Specifically, 
α-glucosidase from Saccharomyces cerevisiae was assayed 
using a 0.01 M phosphate buffer at pH 6.8 and 10 mM PNPG 
as the substrate. The concentration of the enzymes was 1 U/
mL in each experiment. PB (160 μL), various concentrations 
of the derivatives (10 μL), and α-glucosidase (10 μL) were 
added to 96-well polystyrene plates, and the plates were incu-
bated at 37 °C for 20 min. After 20 min preincubation, 20 μL 
of PNPG solution were added to the mixture. The reaction was 
carried out at 37 °C for 10 min. The absorbance was measured 
at 405 nm using a multiscanner. Acarbose was used as the 
positive control in this study. The percentage of enzyme inhibi-
tion was determined by the following equation:

Inhibition(%) =
(

ΔAcontrol − ΔAsample

)

∕ΔAcontrol × 100
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Results and Discussion

Crystal Structure of 4 and 5

X-ray diffraction analysis shows that compound 4 crystallizes 
in the triclinic space group P-1. The molecule is shown in 
the Fig. 1, and the observed bond lengths and angles are very 
similar to those reported in the literature for chalcone deriva-
tives [24].  The dihedral angle between the phenyl groups is 
71.61(18)º, which is larger than that reported in the litera-
ture for 3-cinnamoyl-4-hydroxybenzoic acid [25], because 
of the alkoxyl substituents in the ortho-position. The torsion 
angles of C3–C2–C7–O2, C3–C2–C7–C8, C2–C7–C8–C9, 
C7–C8–C9–C10, C2–C1–O1–C16, C1–O1–C16–C17, 
O1–C16–C17–C18, C16–C17–C18–C19, C17–C18–C19–C20 and 
C18–C19–C20–Br are 25.413(740)°, − 153.152(512)°, − 148
.287(517)°, 178.107(490)°, − 167.363(462)°, 160.445(454)°, 
65.284(621)°, 178.329(506)°, 179.273(548)° and 
79.096(667)°, respectively.

Compound 5 crystallizes in the monoclinic space 
group P21/c. In the molecule of 5 (shown in the Fig. 2), 
bond lengths and angles are unexceptional and agree well 

with those reported in the literature for chalcone deriva-
tives [26]. The dihedral angle between the phenyl groups 
is 56.12(9)º. The Br1–C21–C20–C19 torsion angle in 
structure 5 is 178.78(16)º and Br is in a trans position, 
whereas the B1–C20–C19–C18 torsion angle in structure 
4 is 67.1(6)º and Br is in a gauche conformation.

Table 1  Crystal and structure 
refinement data of 4 and 5

a R1= Σ║Fo│ − │Fc║/ Σ│Fo│
b wR2 = [Σw(Fo

2 − Fc
2)2/ Σw(Fo

2)2]1/2

4 5

Empirical formula C20H21BrO2 C21H23BrO2

CCDC deposition number 1,872,372 1,872,371
Formula weight 373.27 387.29
Temperature (K) 296(2) 296(2)
Wavelength (Å) 0.71073 0.71073
Crystal system Triclinic Monoclinic
Space group P-1 P21/c
a (Å) 8.297(7) 8.3077(15)
b(Å) 8.756(8) 8.4018(15)
c(Å) 13.007(11) 26.690(5)
α(°) 90.046(11) 90
β(°) 106.892(10) 91.324(2)
γ(°) 99.507(11) 90
V(Å3) 890.5(13) 1862.5(6)
Z 2 4
Dc (g cm-3) 1.392 1.381
Mu(MoKa) (mm) 2.315 2.217
F(000) 384 800
Crystal size (mm) 0.20 × 0.18 × 0.16 0.20 × 0.20 × 0.16
Θ range for date collection (°) 2.605–25.497 2.54–24.99
Reflections collected 6587 13,975
Independent reflection 3262  [Rint = 0.019] 3459  [Rint = 0.0181]
Goodness-of-fit on F2 1.005 1.025
Final R indices [I > 2σ(I)]a, b R1 = 0.0779,  wR2 = 0.1895 R1 = 0.0359,  wR2 = 0.0726
R indices (all data)a R1 = 0.1067, wR2 = 0.2147 R1 = 0.0545,  wR2 = 0.0803

Fig. 1  Crystal structure of 4 with 30% displacement ellipsoids
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We tried but failed to crystallize the oils we obtained for 
compound 1, 2 and 3 using the same methods there were 
successful for compound 4 and 5. Likely, the shorter side 
chains in are responsible for this behavior.

In Vitro α‑Glucosidase Inhibitory Activity

In order to explore the synergistic biological potential of 
the synthesized molecules, they were subjected to in vitro 
α-glucosidase inhibition using the same concentrations (10 
mmol/L, 20 mmol/L) for all experiments Table 2. Com-
pounds 1, 2 and 3 exhibited inhibition activities and may 
have the potential in preventing the rise of postprandial glu-
cose levels in diabetics. Compounds 4 and 5, however, are 
not inhibiting α-glucosidase. Yet, our results indicate that the 
length of the side chain has a large impact on α-glucosidase 
inhibition. The side chain length influenced the activity 
of α-glucosidase had been reported previously [27].The 
1-deoxynojirimycin (1-DNJ) with N-alkyl chain of various 
length showed different inhibition effect [28]. Addition, a 
class of α-glucosidase inhibitors were synthesized based on 
iminofuranosides with various alkyl groups substituted at 
the anomeric position. These compounds showed a strong 
correlation between chain length and inhibition activities, 
neither short nor long chain length showed less activity 
[29]. Our results are similar with previous studies. Since 
all compounds showed less than 50% inhibition, we did not 
further evaluate them for half maximal inhibitory concentra-
tion  (IC50).

Supplementary Data

Supplementary data CCDC Numbers 1872371 and 1872372 
contain the supplementary crystallographic data for the 
structures reported in this paper. Copies of this information 
may be obtained free of charge from the Director, CCDC, 
12 Union Road, Cambridge CB2 1EZ, UK (Fax: (+44)1223 
336-033; e-mail: deposit@ccdc.cam.ac.uk or https ://www.

ccdc.cam.ac.uk) or also available from the author Xu-Liang 
Nie.
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