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Abstract

Free 2-C-methyl-d-erythritol is utilised for isoprenoid biosynthesis by Escherichia coli mutants lacking
the two ®rst enzymes of the methylerythritol phosphate pathway, the deoxyxylulose phosphate synthase
and isomero-reductase. For feeding experiments, this tetrol was synthesised with an overall 43% yield from
readily available 1,2-O-isopropylidene-a-d-xylofuranose, including the possibility of tritium labelling.
# 2000 Elsevier Science Ltd. All rights reserved.
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For many years, it was generally accepted that isopentenyl diphosphate 8 (IPP), the universal
precursor for all isoprenoids, was synthesised through the well-known mevalonate pathway.1

From in vivo feeding experiments with 13C labelled precursors, IPP was however shown to
originate in several eubacteria,2 in unicellular algae3 and in all plant plastids4 from 2-C-methyl-d-
erythritol 4-phosphate (MEP) (Scheme 1).5 The initial step of this novel pathway is the formation
of 1-deoxy-d-xylulose 5-phosphate 3 (DXP) by condensation of pyruvate 1 and d-glyceraldehyde
3-phosphate 2 mediated by the 1-deoxy-d-xylulose synthase.6 An intramolecular rearrangement
of DXP followed by a reduction, catalysed by the DXP isomero-reductase, a�ords MEP 4.7 If no
other role as that of isoprenoid precursor is found for MEP, the reaction leading to the formation
of this hemiterpene most probably represents the ®rst committed step of this pathway. Further
steps include the formations of methylerythritol 4-diphosphocytidine 5, its 2-phosphate 6 and
methylerythritol 2,4-cyclodiphosphate 7.8

Deuterium labelled isotopomers of free methylerythritol 17 proved useful tools for the
elucidation of this pathway. Indeed, free 2-C-methyl-d-erythritol (ME) is incorporated by the
wild type Escherichia coli and supports the growth of mutants lacking the DXP synthase and/or
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the isomero-reductase.9,10c For the identi®cation of further intermediates of this pathway, tritium
labelled ME was required. Former syntheses of methylerythritol or of its 4-phosphate were either
not adapted for obtaining such labelled material and/or were not fully enantioselective.10 A
simple method, yielding optically pure ME and allowing simple tritium introduction at the last
but one step was adapted from our previous synthesis of MEP.11

2-C-Methyl-d-erythritol was synthesised in eight steps from the commercially available 1,2-O-
isopropylidene-a-d-xylofuranose in an overall yield of 43% (Scheme 2). The synthetic strategy
involved the addition of an alkyl group on the less hindered face of the carbohydrate ring.11 In
fact, addition of a Grignard reagent on the 3-oxo groups of protected 1,2-O-isopropylidene-a-d-
xylofuranose a�ords the ribo-con®gured isomer as major product, the presence of the 1,2-O-
isopropylidene group on the a face of the ulose directing the addition of Grignard reagents to
proceed on the b-face of the furanose.12

The ®rst step was the selective protection of the primary alcohol 9 at 0�C with the t-butyl-
diphenylchlorosilane in dichloromethane to give the monoprotected 5-O-t-butyldiphenylsilyl-1,2-
O-isopropylidene-a-d-xylofuranose 10 in 88% yield. Oxidation of the secondary alcohol 10 was
performed in THF using the Swern oxidation modi®ed by Ireland.13 In these conditions, the
methyl group was directly introduced by addition of methylmagnesium chloride without isolation
of the ketone to provide the branched-chain carbohydrate as a single diastereomer with the
desired con®guration in 95% yield. After removal of the O-silyl protective group with tetra-
butylammonium ¯uoride, the protection of the two hydroxy functionalities required a protecting
group showing high stability under acidic conditions and easily removed at the last step without
puri®cation of methylerythritol. Benzyl groups were chosen for this reason. Benzylation was
performed with 83% yield using a suspension of NaH in dry DMSO and benzyl bromide.14 The
isopropylidene group was removed in acidic conditions, and the resulting mixture of the two
anomers of hemicetal 14 was oxidised with sodium metaperiodate into the aldehyde 15. Reduction
of 15 with sodium borohydride a�orded 2,4-O-dibenzyl-2-C-methyl-d-erythritol.15,16 Finally, the

Scheme 1. 2-C-Methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis
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diol 16 was debenzylated using standard hydrogenation to give free 2-C-methyl-d-erythritol 17,
which was characterised as free tetrol or via its triacetate 18.
This synthesis provides enantiopure methylerythritol 17 without tedious isolation and

puri®cation protocols. It also allows easy tritium labelling by reduction of the aldehyde 15 with
commercially available tritium labelled sodium borohydride. The tritium labelled dibenzyl ether
of methylerythritol 16 was puri®ed by silica gel chromatography, and no further puri®cation of the
free 2-C-methyl-d-[1-3H]erythritol 17 was required after hydrogenolysis of the benzyl groups.17
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78.37 (quaternary C); 127.38, 127.48, 127.77, 128.40, 137.77 and 138.79 (aromatic C). HRMS (FAB+): (M+Na)+

calculated for C19H24O4Na 339.1572, found 339.1577. To an ice-cooled suspension of tritium labelled sodium

borohydride (100 mCi, 263 mCi/mmol, 0.38 mmol, 1 equiv., Isotopchim, Ganagobie-Peyruis, France) in
isopropanol (200 ml) was added a solution of aldehyde 15 in isopropanol (300 ml) (360 mg, 0.76 mmol, 2 equiv.).
Stirring was continued at room temperature, and after 24 h the reaction mixture was diluted with methanol. The

solvents were removed in vacuo and the residue was puri®ed by TLC to a�ord the 2,4-O-dibenzyl-2-C-methyl-d-
[1-3H]erythritol 16 (220 mg, 67 mCi, 91%, Rf=0.26, ethyl acetate:cyclohexane, 70:30).

17. 2-C-Methyl-d-[1-3H]erythritol 17: The diol 16 (400 mg, 1.26 mmol) was hydrogenated over 10% Pd/C (40 mg) in
EtOH (20 ml) for 40 h at room temperature under atmospheric pressure. The mixture was ®ltered, and the ®ltrate

concentrated to give 2-C-methyl-d-erythritol 17 as a colourless oil (165 mg, 98%, Rf=0.30, chloroform:methanol,
80:20) which was not further puri®ed. 1H NMR (D2O): �=0.91 (3H, s, CH3); 3.24 (1H, d, J1a,1b=11.8 Hz, 1-Ha);
3.36 (1H, dd, J4a,4b=10.5 Hz, J3,4a=8.4 Hz, 4-Ha); 3.37 (1H, d, J1a,1b=11.8 Hz, 1-Hb); 3.44 (1H, dd, J3,4a=8.4 Hz,

J3,4b=1.5 Hz, 3-H); 3.61 (1H, dd, J4a,4b=10.3 Hz, J3,4b=1.5 Hz, 4-Hb);
13C NMR (D2O): �=17.53 (CH3, C-5);

61.08 (CH2); 65.39 (CH2); 73.16 (CH, C-3); 74.03 (quaternary C, C-2). HRMS (FAB+): (M+Na)+ calculated for
C5H12O4Na 159.0633, found 159.0633. 2,4-O-dibenzyl-2-C-methyl-d-[1-3H]erythritol 16 (220 mg, 67 mCi)

obtained after the reduction of aldehyde 15 was hydrogenated over 10% Pd/C (10 mg) in EtOH (2 ml) for 40 h
at room temperature and under atmospheric pressure. The mixture was ®ltered, and the ®ltrate concentrated to
give 2-C-methyl-d-[1-3H]erythritol 17 (98 mg, 98%, 67 mCi, 92mCi/mmol, Rf=0.30, chloroform:methanol, 80:20),
which was not further puri®ed.
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