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Abstract 

Organopromoter, 2-aminoethanesulfonic acid catalyzed synthesis of series of structurally 

intriguing new hybrids thiazolyl acridine-1,8 (2H,5H)-diones and dihydropyrido[2,3-d:6,5-

d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones for the first time. 2-Aminoethanesulfonic acid 

is a biobased organopromoter, used to generate four new bonds for the synthesis of new coupled 

thiazole-Based decahydroacridine-1,8-diones.Superior green credentials, operational simplicity, 

easy workup and recyclability of the catalyst are the key strengths of this method. Which 

attributes to broad substrate scope, mild reaction conditions, short reaction time, cost 

effectiveness, high atom economy and good to excellent yields make the present method a 

distinct improvement over existing methods. Spectral (IR,1H NMR,13C NMR, Mass) data, and 

elemental analyses confirmed the structures of the titled products. Series of thiazolyl acridine-1,8 

(2H,5H)-diones and dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones 

were screened for their antimicrobial activity against four bacterial and three fungal strains. 

 

Keywords Antimicrobial; Thiazolyl decahydroacridine-1,8-diones; Dihydropyrido[2,3-d:6,5-

d']dipyrimidine; Multicomponent; Taurine 
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Introduction 

Organocatalysis has been one of the fastest growing areas in synthetic chemistry in the 

last few years. It involved innate benefits in using small organic molecules of biological origin as 

promoters, which are typically non-toxic, insensitive to moisture and air, cost-effective, easily 

available, efficient and selective.[1-2] Organocatalyst corresponds to a low molecular weight 

organic molecule which in stoichiometric amounts catalyzes a chemical reaction.[3-5] Bio-organic 

catalysts are one of the organopromoter showing numerous excellent contributions in organic 

synthesis.[6-9] Bio-organic catalyst produces a line of proprietary product compositions, based 

upon its unique patented broad spectrum catalytic biochemistry, that establishes an entirely new 

platform technology for the chemical industry.[10] Organopromoters when used in combination 

with green solvents their real benefit are best realized.[11] 

2-Aminoethanesulfonic acid (Taurine) is an organic compound that is widely distributed 

in animal tissues. It is a sulfur-containing semi-essential amino acid that exists in the human 

body and numerous other living creatures.[12-14] 2-Aminoethanesulfonic acid is in the zwitter 

ionic shape in water and this leads to essential biological and medicinal properties. Very few 

literature reports are available for 2-aminoethanesulfonic acid as catalyst. Recently Nader 

Daneshvar et al used 2-aminoethanesulfonic acid as a green bio-organic catalyst for the 

promotion of the Knoevenagel reaction and condensation reactions.[15,16] Silica gel supported 2-

aminoethanesulfonic acid was also reported in the oxidation reaction of sulfides to their 

corresponding disulfides.[17] 

The synthesis of acridine and analogues has attracted considerable attention from organic 

and medicinal chemists for many years, as a number of natural sources have been reported to 

have this heterocyclic nucleus. They are used in medicine and have enormous potential as 

pharmaceutical agents due to their biological activities (Figure 1) such as antiviral,[18] 

antibacterial,[19] anticancer,[20] anti-inflammatory activities[21] as well as efficiency in 

photodynamic therapy.[22] The chemical modifications of acridines by introducing different 

substitutions or heterocyclic rings were expanded the research on the structure activity 

relationship to afford new insight into molecular interactions at the receptor level.[23] Thiazole 

ring is a structural fragment of natural compounds such as thiamine (vitamin B1), thiamine 

pyrophosphate, epothilones, carboxylase, and the large family of macrocyclic thiopeptide 

antibiotics, thiostrepton and micrococcin P1.[24, 25] Thiazole derivatives are associated with a 
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broad spectrum of biological properties, including anticancer, antitumor, anticonvulsant, 

antimicrobial, antituberculous and bacteriostatic activities (Figure 1).[26-29] Therefore we focused 

on attention to club theses heterocycles in one molecular framework to synthesize new hybrids 

thiazolyl acridinedione. 

 

 

Figure 1: Biologically active molecules containing acridine and thiazole pharmacophore 

 

There are many reported methods for the synthesis of acridinedione including multi-

component condensation (MCR) of various aromatic aldehydes, cyclic diketones, and various 

aromatic amines in the presence of diverse catalysts Fe3O4@SiO2-MoO3H,[30] Pt NPs@rGO 

nanoparticles,[31] proline,[32] benzyltriethyl ammoniumchloride,[33] Fluorotailed acidic 

imidazolium salts,[34] 1-methylimidazolium trifluoroacetate [Hmim]TFA,[35] cericammonium 

nitrate,[36] silica-bonded N-propyl sulfamic acid,[37] amberlyst-15,[38] carbon-based solid acid,[39] 

4-dodecylbenzenesulfonic acid,[40] and Vitamin B1.[41] Acridinediones are also synthesized by 

conventional heating in organic solvents and under MW irradiation.[42] However, all these 

methods have not been entirely satisfactory, owing to various side-effects associated with them 

viz., unsatisfactory yield, long reaction times, laborious work-up procedures, the requirement for 

special apparatus and harsh reaction conditions. 

Consequently, in our continued pursuit towards the development of novel green synthetic 

routes for the construction of biologically important clubbed heterocycles,[43-46] we became 
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interested in the design of a new eco-friendly, efficient and versatile one pot multicomponent 

tandem synthesis of new hybrids thiazolyl decahydroacridine-1,8-dionesand dihydropyrido[2,3-

d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones by using 2-aminoethanesulfonic acid as 

bio-organic promoter in water and evaluated for their antimicrobial activity. 

Result and Discussion 

Chemistry 

The basic requirement for the synthesis of these hybrids was the availability of the 4-((2-

phenylthiazol-4-yl)methoxy)benzaldehyde (4). The synthesis of 4 (Scheme 1) was initiated by 

condensation of thioacetamide (1) and 1,3-dichloro acetone (2) in ethanol at reflux temperature. 

The resulting chloromethyl thazole (3) was then condensed with 4-hydroxy benzaldehyde in 

DMF/K2CO3 at room temperature for 5-6 h and obtained 4-((2-phenylthiazol-4-

yl)methoxy)benzaldehyde (4) in 96 % yield.[47] 

 
Scheme 1 Synthesis of4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde 4 

 

To begin with, the one-pot synthesis of thiazolyl decahydroacridine-1,8-dione, was 

performed, whereby, well stirred solution of 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde 

(4a) (1 mmol), cyclohexadione (2) (2 mmol) and aniline (3a) (1 mmol) was considered as model 

reaction. 
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Scheme 2 Synthesis of3,3,6,6-tetramethyl-10-phenyl-9-(4-((2-phenylthiazol-4-

yl)methoxy)phenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione7a 

 

To design more environmentally benign protocols, together with catalysts, there is need 

of cautious selection of the medium. Use of water as the reaction medium represents the most 

promising option in the search for cleaner, cheaper and more efficient technologies for organic 

transformations.[48-50] However, the implementation of aqueous media in organic reactions is 

often limited in scope due to the poor solubility of the organic precursors. To address this 

solubility issue, we sought to utilize different catalysts like β-Cyclodextrin, CTAB, 

tris(hydroxymethyl)aminomethane (THAM), p-TSA and 2-aminoethanesulfonic acid for the 

model reaction(Scheme 2). The reaction mixture of 4-((2-phenylthiazol-4-

yl)methoxy)benzaldehyde (4a), cyclohexadione (2) and aniline (5a) was stirred at room 

temperature in water using above catalysts and obtained titled product thiazolyl 

decahydroacridine-1,8-dione 7a, with 58, 62, 35, 59 and 73 % yield in 60 min. respectively 

(Table 1, entries 1-5). Therefore, considering the effective catalytic activity of 2-

aminoethanesulfonic acid and for utilization of its applications in organic transformations, 2-

aminoethanesulfonic acid was preferred as a catalyst of choice for subsequent optimization 

studies. 

In order to improve the yield and rate of reaction, the effect of catalyst concentration and 

temperature was also investigated. To determine the exact requirement of catalyst for the 

reaction, we investigated the model reaction using different concentrations of 2-

aminoethanesulfonic acid such as 10, 20, 30, and 40 mol %. During this, formation of the 

product was observed in 55, 73, 94 and 94% yield, respectively (Table 1, entry 6). This 
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indicated that 30 mol % of 2-aminoethanesulfonic acid was sufficient to carry out the reaction 

smoothly. 

Model reaction in 2-aminoethanesulfonic acid at reflux was found to proceed with 

excellent yield (94%) to obtained thiazolyl decahydroacridine-1,8-dione 7a in 60 min (Table 1). 

As temperature increased 40, 60, 80, 100 oC the yield of the product was also increased (71, 74, 

90, 94 %). As expected, when the temperature was low, the catalytic system showed very poor 

activity, furnishing the desired product in low yields (Table 1, entry 1). However, on further 

raising the temperature, the yield was increased. 

To evaluate the effect of solvent, model reaction was further performed using 2-

aminoethanesulfonic acid in ethanol, water, ethanol:water (1:1), methanol, acetonitrile, 

chloroform and dichloromethane as solvent. Chloroform and dichloromethane did not bring the 

reaction to completion (Table 1, entry 7), but in contrast acetonitrile and methanol found to 

furnish the product in a moderate yields (Table1, entry 6). Reaction in ethanol and aqueous 

ethanol resulted in good yields 66% and 68%, respectively. Whereas, water brought the reaction 

to completion efficiently to furnish the product in excellent 94% yield (Table 1, entry 5).During 

the studies on the effect of the reaction medium, it was truly gratifying to notice an appreciable 

increase in the yield of the desired product, 7a with the choice of water as the reaction medium. 

The reason for this result could be referred to the solubility of taurine. Since taurine is only 

soluble in water, use of ethanol removes this reagent from the homogeneous phase of the 

reaction. 

Efficient recovery and reusability of the catalyst are other important features of our 

proposed protocol. Since 2-aminoethanesulfonic acid is soluble in water, it was easily separated 

from the products by simple filtration. The filtered solution was evaporated and thus obtained 2-

aminoethanesulfonic acid reused for next two consecutive cycles for the synthesis of 7a. As 

shown in there recyclability graph of catalytic efficiency of 2-aminoethanesulfonic acid, the 

isolated yields were almost similar until the third recycling (Figure 2). Recycled 2-

aminoethanesulfonic acid was confirmed by FT-IR spectrum which determines structural 

information about the molecule. No change was observed in the IR spectra of 2-

aminoethanesulfonic acid before the reaction and after third recycle (Figure 3). 
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Figure 2 Recycle and recovery of 2-aminoethanesulfonic acid and its effect on yield. 

 

 

Figure 3 FT-IR spectra of 2-aminoethanesulfonic acid. Above Blue color: Fresh catalyst; Below 

Red color: After III recycle recovered catalyst 

 

With optimized conditions in hand, we attempted to widen the scope of the designed 

protocol by reacting various substituted amines (aromatic and heterocyclic) with 4-((2-

phenylthiazol-4-yl)methoxy)benzaldehyde (4) and 5,5-dimethyl-1,3-cyclohexanedione under 

aqueous medium in the presence of 2-aminoethanesulfonic acid. Pleasingly, in all cases, these 

components reacted successfully to form the corresponding thiazolyl decahydroacridine-1,8-
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diones (7a-n) in good yields (Scheme 3). The results are summarized in Table 2. The results 

clearly revealed that the amines with electron-donating and electron-withdrawing functional 

groups at different positions reacted with 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde (4) 

and 5,5-dimethyl-1,3-cyclohexanedione smoothly and gave the corresponding product in good to 

excellent yields. The products were obtained in pure form, which avoided complicated 

purification operations, thus allowing the saving of both solvents and reagents. 

 

 
 

Scheme 3 Synthesis of 10-(4-substituted phenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4 

yl)methoxy)phenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 7a-n 

 

In addition, this procedure was successfully extended to synthesis of new thiazolyl 

dihydropyrido[2,3-d:6,5-d']dipyrimidines (9a-k) by the cyclocondensation of 4-((2-

phenylthiazol-4-yl)methoxy)benzaldehyde (4), barbituric acid (8) and aromatic amines (6a-k) 

(Scheme 4) using 2-aminoethanesulfonic acid as bio organopromoter in water.2-

Aminoethanesulfonic acid catalyses the reaction efficiently and obtained desired thiazolyl 

dihydropyrido[2,3-d:6,5-d']dipyrimidines (9a-k) in good to excellent yields with short reaction 

time (Table 3).  
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Scheme 4 Synthesis of10-(substituted phenyl)-5-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-

9,10-dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones 9a-k 

 

Plausible Mechanism of reaction 

A probable mechanistic pathway for the formation of 1,8-decahydroacridine-1,8-

dionesderivatives catalyzed by the 2-aminoethanesulfonic acid is outlined in Scheme 5. 2-

aminothanesulfonic acid is a natural, green and commercially available amino acid containing a 

sulfonic acid group, in the acceleration of organic reactions. 

The rate acceleration of this one pot four component cyclocondensation leading to N-

substituted 1,8-decahydroacridine-1,8-diones is attributed to unique role of 2-aminothanesulfonic 

acid as a bifunctional donor-acceptor reagent and has binding capacity. Stronger hydrogen-

bonding capabilities of 2-aminothanesulfonic acid might be assisting to enhance electrophilic 

character of carbonyl carbons of the reactants, viz; aldehydes and intermediate. It might also be 

increasing the rate of in situ formation of carbanion from dimedone. They may be causing rate 

acceleration resulting in high yields of the desired N-substituted 1,8-decahydroacridine-1,8-

diones.  
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Scheme 5 Plausible reaction mechanism for the synthesis of thiazolyl decahydroacridine-1,8-

diones7a-n 

 

Antimicrobial activity 

Newly synthesized thiazolyl decahydroacridine-1,8-diones (7a-n) and dihydropyrido[2,3-d:6,5-

d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones (9a-k) were tested for the antimicrobial activity 

against four pathogenic bacteria and three fungi including, Escherichia coli, Pseudomonas 

aeruginosa, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Aspergillus Niger and 

Aspergillus Flavus in vitro using Ampicillin, Ciprofloxacin and Miconazole used as positive 
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controls. The results are summarized in Table 4 and 5. Among the series thiazolyl 

decahydroacridine-1,8-diones, compounds 7a, 7b, 7d, 7f, 7g, 7h, 7j, 7l and 7nshowed significant 

antibacterial activity against Staphylococcus aureus and Bacillus subtilis. Among the thiazolyl 

dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones (9a-k) compounds 9d, 

9f, 9i and 9k exhibited good inhibitory activity against selected all bacterial stains. Both the 

series of compounds showed poor activity against fungal strains when compared with standards. 

 

Table1 Optimization of the reaction conditions for the synthesis of thiazolyl decahydroacridine-

1,8-dione7a 

Entry Catalyst Solvent Catalyst 

Loading 

(mol%) 

Time 

(h) 

Yield (%)b 

1 β-Cyclodextrin H2O 20 1 58 

2 CTAB H2O 20 1 62 

3 THAM H2O 20 1 35 

4 p-TSA H2O 20 1 59 

5 2-Aminoethanesulfonic acid H2O 20 1 73 

6 2-Aminoethanesulfonic acid H2O 10, 20, 30, and 

40 

1 55, 73, 94 and 94 

7 2-aminoethanesulfonic acid (40, 

60, 80, 100 oC) 

H2O 30 1 71, 74, 90, 94 

8 2-Aminoethanesulfonic acid EtOH 30 1 66 

9 2-Aminoethanesulfonic acid EtOH:H2O 

(1:1) 

30 1 68 

10 2-Aminoethanesulfonic acid MeOH 30 1 42 

11 2-Aminoethanesulfonic acid CHCl3 30 1 No reaction 

12 2-Aminoethanesulfonic acid CH3CN 30 1 36 

13 2-Aminoethanesulfonic acid DCM 30 1 No reaction 

14 - H2O - 13 No reaction 
aReaction Conditions: 4-((2-Phenylthiazol-4-yl)methoxy)benzaldehyde (1) (4 mmol), Aniline (4 mmol), dimedone 

(8 mmol), Water (15 mL), 80ºC bIsolated yield 
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Table 2 Synthesis of 10-(4-substituted phenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4 

yl)methoxy)phenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-diones 7a-n 

S

N
O N

O

O

S

N O O

O

O

2

Taurine

H
2
O, RefluxNH2

R

R

+

 

Sr. 

No. 
Aniline Compound Yield (%) 

Melting 

Point 

(ºC) 

1 

 
S

N
O N

O

O

7a

 

94 115-117 

2 

 

S

N O N

O

O

7b

CH3

 

89 98-100 

3 

 

 

S

N O N

O

O

7c

OCH3

 

92 112-114 

4 

 

S

N O N

O

O

7d

Cl

 

88 96-98 

10.1002/cbdv.201900577

A
cc

ep
te

d 
M

an
us

cr
ip

t

Chemistry & Biodiversity

This article is protected by copyright. All rights reserved.



5 

 

S

N
O N

O

O

Br

7e

 

76 104-106 

6 

 

S

N O N

O

O

7f

F

 

79 120-122 

7 

 

S

N O N

O

O

7g

NO2

 

75 168-170 

8 

 

S

N O N

O

O

7h

SO2NH2

 

89 146-148 

9 

 

S

N O N

O

O

7i

CH3

CH3

 

87 118-120 

10 

 
S

N O N

O

O

7j

OCH3

 

92 137-139 

11 

 
S

N O N

O

O

7k

OH

 

87 228-230 
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12 

 
S

N O N

O

O

7l

SH

 

84 146-148 

13 

 S

N O N

O

O

7m

N

 

79 138-140 

14 

 

S

N O N

O

O

NH

7n

O

 

81 156-158 

aReaction Conditions: 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde (4) (4 mmol), dimedone 

(5) (8 mmol), substituted amines (6a-n) (4 mmol), 2-Aminoethanesulfonic acid (30 mol%), 

Water (15 mL) Reflux 

bIsolated yield 

 

Table 3 Synthesis of10-(substituted phenyl)-5-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-9,10-

dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones 9a-k 

 

Sr. 

No. 
Aniline Compound Yield (%) 

Melting 

Point 

(ºC) 
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1 

 
S

N
O N

NH
HN

HN
NHO

O

O

O

9a

 

95 261-263 

2 

 

S

N
O N

NH
HN

HN
NHO

O

O

O

9b

CH3

 

95 280-282 

3 

 

S

N
O N

NH
HN
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aReaction Conditions: 4-((2-Phenylthiazol-4-yl)methoxy)benzaldehyde (4) (4 mmol), barbituric 

acid (5) (8 mmol), substituted amines (6a-k) (4 mmol), 2-Aminoethanesulfonic acid (30 mol%), 

Water (15 mL) Reflux 

bIsolated yield 
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Table 4 MIC values of 10-(4-substituted phenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4 

yl)methoxy)phenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-diones 7a-n after antimicrobial 

screening 

Compound MIC Values in µg/mL[a] MIC Values in µg/mL[b] 

Antibacterial Activity Antifungal Activity 

Escherichia coli Pseudomonas

aeruginosa 

Staphylococcus 

aureus 

Bacillus 

subtilis 

Candida 

albicans 

Aspergillus 

Niger  

Aspergillus

Flavus  

7a 165.8± 0.26 98.0± 0.31 79.0± 0.14 67.5± 0.85 48.5±0.36 77.3±0.22 91.5±0.37 

7b 107.1± 0.38 188.4± 0.60 98.5± 0.08 108.0± 0.61 125.1±0.22 182.0±0.36 198.2±0.34 

7c 165.9± 0.04 178.4± 0.24 186.3± 0.34 175.1± 0.38 102.1±0.33 142.1±0.66 138.3±0.88 

7d 207.3± 0.34 ND 233.0± 0.64 204.1± 0.93 165.5±0.74 157.5±0.65 118.6±0.07 

7e 219.4± 0.64 225.7± 0.38 ND ND 240.1±0.24 198.3±22 205.1±0.38 

7f 199.0± 0.52 178.1± 0.23 194.2.± 0.27 216.4± 0.75 212.0±0.76 195.4±067 229.3±0.87 

7g ND ND 217.4± 0.09 241.3±0.70 208.7±0.81 265.7±0.24 193.1±0.30 

7h 107.1±0.20 118.3±0.45 172.6± 0.24 91.22± 0.40 ND 239.1±0.21 243.3±0.71 

7i 181.2± 0.25 ND ND 144.7± 0.16 ND ND 193.7±0.54 

7j 97.5± 0.41 108.0± 0.97 185.4± 0.36 168.7± 0.55 225.1±0.03 192.2±0.40 160.5±0.98 

7k 129.7± 0.34 182.7± 0.54 ND ND 192.3±0.56 ND 238.1±0..58 

7l 198.2± 0.74 97.6± 0.22 105.6± 0.50 272.5± 0.14 231.0±0.38 251.7±0.64 183.4±0.43 

7m 146.3± 0.08 165.3± 0.34 ND 201.1± 0.30 196.1±0.17 187.4±0.62 175.3±0.58 

7n 109.0± 0.51 140.6± .37 131.0± 0.22 161.1± 0.94 245.3±0.58 243.7±0.32 205.1±0.67 

Ampicillin 100± 1.24 100± 2.14 250± 2.99 250± 0.88 - - - 

Ciprofloxacin 25± 1.00 25± 1.15 50± 1.44 50± 0.96 - - - 

Miconazole - - - - 25±1.17 25±1.11 12.5±0.98 
[a]No activity reported up to 400 µg/mLfor antibacterial 
[b]No activity reported up to 250 µg/mLfor antifungal, ND: No activity detected 

Data are presented as mean±SD, n=3 
 

 

Table 5 MIC values of 10-(substituted phenyl)-5-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-

9,10-dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones 9a-k after 

antimicrobial screening 

Compound 

MIC Values in µg/mLa MIC Values in µg/mLb 

Antibacterial Activity Antifungal Activity 

Escherichia 

coli 

Pseudomona

saeruginosa 

Staphylococ

cus aureus 

Bacillus 

subtilis 

Candida 

albicans 

Aspergillus 

Niger 

Aspergillus

Flavus 

9a ND 101± 0.45 93± 0.08 85± 0.24 48±0.34 46±0.34 103±0.38 

9b 130± 0.24 187.3± 0.64 115.7± 0.27 168.1± 0.47 38±0.47 64±0.53 49±0.08 

9c ND 98± 0.30 67± 0.41 ND 90±0.31 78±0.39 23±0.72 

9d 97± 0.57 75± 0.36 82± 0.33 130± 0.63 84±0.22 ND ND 

9e 179± 0.38 191± 0.34 72.1± 0.51 164± 0.31 55±0.26 31±2.20 44.1±0.54 

9f 76± 0.09 57± 0.11 101± 0.17 135± 0.60 107±0.22 39±0.11 41±0.90 

9g ND ND 216± 0.34 1981± 0.38 131±0.24 106±0.22 155±0.76 
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9h 190± 0.06 174± 0.13 ND ND 68±0.21 37±0.10 28±0.72 

9i ND 178.1± 0.57 129.6± 0.17 ND 243±0.38 105±0.71 136.7±0.37 

9j 76± 0.85 91± 0.22 68± 0.34 111± 0.62 32±0.47 91±0.40 37±0.71 

9k 68± 0.17 44± 0.92 98.1± 0.64 66.0± 0.74 43.1±0.55 62.9±0.36 29±0.88 

Ampicillin 100± 1.24 100± 2.14 250± 2.99 250± 0.88 - - - 

Ciprofloxac

in 
25± 1.00 25± 1.15 50± 1.44 50± 0.96 - - - 

Miconazole - - - - 25±1.17 25±1.11 12.5±0.98 
[a]No activity reported up to 400 µg/mL 
[b]No activity reported up to 250 µg/mL, ND: No activity detected 

Data are presented as mean±SD, n=3 

 

Experimental 

Reagents and instrumentation 

All the chemicals used were of laboratory grade. Melting points of all the synthesized 

compounds were determined in open capillary tubes and are uncorrected. 1H NMR spectra were 

recorded with Bruker Avance 400 and Bruker Topspin  spectrometer operating at 400 and 

700MHz using CDCl3 and DMSO solvent and tetramethylsilane (TMS) as the internal standard 

and chemical shift in δ ppm Mass spectra were recorded on a Sciex, Model; API 3000 

LCMS/MS Instrument. CHNS Analysis was performed on Thermofisher Flash EA112 series 

Analyser. The purity of each compound was checked by TLC using silica-gel, 60F254 aluminum 

sheets as adsorbent and visualization was accomplished by iodine/ultraviolet light. 

Synthesis of 2-phenyl-4-chloromethylthiazole 3 

In the first step, 4-((2-Phenylthiazol-4-yl)methoxy)benzaldehyde (4) was prepared according to 

the method already reported in our previous publication.35Thiobenzamide (1)(10 mmol) and 1,3-

dichloro acetone (2) (10 mmol) were dissolved in ethanol. The reaction mixure was refluxed. 

The progress of the reaction was monitored by TLC. After 4h of the reflux, reaction mixture was 

cooled and solvent was removed under vacuum. The reaction residue was then poured on 

crushed ice. Thus obtained solid was filtered, washed with water, and crystallized from ethanol. 

Yield: 98%, M.P. 61-63oC.[47] 

 

Synthesis of 4-((2-Phenylthiazol-4-yl)methoxy)benzaldehyde 4 
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A mixture of chloromethylthiazole (3) (10mmol), powdered potassium carbonate (20 mmol), and 

4-hydroxybenzaldehyde (10 mmol) was added to N,N-dimethylformamide (20-30 mL). The 

reaction mixture was then stirred for 5-6 hr at r.t. After completion of the reaction, the reaction 

mixture was poured on crushed ice. Thus obtained solid was filtered, washed with water, and 

crystallized from ethanol. Yield: 97%, M.P. 100-102oC. 

 

General Procedure for the synthesis of 10-(4-substituted phenyl)-3,3,6,6-tetramethyl-9-(4-

((2-phenylthiazol-4 yl)methoxy)phenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-diones 

7a-n 

A mixture of 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde (4) (1 mmol) and5,5-

dimethylcyclohexane-1,3-dione (2) in water (20 mL) containing 2-aminothanesulfonic acid (30 

mol%) was refluxed for 15 min. After that substituted anilines (3a-n) (1 mmole) was added and 

refluxed at 100 ̊C. Progress of the reaction was monitored by thin layer chromatography using 

ethyl acetate:hexane (3:7) as solvent. After 60 min reaction mixture was cooled. Thus obtained 

solidwas filtered, dried and purified by crystallization. 

 

General procedure for the synthesis of 10-(substituted phenyl)-5-(4-((2-phenylthiazol-4-

yl)methoxy)phenyl)-9,10-dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-

tetraones 9a-k 

A mixture of 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde (4)(1 mmol) and barbituric acid(2) 

in water (20 mL) containing 2-aminothanesulfonic acid (30 mol%) was refluxed for 15 min. 

After that substituted anilines (3a-k) (1 mmole) was added and refluxed at 100 ̊C. Progress of the 

reaction was monitored by thin layer chromatography using ethyl acetate:hexane (3:7) as solvent 

system. After 60 min reaction mixture was cooled. Thus obtained solid was filtered, dried and 

purified by crystallization. 

4-((2-Phenylthiazol-4-yl)methoxy)benzaldehyde 4[47] 

IR (ATR, υ cm-1) Characteristic absorptions: 3117 (Ar-H stretch), 2830 (-C-H stretch), 1745 

(C=O) and 1266 (C-O-C stretch). 1H-NMR (400 MHz, DMSO, δ ppm):5.33 (s, 2H, CH2), 7.14-

7.50 (m, 6H, Ar-H and thiazolyl-H), 7.82-8.00 (m, 4H, Ar-H) and 9.89 (s, 1H, -CHO). MS 

(Scanning mode, ESI+): m/z (% intensity): 295.9 (M+, 100) 
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9-(4-((2-Phenylthiazol-4-yl)methoxy)phenyl)-3,4,6,7-tetrahydro-3,3,6,6-tetramethyl-10-

phenylacridine-1,8(2H,5H,9H,10H)-dione 7a 

IR (ATR, υ cm-1) Characteristic absorptions: 3048, 2948, 2870, 1663, 1578, 1381, 1221, 882, 

820, 783, 615.1H-NMR (400 MHz, DMSO, δ ppm): 0.82 (s, 3H, CH3), 0.86 (s, 3H, CH3), 0.95-

0.96 (m, 6H, CH3), 2.15-2.45 (m, 8H, CH2), 5.21 (s, 2H, CH2), 5.34 (s, 1H, CH), 6.89-7.96 (m, 

15H, Ar-H); 13C NMR (176 MHz, CDCl3) δ 169.65, 168.74, 142.53, 141.80, 134.43, 132.90 

(2C), 131.21 (2C), 130.53, 130.71 (2C), 129.87 (2C), 128.70 (2C), 127.69 (2C), 127.63, 125.82 

(2C), 126.43 (2C), 124.74 (2C), 115.89, 114.31, 77.65, 66.76, 50.24, 49.65 , 44.21, 29.72; MS 

(Scanning mode, ESI+): m/z 615.5 (M+); Anal. calcd. For C39H38N2O3S: N, 4.56; C, 76.19; H, 

6.23; S, 5.22 Found: N, 4.60; C, 76.13; H, 6.28; S, 5.21%. 

 

10-(4-Methylphenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-

3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 7b 

IR (ATR, υ cm-1)Characteristic absorptions: 3053, 2959, 2868, 1670, 1582, 1367, 1245, 891, 

834, 786, 617;1H NMR (700 MHz, CDCl3δ ppm):0.83-0.85 (m, 6H, CH3), 1.19-1.27 (m, 9H, 

CH3), 2.07-2.21 (m, 4H, CH2), 2.27-2.51 (m, 4H, CH2), 5.25 (s, 2H, CH2), 5.38 (s, 1H, CH), 

6.93-7.05 (m, 5H, Ar-H),7.06-.47 (m, 8H, Ar-H), 7.98 (d, 2H, J=8 Hz, Ar-H);13C NMR (176 

MHz, CDCl3) δ 169.78, 168.51, 142.32, 141.78, 134.56, 132.23 (2C), 131.56 (2C), 130.87, 

130.08 (2C), 129.93 (2C), 128.97 (2C), 127.89 (2C), 127.34, 125.76 (2C), 126.60 (2C), 124.86 

(2C), 115.77, 114.39, 77.24, 66.47, 50.26, 49.92 , 44.61, 29.32, 27.43; MS (Scanning mode, 

ESI+): m/z 629.3 (M+); Anal. calcd. For C40H40N2O3S: N, 4.45; C, 76.40; H, 6.41; S, 5.10 Found: 

N, 4.48; C, 76.38; H, 6.50; S, 5.06%. 

 

10-(4-Bromophenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-

3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 7e 

IR (ATR, υ cm-1) Characteristic absorptions: 3048, 2948, 2870, 1663, 1578, 1381, 1221, 882, 

820, 783, 615; 1H NMR (700 MHz, CDCl3 δ ppm): 1.08-1.25 (m, 12H, CH3), 2.27-2.52 (m, 8H, 

CH2), 5.24 (s, 2H, CH2), 5.35 (s, 1H, CH), 6.59-6.97 (m, 5H, Ar-H),6.89-7.13 (m, 2H, Ar-H), 

7.21-7.95 (m, 7H, Ar-H); 13C NMR (176 MHz, CDCl3) δ 169.57, 168.67, 142.32, 141.65, 

141.02, 133.79, 132.78, 131.67, 130.92, 130.54 (2C), 128.29 (2C), 127.74 (2C), 126.28 (2C), 

125.93 (2C), 124.10 (2C), 121.60, 120.58 (2C), 120.36, 119.61, 114.78, 77.45, 76.58, 66.45, 
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47.24, 40.87, 32.59, 29.62; MS (Scanning mode, ESI+): m/z 693.5 (M+); Anal. calcd. For 

C39H37BrN2O3S: N, 4.04; C, 67.53; H, 5.38; S, 4.62 Found: N, 4.11; C, 67.54; H, 5.42; S, 4.65%. 

 

10-(4-Nitrophenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-

3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 7g 

IR (ATR, υ cm-1) Characteristic absorptions: 3074, 2992, 2875, 1670, 1565, 1388, 1254, 879, 

825, 791, 630; 1H NMR (700 MHz, CDCl3 δ ppm):0.85-0.98 (m, 6H, CH3), 1.14 (s, 3H, CH3), 

1.26 (s, 3H, CH3), 2.18-2.50 (m, 8H, CH2), 5.27 (s, 2H, CH2), 5.38 (s, 1H, CH), 6.95-7.41 (m, 

11H, Ar-H), 7.90-7.99 (m, 3H, Ar-H); 13C NMR (176 MHz, CDCl3) δ 169.96, 168.64, 142.69, 

141.34, 140.23, 133.85, 132.91, 131.43, 130.35, 130.09 (2C), 128.94 (2C), 127.89 (2C), 126.61 

(2C), 125.12 (2C), 124.75 (2C), 121.78, 120.95 (2C), 120.34, 119.63, 114.42, 77.24, 76.88, 

66.46, 47.09, 40.90, 32.65, 29.75; MS (Scanning mode, ESI+): m/z 660.5 (M+); Anal. calcd. For 

C39H37N3O5S: N, 6.37; C, 70.99; H, 5.65; S, 4.86 Found: N, 6.41; C, 70.93; H, 5.61; S, 4.90%. 

 

10-(4-Hydroxyphenyl)-3,3,6,6-tetramethyl-9-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-

3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione 7k 

IR (ATR, υ cm-1) Characteristic absorptions: 3029, 2952, 2874, 1683, 1580, 1373, 1242, 879, 

849, 776, 623; 1H NMR (700 MHz, CDCl3 δ ppm):1.13 (s, 6H, CH3), 1.26 (s, 6H, CH3), 2.33-

2.44 (m, 8H, CH2), 5.24 (s, 2H, CH2), 5.37 (s, 1H, CH), 6.62-7.52 (m, 14H, Ar-H); 13C NMR 

(176 MHz, CDCl3) δ 169.48 (2C), 143.56, 141.76, 140.72, 133.02, 132.05 (2C), 131.39, 130.36, 

130.16, 129.03 (2C), 127.92 (2C), 126.57, 125.65 (2C), 124.21 (2C), 123.87, 122.35, 122.21, 

121.70, 117.11, 115.76, 114.57, 77.25, 66.48, 47.08, 46.46, 31.43, 29.72; MS (Scanning mode, 

ESI+): m/z 631.7 (M+); Anal. calcd. For C39H38N2O4S: N, 4.44; C, 74.26; H, 6.07; S, 5.08 Found: 

N, 4.43; C, 74.27; H, 6.11; S, 5.01%. 

 

10-(4-nitrophenyl)-5-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-9,10-dihydropyrido[2,3-

d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone 9f 

IR (ATR, υ cm-1) Characteristic absorptions: 3421, 3139, 2950, 2875, 1671, 1554, 1478, 1390, 

1223, 886, 876, 721, 667. 1H NMR (700 MHz, CDCl3 δ ppm): 5.38 (s, 2H, CH2).6.61 (s, 1H, 

CH), 7.22 (d, 2H, J=8 Hz, Ar-H), 7.46-7.59 (m, 4H, Ar-H), 7.87-8.39 (m, 8H, Ar-H), 11.21 (s, 

2H, NH), 11.33 (s, 2H, NH); 13C NMR (176 MHz, DMSO) δ 165.65 (2C), 164.39 (2C), 155.27, 
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150.76, 137.89, 133.32, 131.32, 131.42, 130.97, 129.94, 128.94 (2C), 127.21 (2C), 126.74, 

124.09 (2C), 123.21 (2C), 122.01, 121.90 (2C), 120.54 (2C),119.65 (2C), 115.76, 89.41, 48.56; 

MS (Scanning mode, ESI+): m/z 636.3 (M+); Anal. calcd. For C31H21N7O7S: N, 15.43; C, 58.58; 

H, 3.33; S, 5.04 Found: N, 15.41; C, 58.62; H, 3.35; S, 5.02%. 

 

N-(2,4,6,8-tetraoxo-5-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-1,2,3,4,6,7,8,9-

octahydropyrido[2,3-d:6,5-d']dipyrimidin-10(5H)-yl)isonicotinamide 9k 

IR (ATR, υ cm-1) Characteristic absorptions: 3459, 3139, 2950, 2863, 1668, 1565, 1435, 1389, 

1243, 849, 765, 690. 1H NMR (700 MHz, CDCl3 δ ppm): 5.30 (s, 2H, CH2), 5.37 (s, 1H, CH), 

7.18-7.52 (m, 5H, Ar-H), 7.72-7.95 (m, 6H,Ar-H), 8.42-8.79 (m, 3H, Ar-H), 11.20 (s, 2H, NH), 

11.29 (s, 2H, NH), 11.98 (s, 1H, NH); 13C NMR (176 MHz, DMSO) δ 164.59 (2C), 163.92 (2C), 

155.67, 151.07, 136.43, 133.76, 131.76, 131.21, 130.87, 129.93, 127.96 (2C), 127.41 (2C), 

126.40, 124.64 (2C), 123.12 (2C), 122.87, 121.94 (2C), 120.34 (2C), 119.75 (2C), 115.67, 89.73, 

48.21; MS (Scanning mode, ESI+): m/z 635.7 (M+); Anal. calcd. For C31H22N8O6S: N, 17.66; C, 

58.67; H, 3.49; S, 5.05 Found: N, 17.65; C, 58.69; H, 3.42; S, 5.09%. 

 

Conclusion 

In this work, a highly efficient and environmentally green methodology has been developed for 

the synthesis of new hybrids thiazolyl acridine-1,8 (2H,5H)-dione and dihydropyrido[2,3-d:6,5-

d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones using an inexpensive and recoverable bio-

organopromoter, 2-aminothanesulfonic acid under aqueous conditions, which to the best of our 

knowledge has no precedents. The reaction system was significantly affected by catalyst loading, 

temperature and solvent. Therefore, the significant advantages of this procedure are low catalyst 

loading, short reaction times, high to excellent yields, elimination of toxic transition metals or 

organic solvents, simple workup, reusability of the catalyst and simple purification of the 

products. The developed catalytic system has ample scope to be utilized further towards the 

development of green methodologies. New thiazolyl acridine-1,8 (2H,5H)-dione and 

dihydropyrido[2,3-d:6,5-d']dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraones showing moderate to 

good antimicrobial activity. 
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