# ENANTIOSELECTIVE SYNTHESIS OF FLAVONOIDS. PART 1. POLY-OXYGENATED CHALCONE EPOXIDES

JAN A.N. AUGUSTYN, BAREND C.B. BEZUIDENHOUDT\*, AND DANEEL FERREIRA.

# Department of Chemistry, University of the Orange Free State,

P.O. Box 339, Bloemfontein, 9300 South Africa. (Received in UK 20 December 1989)

Abstract — Epoxidation of a series of poly-oxygenated chalcones with  $H_2O_2$  in the presence of poly- $\alpha$ -aminoacid catalysts afforded chiral aromatic oxygenated epoxides in moderate to high optical yields; their absolute configurations were determined by CD spectroscopy. These chalcone epoxides could, in principle, be used as chirons for enantiomerically enriched dihydroflavonols.

Despite the availability of non- and mono-oxygenated chalcone epoxides in moderate to high optical yields<sup>1-9</sup>, utilization of these versatile precursors in enantioselective synthesis of flavonoids and isoflavonoids is limited to single transformations into respectively an aromatic deoxy a-hydroxydihydrochalcone<sup>3</sup> and a 3-hydroxyflavanone (dihydroflavonol)<sup>7</sup>. These conversions in conjunction with our recent<sup>10</sup> synthesis of enantiomerically enriched 4-methoxy-al- and aS,2',4'-trihydroxydihydrochalcones and assessment of their absolute configuration by circular dichroism, prompted extension of a similar protocol to a series of chalcones exhibiting the aromatic oxygenation patterns usually encountered in flavonoid/isoflavonoid chemistry. We thus now disclose our detailed results of relevance to the synthesis of poly-oxygenated chalcone epoxides and their possible use as chirons for enantiomerically enriched dihydroflavonols.

The trans(E)-chalcone methyl ethers <u>1-7</u> (J $\alpha$ ,  $\beta$  15.8-16.0 Hz) were protected at 2'-OH by the acid-labile methoxymethyl (MOM) group<sup>11</sup> and were available *via* base-catalyzed condensation of the appropriate oxygenated acetophenones and benzaldehydes. Owing to the high



optical yields of aromatic deoxy chalcone epoxides using polyaminoacids in a triphase system<sup>4,5</sup>, the polyalanines were selected as stereoselective catalysts for the epoxidation of 1-7.

Thus, treatment of the (B)-chalcones 1-7 at cs 20°C with hydrogen peroxide in the triphase system aqueous NaOH, poly-L-alanine  $\{[\sigma]_D^{25} = -142.8^{\circ} (c = 0.671 \text{ in CF3COOH})\}$ , and  $CC1_4^{5,6,12,13}$ , afforded the (-)-*trans*-epoxides <u>8-14</u> (Ja,  $\beta$  = 1.5-2.2 Hz). The (+)-trans epoxides <u>15-20</u> ( $J\alpha,\beta = 1.5-2.2$  Hz) were similarly obtained by using poly- $\beta$ -alamine {[ $\alpha$ ]<sub>D</sub> = +102.20 (c = 0.314 in CF<sub>3</sub>COOH)} in the same triphasic system. These conversions proceeded slowly with reaction times varying from 36 to 96 hours. Enantiomeric purity was assessed by <sup>1</sup>H NMR in CDCl<sub>3</sub> with Eu(tfc)<sub>3</sub> and Pr(hfc)<sub>3</sub> as chiral shift reagents and is indicated for the (-)- and (+)-enantiomers in tables 1 and 2 respectively. Four of these, 13, 14, 19, and 20 could, however, not be fully purified owing to decomposition caused by multiple development of preparative TLC plates. A low degree of contamination with the parent chal-



 $(\alpha l, \beta S)$  enantiomers

| Table 1       |                |                |           |                |                |                                                                   |         |   |  |
|---------------|----------------|----------------|-----------|----------------|----------------|-------------------------------------------------------------------|---------|---|--|
| Epoxide       | R <sup>1</sup> | R <sup>2</sup> | R3        | R <sup>4</sup> | R <sup>5</sup> | $\left[\alpha\right]_{D}^{25}$ in CH <sub>2</sub> Cl <sub>2</sub> | % Yield |   |  |
| ( <u>8</u> )  | Н              | H              | н         | H              | Н              | -200.50                                                           | 80      | Γ |  |
| ( <u>9</u> )  | н              | н              | OMOM      | н              | н              | -50.3 <sup>0</sup>                                                | 65      |   |  |
| ( <u>10</u> ) | OMe            | н              | OMOM      | н              | н              | -76.00                                                            | 64      | ļ |  |
| (11)          | OMe            | н              | OMOM      | OMe            | н              | -1220                                                             | 74      |   |  |
| (12)          | OMe            | OMe            | OMOM      | OMe            | н              | -79.40                                                            | 46      | l |  |
| ( <u>13</u> ) | OMe            | н              | OMOM      | OMe            | OMe            | _c                                                                | _c      |   |  |
| ( <u>14</u> ) | OMe            | OMe            | OMOM      | OMe            | OMe            | _c                                                                | -c      |   |  |
| (a)           | Determ         | ined wit       | th Eu(tfc | )3 as s        | hift reage     | ent.                                                              |         |   |  |

% ee

92ª

38ª

66ª

84<sup>b</sup>

62ª

32b

\_c

Determined with Pr(hfc)3 as shift reagent. (b)

Not determined due to instability and purification difficulties. (c)



 $(aS, \beta I)$  enantiomers

| Table | 2 |
|-------|---|
|-------|---|

| Epoxide       | R1  | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | $\left[\alpha\right]_{\mathrm{D}}^{25}$ in CH <sub>2</sub> Cl <sub>2</sub> | X Yield | % ee            |
|---------------|-----|----------------|----------------|----------------|----------------|----------------------------------------------------------------------------|---------|-----------------|
| ( <u>15</u> ) | Н   | н              | OMOM           | н              | н              | +74.80                                                                     | 57      | 53ª             |
| ( <u>16</u> ) | OMe | н              | OMOM           | н              | н              | +52.10                                                                     | 38      | 46ª             |
| ( <u>17</u> ) | OMe | н              | омом           | OMe            | н              | +76.50                                                                     | 26      | 53 <sup>b</sup> |
| ( <u>18</u> ) | OMe | OMe            | омом           | OMe            | н              | +31.20                                                                     | 34      | 25ª             |
| ( <u>19</u> ) | OMe | н              | OMOM           | OMe            | OMe            | ~c                                                                         | c       | 20 <sup>b</sup> |
| ( <u>20</u> ) | OMe | OMe            | OMOM           | OMe            | OMe            | ~c                                                                         | _c      | _c              |

(a) Determined with Eu(tfc)<sub>3</sub> as shift reagent.

(b) Determined with Pr(hfc)3 as shift reagent.

(c) Not determined due to instability and purification difficulties.

cones precluded assessment of optical purity by <sup>1</sup>H NMR for epoxides <u>14</u> and <u>20</u> as a result of overlap of the impurity signal with the methoxy resonance of the methoxymethyl group used as reference, such complicating factors being absent for <u>13</u> and <u>19</u>. Owing to the high optical purity (92%) of the  $(-)-(a\ell,\beta S)$ -chalcone epoxide <u>8</u>, its enantiomeric excess (ee) could only be determined by addition of a known weight of the racemate and subsequent integration of the reference signal. The reduced enantiomeric purity of the (+)-irans-epoxides <u>15-19</u> may partially be attributed to optically impure  $\beta$ -alanine  $\{[a]_D^{25} -9.71^0 (c, 1.363 in 6N HC1; lit. <sup>14</sup> <math>[a]_D^{30} -14.61^0 (c, 1.344 in 6N HC1]\}$ .

The (-)-chalcone oxiranes <u>8-14</u> all exhibited negative Cotton effects in the 290-325 nm region ( $n,\pi^*$  transition) and positive Cotton effects in the 235-250 nm region ( $\pi,\pi^*$  transition) of their CD spectra. Comparison of the CD data with those of the aromatic deoxy (-)-*irans*-epoxychalcone <u>8</u> { $[\alpha]_D^{25}$  -200<sup>0</sup>; 92% ee} with known<sup>3</sup>  $\alpha I$ ,  $\beta S$  absolute configuration and exhibiting negative and positive Cotton effects at 322 and 235 nm respectively, thus unequivocally confirmed similar absolute stereochemistry for the novel series <u>9-14</u>. In the same regions of the CD spectra the (+)-*irans*-epoxychalcones <u>15-20</u> exhibit sequential positive and negative Cotton effects. Such a mirror-image relationship (*cf* Figure for comparison of <u>11</u> and <u>17</u>) confirmed the enantiomeric connection between these series and hence  $\alpha S, \beta I$  absolute configuration for <u>15-20</u>.

The following conclusions may be drawn from the results in tables 1 and 2:

- The oxygen functionalities influence the reaction in a complex and unpredictable manner. Stereoselectivity does not necessarily decrease with an increase in the number of substituents, eg 9 and 11 in table 1;
- (ii) Ortho- and meta-substituents on both the A- and B-rings adversely affect stereoselectivity to a larger extent than those in para-positions, eg 11 and 12;
- (iii) o-Substitution on the A-ring profoundly decreases stereoselectivity, eg § and 9, and 12 and 13. Such a decrease is presumably attributable to inhibition of hydrogen bonding of the carbonyl in eg chalcone 6 and the peptide group of the catalyst<sup>6</sup>. This hydrogen bond presumably also leads to a specific association of the chalcone and the catalyst surface hence allowing the selective delivery of 'oxygen' to one face of the double bond.



In view of the need for C-4-oxygenated flavonoids as incipient electrophiles in our programme of synthesis of condensed tannins, transformation of epoxychalcone <u>11</u> of highest optical purity to the dihydroflavonol <u>22</u> was investigated. With 1N HCl in methanol oxirane <u>11</u> is converted in low yields to the (-)-2,3-irans-dihydroflavonol <u>22</u> (J<sub>2</sub>, 3 = 12.0 Hz) and 4',7-dimethoxyisoflavone <u>24</u> (Scheme). Assessment of optical purity (50% ee) and absolute

configuration (2l, 3l) of the predominant enantiomer of the dihydroflavonol 22 were done by <sup>1</sup>H NMR using Eu(tfc)g as chiral shift reagent and CD<sup>15</sup> respectively of the  $\theta$ -acetyl derivative 23. The enantiomeric excess of the dihydroflavonol was increased to 53 and 56% in respectively trifluoroacetic acid/2,2,2-trifluoroethanol (TFE) and p-toluenesulphonic acid/TFE.

The 'loss' of optical purity in the conversion  $11 \rightarrow 22$  indicates competition between protonation of the heterocyclic oxygen and hydrolysis of the 2'- $\theta$ -acetal functionality hence leading to a considerable degree of  $S_N^1$  character for the cyclization step with concomitant racemization at C- $\beta$  of a presumed carbocationic intermediate 21 hence leading to dihydroflavonols 22 and 25. The thermodynamically less stable (25, 34)-2, 3-cis-dihydroflavonol 25 will rapidly be epimerized at C-3 to 26 under the prevailing acidic conditions<sup>16</sup>. In order to enhance the  $S_N^2$  nature of the ring closure step and thus formation of 22, methods aimed at selective removal of the 2'- $\theta$ -methylmethoxy group under mild conditions were explored. Whereas dimethylboron bromide<sup>17</sup> led to an intractable mixture, the yield  $(ca\ 10x)$  and purity of dihydroflavonol 22 from the reaction of epoxide 11 with diphosphorous tetraiodide<sup>18</sup> were insufficient for assessment of optical purity by the 'H NMR method.

Although the protocol outlined above may be useful for the synthesis of enantiomerically enriched dihydroflavonols, the low chemical yields and the decrease in optical purity



<u>Scheme</u>. Proposed route to the formation of dihydroflavonols (<u>22</u>), (<u>26</u>) and isoflavone (<u>24</u>).

during generation of the six-membered heterocycle severely limit the merits of such an approach towards C-4-oxygenated flavonoids to be used as incipient electrophiles in condensed tannin synthesis. The utility of the epoxychalcones as chirons for naturally occurring  $\alpha$ -hydroxychalcones and subsequent assessment of the absolute configuration of the latter group of compounds will be discussed separately.

## EXPERIMENTAL

TLC was performed on DC-Plastikfolin Kieselgel 60 PF254 (0.25 mm) and the plates sprayed with H2SO4-HCHO (40:1, v/v) after development. Preparative plates (PLC) [Kieselgel  $PF_{254}$  (1.0 mm)] were air-dried and used without prior activation. Acetylations were carried out with Ac20-anhydrous pyridine. <sup>1</sup>H NMR spectra were, unless specified to the contrary, recorded on a Bruker AM-300 spectrometer for solutions in CDCl<sub>3</sub> at 25°C with the solvent as internal standard. The enantiomeric excess of optical active compounds were determined by using tris (3-trifluoroacety)-d-camphorato)-europium (III) [Eu(tfc)<sub>3</sub>] or tris (3-heptafluoropropylhydroxymethylene-d-camphorato)-praseodymium (III) [Pr(hfc)3] as chiral shift reagents in concentrations of 0.5-1 mg per 5 mg of compound. Mass spectral data were recorded on a Varian CH-5 instrument and m.p.s. (uncorrected) on a Reichert hotstage apparatus. CD measurements were optained for solutions in MeOH on a JASCO J-20 spectropolarimeter and optical rotations measured with a Bendix-NPL automatic polarimeter for solutions in CH<sub>2</sub>Cl<sub>2</sub>.

### General procedures

<u>Methoxymethylations</u><sup>19</sup>: A solution of the 2-hydroxyacetophenone (2-5 g) in 15% (m/v) aq. KOH (20-50 ml) was stirred for 2 hours, CH<sub>2</sub>Cl<sub>2</sub> (20-50 ml) and Adogen 464 [methyltrialkyl (C<sub>8</sub>-C<sub>10</sub>) ammonium chloride; 1.5-3.75 g] were added and stirring continued (10 min). Chloromethyl methyl ether (1.5-3.75 ml) was added dropwise and the mixture was stirred for 5-20 min at ambient temperatures. Removal of the organic phase and extraction of the aqueous layer with CH<sub>2</sub>Cl<sub>2</sub> (2x15 ml) gave the crude products after drying (Na<sub>2</sub>SO<sub>4</sub>) and evaporation of the solvent. Flash chromatography yielded the pure products (91-98%).

<u>Preparation of chalcones</u>: To a solution of the appropriate acetophenone (1.4-2.8 g)in EtOH (20-40 ml) was added 50% (m/v) 4q KOH (5-10 ml) and the mixture was stirred at room temperature for 30-40 min. Excess benzaldehyde (1.0-2.27 g, in 10 ml EtOH) was added dropwise and the reaction followed by TLC. After disappearance of the acetophenone (4-24 h), H<sub>2</sub>O (20-40 ml) was added and the products extracted with ether (4x20 ml). Drying of the extracts (Na<sub>2</sub>SO<sub>4</sub>) followed by evaporation and flash column chromatography, gave the pure chalcones (62-71%). A detailed procedures is given for the novel analogue  $\underline{I}$  only.

<u>Epoxidation of chalcones</u>: A solution of NaOH in 30% (m/v)  $H_2O_2$  (0.08 g/ml) was added to a mixture of the polyalanine catalyst<sup>4,5,6</sup> and chalcones (*ca* 170 mg of catalyst/mmol chalcone) in CCl<sub>4</sub> (2-7 ml) and the mixture stirred at room temperature (32-96 h). Where necessary (TLC) a further addition of NaOH-H<sub>2</sub>O<sub>2</sub> was made after 24 h. The catalyst was removed by filtration, rinsed with CH<sub>2</sub>Cl<sub>2</sub> (50 ml) and the filtrate washed with water (3x20 ml). Drying (Na<sub>2</sub>SO<sub>4</sub>) of the solvent and evaporation at reduced pressure gave the crude product, which was crystallised from EtOH and/or purified by PLC (26-80%).

 $\frac{3.4.4',6'-\text{Tetramethoxy-2'-$\emploss methological methods}{20} (2.5 \text{ g in 40 ml}) \text{ with $4q$ KOH solution of 4,6-dimethoxy-2-$\emploss methoxymethylacetophenome}{20} (2.5 \text{ g in 40 ml}) \text{ with $4q$ KOH solution (10 ml) followed by 3,4-dimethoxybenzaldehyde (2.0 g) as described previously, gave the chalcone ($\frac{1}{2}$) (Rf 0.3; hexane-C6H6-Me2CO, 4:5:1, v/v) as vellow needles (2.5 g, 62%) after flash chromatography (hexane-C6H6-Me2CO, 35:60:5, v/v) and crystallization from EtOH; m.p. 88-90^{\circ}C; (Found: M*, 388.1513. C21H2407 requires 388.1522). <sup>1</sup>H NMR $\delta7.25 (d, J16.0 Hz, H-$\beta$), 7.06 (dd, J1.8 and 8.0, H-6), d, J1.8 Hz, H-2), 6.83 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) and 20 (2.5 g) and 20 (2.5 g) and 20 (2.5 g) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) and 20 (2.5 g) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) and 20 (2.5 g) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) and 20 (2.5 (d, J16.0 Hz, H-$\delta$)), 7.06 (dd, J1.8 methods) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.8 methods) are supported by $\delta 1.5 (d, J16.0 Hz, H-$\delta$), 7.06 (dd, J1.5 (d, J16.0 Hz, H-$\delta$), 7.5 ($ 

Hz, H- $\alpha$ ), 6.82 (d, J8.0 Hz, H-5), 6.36 (d, J2.2 Hz, H-3'), 6.10 (d, J2.2 Hz, H-5'), 5.10 (s,  $OCH_{2}OCH_{3}$ ), 3.88 (s, 4-OCH<sub>3</sub>), 3.87 (s, 3-OCH<sub>3</sub>), 3.82 (s, 4'-OCH<sub>3</sub>), 3.74 (s, 6'-OCH<sub>3</sub>), 3.36 (s, OCH<sub>2</sub>OCH<sub>3</sub>).

<u>Synthesis of Epoxides. --- (-)-( $\alpha R$ ,  $\beta S$ )-Chalcone epoxide (8): Epoxidation (48 h) of chalcone<sup>3</sup> (1) (100 mg) with the triphasic system *i.e.* CCl4 (2 ml), poly-( $\dot{L}$ )-alanine (80 mg), NaOH-H<sub>2</sub>O<sub>2</sub> solution (1 ml followed by an additional 1 ml after 24 h), as described previously, gave the epoxide (8) (Rf 0.7; hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 5:4:1, v/v) as white needles (86 mg), m.p. 58-60<sup>o</sup>C [lit. <sup>3,21</sup> (racemate) 89-90<sup>o</sup>C]; (Found: M<sup>+</sup>, 224.0841. C<sub>15</sub>H<sub>1</sub>O<sub>2</sub> requires 224.0834). <sup>1</sup>H NMR  $\delta$ 8.00 (dd, J1.2 and 8.3 Hz, H-6<sup>'</sup>), 7.33-7.65 (m, other aromatic resonances), 4.29 (d, J2.0 Hz, H- $\alpha$ ), 4.07 (d, J2.0 Hz, H- $\beta$ ); CD (c 0.0056) [ $\Theta$ ]<sub>200</sub> o, [ $\Theta$ ]<sub>212</sub> 0, [ $\Theta$ ]<sub>230</sub> +16628, [ $\Theta$ ]<sub>243</sub> 0, [ $\Theta$ ]<sub>257</sub> -12526, [ $\Theta$ ]<sub>275</sub> -1919, [ $\Theta$ ]<sub>313</sub> -7475, [ $\Theta$ ]<sub>360</sub> 0.</u>

 $\frac{(-)-(\alpha I, \beta S)-2'-\beta-\text{Methoxymethylchalcone epoxide (9): Reaction (48 h) of chalcone}{22} \\ (2) (500 mg) with the triphasic system i.e. CCl<sub>4</sub> (5 ml), poly-(1)-alanine (315 mg), NaOH-H<sub>2</sub>O<sub>2</sub> solution (4.5 ml + 2 ml after 24 h); gave the epoxide (9) (Rf 0.5; hexane-C6H6-Me<sub>2</sub>CO, 5:4:1, v/v) as <u>white needles</u> (340 mg); m.p. 79-82°C; (Found: M*, 284.1043. C<sub>17</sub>H<sub>16</sub>O<sub>4</sub> requires 284.1049). <sup>(H</sup> NMR <math>\delta$ 7.80 (dd, J1.8 and 7.8 Hz, H-6'), 7.46 (ddd, J1.8, 7.8, and 7.8 Hz, H-4'), 7.30-7.41 (m, B-ring protons), 7.13 (dd, J1.0 and 7.8 Hz, H-3'), 7.07 (ddd, J1.0, 7.8, and 7.8 Hz, H-5'), 4.90 (d, J6.8 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 4.80 (d, J6.8 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 4.28 (d, J2.0 Hz, H- $\alpha$ ), 4.00 (d, J2.0 Hz, H- $\beta$ ), 3.06 (s, OCH<sub>2</sub>OCH<sub>3</sub>); CD (c 0.1310) [ $\Theta$ ]<sub>200</sub> +2710, [ $\Theta$ ]<sub>230</sub> +10600, [ $\Theta$ ]<sub>248</sub> O, [ $\Theta$ ]<sub>295</sub> -6400, [ $\Theta$ ]<sub>355</sub> O.

 $\frac{(-)-(a\ell,\beta S)-4-Methoxy-2'-\ell-methoxymethylchalcone_epoxide}{(10)}: Reaction (48 h) of chalcone<sup>22</sup> (3) (400 mg) in CCl<sub>4</sub> (5 ml) with NaOH-H<sub>2</sub>O<sub>2</sub> solution (4.5 mg) catalysed by poly-(L)-alanine (300 mg) gave the epoxide (10) (R<sub>f</sub> 0.4; hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 5:4:1 v/v) as white needles (270 mg); m.p. 75-78<sup>o</sup>C [lit.<sup>22</sup> (racemate) 78<sup>o</sup>C]; (Found: M<sup>+</sup>, 314.1142. C<sub>18</sub>H<sub>18</sub>O<sub>5</sub> requires 314.1154). <sup>1</sup>H NMR <math>\delta$ 7.81 (dd, J2.0 and 7.8 Hz, H-6'), 7.49 (ddd, J2.0, 7.8 and 7.8 Hz, H-4'), 7.30 (d, J7.8 Hz, H-2,6), 7.15 (dd, J1.1 and 7.8 Hz, H-3'), 7.10 (ddd, J1.1, 7.8, and 7.8 Hz, H-5'), 6.92 (d, J7.8 Hz, H-3,5), 4.95 (d, J7.0 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 4.88 (d, J7.0 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 4.31 (d, J2.2 Hz, H-a), 3.98 (d, J2.2 Hz, H- $\beta$ ), 3.85 (s, OCH<sub>3</sub>), 3.15 (s, OCH<sub>2</sub>OCH<sub>3</sub>); CD (c 0.1050) [ $\Theta$ ]<sub>200</sub> +3140, [ $\Theta$ ]<sub>210</sub> +1730, [ $\Theta$ ]<sub>235</sub> +10300, [ $\Theta$ ]<sub>300</sub> -9700, [ $\Theta$ ]<sub>355</sub> 0.

 $\frac{(-)-(al,\beta S)-4.4'-\text{Dimethoxy-2}'-\theta-\text{methoxymethylchalcone epoxide}}{(11): \text{Epoxidation (54})}$ h) of chalcone<sup>22</sup> (4) (750 mg) in CCl<sub>4</sub> (7 mg) with the NaOH-H<sub>2</sub>O<sub>2</sub> solution (4.5 ml + 2.5 ml after 24 h) catalysed by poly-( $\lambda$ )-alanine (400 mg) gave the epoxide (11) (Rf 0.3; hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 4:5:1; v/v) as white needles (580 mg); m.p. 59-62°C [lit.<sup>22</sup> (racemate) 78°C]; (Found: M<sup>+</sup>, 344.1231. C<sub>19</sub>H<sub>20</sub>O<sub>6</sub> requires 344.1260). <sup>1</sup>H NMR  $\delta$ 7.85 (d, J8.3 Hz, H-6'), 7.27 (d, J9.0 Hz, H-3,5), 6.90 (d, J9.0 Hz, H-2,6), 6.64 (d, J2.0 Hz, H-3'), 6.61 (dd, J2.0 and 8.3 Hz, H-5'), 4.88 (d, J7.2 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 4.80 (d, J7.2 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 4.30 (d, J1.8 Hz, H- $\alpha$ ), 3.92 (d, J1.8 Hz, H- $\beta$ ), 3.82 (s, 2xOCH<sub>3</sub>), 3.11 (s, OCH<sub>2</sub>OCH<sub>3</sub>); CD (c 0.1680) [ $\Theta$ ]<sub>200</sub> O, [ $\Theta$ ]<sub>210</sub> -3290, [ $\Theta$ ]<sub>222</sub> O, [ $\Theta$ ]<sub>240</sub> +19900, [ $\Theta$ ]<sub>269</sub> O, [ $\Theta$ ]<sub>290</sub> -17000, [ $\Theta$ ]<sub>360</sub> O.

 $\frac{(-)-(al,\beta S)-3.4.4'-\text{Trimethoxy-2'-$\exprcsslep1 - methoxymethylchalcone epoxide}{(12)}^{22}: \text{Treatment}}{(96 h) of chalcone}^{22} (5) (99 mg) with the triphasic system i.e. CCl4 (3 ml), poly-($\exprcsslep1 - alanine (50 mg), NaOH-H_2O_2 solution (2.5 ml + 2 ml after 24 h) gave the epoxide ^{22} (12) (Rf 0.1; hexane-C6H6-Me_2CO, 25:70:5; v/v) as a white amorphous solid (48 mg) after prep. TLC; (Found: M<sup>+</sup>, 374.1358. C_{20}H_{2}O_8 requires 374.1366). <sup>1</sup>H NMR $\delta7.85 (d, J9.0 Hz, H-6'), 6.95 (dd, J2.0 and 8.0 Hz, H-6), 6.85 (d, J8.0 Hz, H-5), 6.82 (d, J2.0 Hz, H-2), 6.64 (d, J2.2 Hz, H-3'), 6.61 (dd, J2.2 and 9.0 Hz, H-6'), 4.89 (d, J7.0 Hz, 0($\mathcal{H}_2OCH_3), 4.82 (d, J7.0 Hz, 0($\mathcal{H}_2OCH_3), 4.30 (d, J1.8 Hz, H-\alpha), 3.92 (d, J1.8 Hz, H-\beta), 3.89, 3.86, and 3.83 (each s, 3xOCH_3), 3.13 (s, OCH_2OC$\verts_3); CD (c 0.0220) [\Temple]_{200} 0, [\Temple]_{215} - 2900, [\Temple]_{229} 0, [\Temple]_{257} + 8700, [\Temple]_{277} 0, [\Temple]_{350} 0.$ 

 $(al, \beta S) - 3.4, 4'.6' - Tetramethoxy-2'-\theta-methoxymethylchalcone epoxide (14): Epoxidation$ (76 h) of chalcone (7) (98 mg) with the triphasic system i.e. CC14 (2 ml), poly-(b)alanine (45 mg), NaOH-H<sub>2</sub>O<sub>2</sub> solution (1.5 ml + 1 ml after 24 h) gave the epoxide (14),which was not sufficiently stable to be purified by PLC or crystallisation. Despite thefact that the product was contaminated by a small amount of starting material only, posi $tive identification by <sup>1</sup>H NMR was possible. <sup>1</sup>H NMR <math>\delta 6.90$  (dd, J2.0 and 8.0 Hz, H-6), 6.87 (d, J8.0 Hz, H-5), 6.75 (d, J2.0 Hz, H-2), 6.31 (d, J2.0 Hz, H-3'), 6.13 (d, J2.0 Hz, H-5'), 5.09 (d, J8.5 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 5.06 (d, J8.5 Hz, OCH<sub>2</sub>OCH<sub>3</sub>), 3.94 (d, J1.5 Hz, H- $\beta$ ), 3.89 (d, J1.5 Hz, H-a), 3.86, 3.85, 3.79, and 3.74 (each s, 4xOCH<sub>3</sub>), 3.35 (s, OCH<sub>2</sub>OCH<sub>3</sub>).

 $\frac{(+)-(aS,\betaR)-4-Methoxy-2'-\theta-methoxymethylchalcone epoxide}{(16)}: Epoxidation (36 h) of chalcone<sup>22</sup> (3) (161 mg) in CCl<sub>4</sub> (3 ml) with NaOH-H<sub>2</sub>O<sub>2</sub> solution (2 ml) and poly-(<math>\beta$ )-alanine (120 mg) as catalyst, gave the epoxide (16) (Rf 0.4; hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 5:4:1; v/v) as white needles (65 mg); m.p. 76-78°C. Ms and <sup>1</sup>H NMR data were identical to that of enantiomer (10); CD (c 0.1130) [ $\Theta$ ]<sub>200</sub> 0, [ $\Theta$ ]<sub>240</sub> -7900, [ $\Theta$ ]<sub>272</sub> 0, [ $\Theta$ ]<sub>300</sub> +6600, [ $\Theta$ ]<sub>355</sub> 0.

 $(+)-(\alpha S, \beta l)-4, 4'$ -Dimethoxy-2'- $\theta$ -methoxymethylchalcone epoxide (17): Reaction (96 h)

of chalcone<sup>22</sup> (4) (120 mg) in CCl4 (3 ml) with NaOH-H<sub>2</sub>O<sub>2</sub> (2.5 ml + 2 ml after 24 h) and poly-( $\beta$ )-alanine (70 mg) as catalyst, gave the epoxide (<u>17</u>) (Rf 0.3; hexane-C6H6-Me<sub>2</sub>CO, 4:5:1; v/v) as white needles (32 mg); m.p. 60-62<sup>0</sup>C. Ms and <sup>1</sup>H NMR data were identical to that of enantiomer (<u>11</u>); CD (c 0.0220) [ $\Theta$ ]<sub>200</sub> O, [ $\Theta$ ]<sub>210</sub> +3440, [ $\Theta$ ]<sub>225</sub> O, [ $\Theta$ ]<sub>248</sub> -15700, [ $\Theta$ ]<sub>272</sub> O, [ $\Theta$ ]<sub>290</sub> +13200, [ $\Theta$ ]<sub>350</sub> O.

 $(+)-(\alpha \hat{S}, \beta \hat{I})-3.4.4'-\text{Trimethoxy-2'-$\vec{$\mathcal{O}$-methoxymethylchalcone epoxide}} (18): \text{ Reaction (90} \ h) of chalcone^{22} ($$) (200 mg) in CCl4 (3 ml) with basic H_{2}O_2 (4.0 ml + 2.0 ml after 24 h) and poly-($\vec{$\mathcal{D}$})-alanine} (150 mg) as catalyst, gave the epoxide (18) (Rf 0.1) as a white amorphous solid (72 mg) after purification by PLC (hexane-C6H6-Me2CO, 25:70:5). Ms and <sup>1</sup>H NMR data were identical to that of its enantiomer (12); CD (c 0.3200) [$\vec{\Theta}$]_{200} O, [$\vec{\Theta}$]_{215} +15200, [$\vec{\Theta}$]_{223} O, [$\vec{\Theta}$]_{253} -2810, [$\vec{\Theta}$]_{277} O, [$\vec{\Theta}$]_{300} +3740, [$\vec{\Theta}$]_{350} O. }$ 

 $(aS, \beta R) - 4.4'.6'$ -Trimethoxy-2'- $\theta$ -methoxymethylchalcone epoxide (19): Epoxidation (36 h) of chalcone<sup>20</sup> (<u>6</u>) (100 mg) in CCl<sub>4</sub> (2 ml) with basic H<sub>2</sub>O<sub>2</sub> (1.5 ml + 1 ml after 24 h) and poly-( $\theta$ )-alanine (49 mg) as catalyst gave the epoxide (<u>19</u>) which was not stable enough to be purified by PLC or crystallisation. <sup>1</sup>H NMR data were, however, identical to that of enantiomer (<u>13</u>).

 $(aS, \beta I)$ -3.4.4',6-Tetramethoxy-2'- $\theta$ -methoxymethylchalcone epoxide (20): Epoxidation (76 h) of chalcone (87 mg) in CCl4 (2 ml) with basic H<sub>2</sub>O<sub>2</sub> (1.5 ml + 1.0 ml after 24 h) and poly- $(\theta)$ -alanine (41 mg) as catalyst gave the epoxide (20) which was not stable enough to be purified by PLC or crystallisation. <sup>1</sup>H NMR data were identical to that of enantiomer (14).

Acid catalysed cyclisation of  $(-)-(\alpha R, \beta S)-4.4'$ -Dimethoxy-2'- $\theta$ -methoxymethylchalcone epoxide (11): To a solution of epoxide (11) (51 mg) in 2,2,2-trifuoroethanol (5 ml) at -10°C was added p-toluenesulphonic acid (28 mg) and the mixture stirred for 3 minutes. H<sub>2</sub>O (10 ml) was added and the products extracted with ether. The ether extract was washed with water (3x10 ml), dried (Na<sub>2</sub>SO<sub>4</sub>), the ether evaporated and the residue separated by PLC (hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 4:5:1; v/v). Two main bands, Rf 0.3 (23 mg) and 0.4 (20 mg) were obtained.

 $\begin{array}{l} (-)-(2\car{R},3\car{L})-4'.7-\car{Dimethoxy-3-hydroxyflavanone}{22}): \mbox{ The former product (Rf 0.3) was identified as the title flavanone (22) {white needles (17 mg) from ethanol; m.p. 125-127^{0}C [lit. 22 (racemate) 126^{0}C] [a]_{D}^{25}-16.6^{0} (c 0.1978 in CH_{2}Cl_{2}); (Found: M^{+}, 300.0995. C_{17}H_{16}O_{5} requires 300.0998). ^{1}H NMR \delta7.83 (d, J8.8 Hz, H-5), 7.49 (d, J9.0 Hz, H-2',6'), 6.98 (d, J9.0 Hz, H-3',5'), 6.65 (dd, J2.5 and 8.8 Hz, H-6), 6.46 (d, J2.5 Hz, H-8), 5.05 (d, J12.0 Hz, H-2), 4.56 (d, J12.0 Hz, H-3), 3.83 (s, 2xOCH_{3}), and 3.70 (s, OH); CD (c 0.0049) [\Theta]_{200} 0, [\Theta]_{210} +20070, [\Theta]_{220} +2779, [\Theta]_{232} +8893, [\Theta]_{250} +2470, [\Theta]_{262} 0, [\Theta]_{290} -13741, [\Theta]_{316} 0, [\Theta]_{325} +5558, [\Theta]_{345} 0. \end{array}$ 

Acetylation (acetic anhydride-pyridine) gave the <u>acetate</u> (23) as a colourless oil (16 mg; Rf 0.4; hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 5:4:1; v/v); <sup>1</sup>H NMR  $\delta$ 7.83 (d, J8.8 Hz, H-5), 7.40 (d, J9.0 Hz, H-2',6'), 6.93 (d, J9.0 Hz, H-3',5'), 6.64 (dd, J2.5 and 8.8 Hz, H-6), 6.46 (d, J2.5 Hz, H-8), 5.78 (d, J12.0 Hz, H-3), 5.34 (d, J12.0 Hz, H-2), 3.82 (s, 2xOCH<sub>3</sub>), 2.00 (s, OAc).

<u>4'.7-Dimethoxy1soflavone</u> (24): The second band (Rf 0.4) gave 4',7-dimethoxy1soflavone (24) as a cream amorphous solid (20 mg); m.p.  $150^{\circ}C$  (lit.<sup>23</sup> 160°C); <sup>1</sup>H NMR  $\delta$ 8.19 (d, J8.8 Hz, H-5), 7.90 (s, H-2), 7.48 (d, J9.0 Hz, H-2',6'), 6.97 (dd, J2.5 and 9.0 Hz, H-6), 6.95 (d, J9.0 Hz, H-3',5'), 6.84 (d, J2.5 Hz, H-8), 3.90 and 3.83 (each s, 2xOCH<sub>3</sub>); *m/z* 282 (M<sup>+</sup>, 100%).

Deprotection of 4.4'-dimethoxy- $2'-\theta$ -methoxymethylchalcone epoxide (11) with P214<sup>18</sup>: P2I4 (13 mg) was added to a solution of the epoxide (11) (20 mg) in dry CH<sub>2</sub>Cl<sub>2</sub> (5 ml) at 0°C. After 25 minutes at 0°C the temperature was raised to  $25^{\circ}$ C and stirring continued for another 5 min. Evaporation of the solvent followed by PLC (hexane-C<sub>6</sub>H<sub>6</sub>-Me<sub>2</sub>CO, 4:5:1; v/v) gave the 3-hydroxyflavanone (22) (R<sub>f</sub> 0.3; 3 mg) and isoflavone (24) (R<sub>f</sub> 0.4; 2 mg).

#### Acknowledgements

Support by the Sentrale Navorsingsfonds of this University and the Foundation for Research Development, C.S.I.R., Pretoria, is acknowledged. Accurate mass estimations were done by Dr J.M. Steyn, Department of Pharmacology of this University.

#### REFERENCES

- 1. Helder, R.; Hummulen, J.C.; Laane, R.W.P.; Wiering, J.S.; Wynberg, H. Tetrahedron Lett., 1976, <u>21</u>, 1831.
- 2. Hummulen, J.C.; Wynberg, H. Tetrahedron Lett., 1978, 12, 1089.

- 3. Marsman, B.; Wynberg, H. J. Org. Chem., 1979, 44, 2312.
- 4. Juliá, S.; Masana, J.; Vega, J.C. Angew. Chem. Int. Ed. Engl., 1980, 19, 929.
- Juliá, S.; Guixer, J.; Masana, J.; Rocas, J.; Colonna, S.; Annuziata, R.; Molinari, H. J. Chem. Soc., Perkin Trans. 1, 1982, 1317.
- Colonna, S.; Molinan, H.; Banfi, S.; Juliá, S.; Masana, J.; Alvarez, A. Tetrahedron, 1983, <u>39</u>, 1635.
- 7. Takahashi, H.; Kubota, Y.; Miyazaki, H.; Onda, M. Chem. Pharm. Bull., 1984, <u>32</u>, 4852.
- 8. Banfi, S.; Colonna, S.; Molinan, H.; Juliá, S.; Guixer, J. Tetrahedron, 1984, <u>40</u>, 5207.
- 9. Annuziata, R.; Banfi, S.; Colonna, S. Tetrahedron Lett., 1985, 26, 2471.
- 10. Bezuidenhoudt, B.C.B.; Swanepoel, A.; Augustyn, J.A.N.; Ferreira, D. Tetrahedron Lett., 1987, <u>28</u>, 4857.
- 11. Auerbach, J.; Weinreb, S.M. J. Chem. Soc., Chem. Commun., 1974, 298.
- Juliá, S.; Masana, J.; Rocas, J.; Colonna, S.; Annuziata, R; Molinari, H. An. Quim. Ser. C, 1983, <u>79</u>, 102.
- 13. Bergman, M.; Lérvas, Chem. Ber., 1932, <u>65</u>, 1192.
- 14. Weast, R.C.; Astle, M.J.; Beyer, W.H. CRC Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, Florida, 1984, <u>64</u>, C720.
- 15. Van der Westhuizen, J.H.; Ferreira, D.; Roux, D.G. J. Chem. Soc., Perkin Trans. 1, 1980, 1003.
- 16. Clark-Lewis, J.W.; Jemison, R.W.; Nair, V. Austral. J. Chem., 1968, <u>21</u>, 3015.
- 17. Guindon, Y.; Morton, H.E.; Yoakim, C. Tetrahedron Letters, 1983, 24, 3969.
- 18. Saimoto, H.; Kusano, Y.H.; Hiyama, T. Tetrahedron Letters, 1986, 27, 1607.
- 19. McKillop, A.; Fiond, J.D.; Hug, R.P. Tetrahedron, 1974, 30, 1379.
- 20. Ferreira, D.; Roux, D.G. J. Chem. Soc., Perkin Irans 1, 1977, 134.
- 21. Marmor, S. J.Org. Chem., 1963, 28, 250.
- 22. Pineau, J.-P.; Chopin, J. Bull. Soc. Chim. France, 1971, 10, 3678.
- Gregson, M.; Ollis, W.D.; Sutherland, I.O.; Gottlieb, O.R.; Magalhaes, M.T. Phytochemistry, 1978, <u>17</u>, 1375.