Deconstructing Quinine. Part 1. Toward an Understanding of the Remarkable Performance of *Cinchona* Alkaloids in Asymmetric Phase Transfer Catalysis

Scott E. Denmark* and Robert C. Weintraub

Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

SUPPORTING INFORMATION

TABLE OF CONTENTS	PAGE
General Experimental	<i>S2</i>
General Procedure I. N-Quaternization of Cinchona Alkaloids	<i>S4</i>
General Procedure II. PTC Alkylation of N-(Diphenylmethylene)glycine tert-Butyl Es	ter S4
General Procedure III. Performing Kinetics and Enantioselectivity Measurements on P	TC
Alkylations	<i>S5</i>
Preparation of <i>epi</i> -Cinchonidine (B)	<i>S6-S7</i>
Preparation of O-Benzyl-cinchonidine (C)	<i>S7-S8</i>
Preparation of O-Allyl-cinchonidine (D)	<i>S</i> 8- <i>S</i> 9
Preparation of O-Methyl-cinchonidine (E)	S10-S11
Preparation of O-Methyl-epi-cinchonidine (F)	<i>S11-S12</i>
Preparation of Deoxyfluorocinchonidine (G)	S13-S14
Preparation of Cinchonan-9-ol, 9-phenol thiocarbonate (H')	<i>S14-S15</i>
Preparation of Deoxycinchonidine (H)	S15-S16
Preparation of Cinchonidinium Salts in Series A	<i>S17-S22</i>
Preparation of Cinchonidinium Salts in Series B	<i>S23-S28</i>
Preparation of Cinchonidinium Salts in Series C	S28-S34
Preparation of Cinchonidinium Salts in Series D	S35-S40
Preparation of Cinchonidinium Salts in Series E	S41-S46
Preparation of Cinchonidinium Salts in Series F	<i>S47-S52</i>
Preparation of Cinchonidinium Salts in Series G	S53-S58
Preparation of Cinchonidinium Salts in Series H	S59-S63
References	S63

Denmark and Weintraub	page S2
Kinetic Analyses of Catalysts in Series A	S64-S73
Kinetic Analyses of Catalysts in Series B	<i>S</i> 74 <i>-S</i> 83
Kinetic Analyses of Catalysts in Series C	S84-S93
Kinetic Analyses of Catalysts in Series D	S94-S103
Kinetic Analyses of Catalysts in Series E	S104-S113
Kinetic Analyses of Catalysts in Series F	<i>S114-S113</i>
Kinetic Analyses of Catalysts in Series G	S124-S133
Kinetic Analyses of Catalysts in Series H	S134-S141
Tabular Summary of Kinetics Data	<i>S142-S144</i>

General Experimental

All reactions were performed in oven-dried (145 °C) or flame-dried glassware under an inert atmosphere of dry argon. Reaction solvents THF (Fisher, HPLC grade), Et₂O (Fisher, BHT stabilized ACS grade) and methylene chloride (Fisher, unstabilized HPLC grade) were dried by percolation through two columns packed with neutral alumina under a positive pressure of argon. Reaction solvents hexane (Fisher, OPTIMA grade) and toluene (Fisher, ACS grade) were dried by percolation through a column packed with neutral alumina and a column packed with Q5 reactant, a supported copper catalyst for scavenging oxygen, under a positive pressure of argon. Reactions were carried out at the temperature indicated (external temperature) as measured by an thermocouple device unless otherwise indicated.

Column chromatography was performed using Merck grade 9385, 60 Å silica gel and column diameter (\emptyset) was expressed in mm. Visualization was accomplished by UV light, permanganate (KMnO₄), or iodine (I₂) as indicated. Analytical and preparative thin-layer chromatography was performed on Merck silica gel plates with F-254 indicator. Chromatography solvents EtOAc (Honeywell, HPLC grade), CH₂Cl₂ (Sigma-Aldrich, ACS grade), TBME (Sigma-Aldrich, ACS grade), and MeOH (Fisher, Optima grade) were used as supplied.

¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were acquired at 500 MHz, 126 MHz, and 376 MHz, respectively, and referenced to residual solvent [CHCl₃ at 7.26 (¹H) and 77.00 (¹³C) or MeOH 3.31 (¹H), 49.00 (¹³C) or DMSO at 2.50 (¹H) and 39.5 (¹³C) ppm]. Chemical shifts are reported in ppm; multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p,

(pentet), m (multiplet) and br (broad). Coupling constants, *J*, are reported in Hertz. Mass Spectrometry was performed by the University of Illinois Mass Spectrometer Center. ESI mass spectra were performed on a Waters Q-Tof Ultima or a Waters ZMD Quadrupole instrument. Data are reported in the form of *m/z* (intensity relative to base peak = 100). Analytical high pressure liquid chromatography (HPLC) was performed using a Hewlett Packard 1090L Chromatograph equipped with a variable wavelength diode array detector and an autosampler. The chromatograph was equipped with a reverse phase Agilent Zorbax 300SB-C8 column (5 μ m, 4. 6x 200mm, lamp current = 1). Method 1: Linear Gradient; flow rate = 1.0 mL/min, 1 = 254 nm, solvent = CH₃CN/H₂O (30:70) to CH₃CN/H₂O (90:10) over 10 min, then isocratic for 7 min. A 3 min re-equilibration time was utilized between runs. The water eluent contained 0.1% v/v acetic acid. Chiral stationary phase HPLC (CSP-HPLC) Method 2: *R,R*-Welk-O, 1.0 mL/min, IPA/hexanes 5:95. Melting points were obtained in vacuum-sealed glass tubes using a Thomas-Hoover Uni-MeltTM melting point apparatus and are corrected.

Fitting of kinetic data was done with OriginPro 8 SR4 version 8.0951 (B951). Interpolation of kinetic plots was done with Microsoft Excel 2008.

Cinchonidine and benzyl bromide were purchased from Acros Organics and Aldrich, respectively, 3,5-bis(trifluoromethyl)benzyl bromide was purchased from Alfa-Aesar, 9-bromomethylanthraceneⁱ, 2-bromomethylnaphthaleneⁱⁱ, 1-bromomethylnaphthalene², *N*-(diphenylmethylene)glycine *tert*-butyl ester,^{iii,iv} and phenylchlorothionoformate^v were prepared as described in the literature.

General Procedure I. N-Quaternization of Cinchona Alkaloids

The cinchona alkaloid was placed in a single-neck,, round-bottomed flask containing a magnetic stir bar and the arylmethylene bromide was then added (1.1 equiv). The flask was then purged with dry argon and the contents were dissolved in MeCN (0.1 M). The reaction mixture was allowed to stir until the starting material was consumed. Reactions were typically monitored by ¹H NMR spectroscopy of reaction aliquots (~100 μ L). Solvent was removed on a rotavap (20 mm Hg, 25 °C) and the residue was purified either by washing, chromatography or recrystallization. On occasion the reaction mixtures could be diluted with CH₂Cl₂ and purified directly by silica gel flash chromatography.

General Procedure II. PTC Alkylation of N-(Diphenylmethylene)glycine tert-Butyl Ester

A 2 mL scintillation vial was fitted with a Teflon lined rubber septum and *tert*-butyl 2-(diphenylmethyleneamino)acetate (100 mg, 0.34 mmol), and the phase transfer catalyst (8.48 μ mol, 0.025 equiv) were added. The liquid reagents, benzyl bromide (800 μ L, 0.51 M in toluene, 1.2 equiv), internal standard (790 μ L, 0.32 M in toluene, 0.75 equiv), and toluene (410 μ L) were added via syringe. Then, a 1.5 cm egg-shaped magnetic stir bar was placed in the vial and the contents were briefly agitated in an ultrasonic bath (10-20 s). Reaction vials were then transferred to a cold room maintained at 2-4 °C and were allowed to equilibrate for at least 1 h with stirring while immersed in a water bath to control temperature fluctuations. Lastly, 50% aq. (w/w) KOH solution (670 μ L, 11.9 mmol, 17.8 M, 35.0 equiv) was added to the rapidly stirred (1600 rpm) organic phase. Aliquots were taken at the indicated times and analyzed as follows.

The internal standard employed in these reactions was 1,1-diphenyl-1-heptene.

General Procedure III. Performing Kinetics and Enantioselectivity Measurements on PTC Alkylations

Three seconds prior to the indicated time interval, the stirrer was turned off. At the indicated time interval a 10- μ L aliquot of the organic layer was removed and then was injected into MeCN (2.0 mL) containing glacial acetic acid (several drops). This clear solution was filtered through a small plug of silica gel (0.5 x 1 cm) and the filtrate was analyzed by Reverse Phase-HPLC Method 1.

For the PTC alkylations that reached near to full completion (70-85% conversion to product), a 10- μ L aliquot was taken from the organic phase and injected into *i*-PrOH (2 mL). This aliquot was filtered through a small plug of silica gel (0.5 x 1 cm) and the filtrate was analyzed by CSP-HPLC Method 2

For the PTC alkylations that did not reach full completion (<70% conversion to product), the organic phase was first separated from the aqueous base *via* pipette. The alkylation product was obtained by preparative thin-layer chromatography (8 x 10 cm plate) using 0.5 - 1.0 mL of the organic phase directly. The product was eluted with 5:95 TBME/hexane. The product band was removed, suspended in *i*-PrOH (4 mL), and the silica gel was removed by filtration. The solvent was removed on a rotavap (20 mm Hg, 35-40 °C). The product was then dissolved in an appropriate amount of *i*-PrOH (1 mg/mL) and then analyzed by CSP-HPLC Method 2.

Preparation of epi-Cinchonidine (B)

Cinchonidine (2.94 g, 10.0 mmol), triphenylphosphine (2.89 g, 11.0 mmol, 1.1 equiv), and 4-nitrobenzoic acid (5.18 g, 31.0 mmol, 3.1 equiv) were dissolved in THF (125 mL, 0.08 M) in a 250-mL, three-neck round-bottomed flask fitted with an argon inlet, septum, and thermocouple. The suspension was cooled to 0 °C (internal) in an ice-bath over 1 h, whereupon diisopropyl azodicarboxylate (2.17 mL, 11.0 mmol, 1.1 equiv) was then added slowly over the course of several minutes. The reaction mixture was stirred for an additional hour at 0 °C then was allowed to warm to 22 °C over 1 h. The reaction mixture was diluted with Et₂O (50 mL), then was transferred to a 250-mL separatory funnel and was extracted with 1 N HCl aq. (3 x 50 mL). The combined aqueous extracts were basified with solid K₂CO₃ to pH 9-11. This aqueous phase was extracted with Et₂O (3 x 50 mL) then CH₂Cl₂ (50 mL). The combined organic extracts were dried over Na₂SO₄ and then the solvent was removed on a rotavap (20 mm Hg, 25 °C) to afford 2.50 g (85%) of **B** as a light-yellow solid. The entire product was further purified by recrystallization from boiling *i*-PrOH (~150 mL) to afford **B** as a white, crystalline solid.

Data for B:

<u>mp:</u> 203-205 °C

 1 H-NMR: (500 MHz, CDCl₃)

8.73 (d, J = 4.5 Hz, 1 H), 8.04 (dd, J = 8.5, 0.8 Hz, 1 H), 7.92 (d, J = 8.2 Hz, 1 H),
7.60 (ddd, J = 8.3, 6.9, 1.2 Hz, 1 H), 7.55 (d, J = 4.4 Hz, 1 H), 7.30 (ddd, J = 8.3,
6.9, 1.2 Hz, 1 H), 5.74 - 5.58 (m, 2 H), 5.12 (s, 1 H), 4.89 (ddt, J = 17.6, 10.3, 1.4 Hz, 2 H), 3.48 (tdd, J = 10.0, 4.8, 2.3 Hz, 1 H), 3.11 - 2.95 (m, 2 H), 2.66 - 2.47 (m, 2 H), 2.22 (s, 1 H), 1.82 - 1.66 (m, 3 H), 1.52 - 1.40 (m, 2 H).

¹³C-NMR: (126 MHz, CDCl₃)
 149.99, 149.61, 148.06, 141.77, 130.10, 128.95, 126.52, 125.61, 122.94, 118.19, 114.27, 71.76, 60.34, 56.95, 43.16, 39.90, 27.88, 27.58, 21.45.

<u>Analysis:</u>	$C_{19}H_{22}N_2O(2)$	294.39)		
	Calcd:	C, 77.52;	Н, 7.53;	N, 9.52
	Found:	C, 77.38;	Н, 7.67;	N, 9.47
LRMS:	$(ESI^+, Q-tof)$			
	295.2 (100, N	M-Br+)		
HRMS:	$C_{19}H_{23}N_2O^+$	$(ESI^+, Q-tof)$		
	Calcd:	295.1810		
	Found:	295.1814		
TLC:	<i>R</i> _f 0.11 (CH ₂	Cl ₂ /MeOH, 10:	1) [silica gel,]	[₂]

Preparation of O-Benzylcinchonidine (C)

Potassium hydride (164 mg, 4.08 mmol, 1.2 equiv) was placed in a 100-mL, single-neck,, round-bottomed flask fitted with an argon inlet adapter and septum in a glove box. This flask was then removed from the glove box and a solution of cinchonidine (1.00 g, 3.40 mmol) in THF (43 mL, 0.08 M) was then added *via* syringe under argon. The reaction mixture was stirred for 15 min at 22 °C until it became a light orange solution and no further gas evolution was observed. The mixture was cooled to 0 °C (external) on an ice bath over 2 h. Benzyl bromide (420 μ L, 3.57 mmol, 1.05 equiv) was then added *via* syringe and the mixture was stirred for 4 h at 0 °C.

The reaction mixture was quenched with sat. aq. NH₄Cl solution (~2 mL), and then was diluted with Et₂O (30 mL). The quenched reaction mixture was transferred to a 125-mL separatory funnel and then was extracted with 1 N aq. HCl solution (3 x 30 mL). The combined aqueous extracts were washed with Et₂O (3 x 30 mL) then were basified with solid K₂CO₃ until a white suspension persisted with a pH of 9-11. The aqueous suspension was diluted with H₂O (20 mL) and then was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, and then concentrated on a rotavap (20 mm Hg, 25 °C) to afford 1.41 g of crude **C** as a light-amber oil. The product was purified by silica gel

flash chromatography (50 g SiO₂, \emptyset = 30, 20:1 to 5:1, EtOAc/MeOH gradient elution) to afford 1.03 g (79%) of **C** as an off-white amorphous solid.

Data for C:

- 1 H-NMR:
 (500 MHz, CDCl₃)

 8.91 (d, J = 4.4 Hz, 1H), 8.22-8.09 (s, 1H), 8.17 (dd, J = 8.4, 0.9 Hz, 1H), 7.74 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.62 7.55 (m, 1H), 7.53 (d, J = 4.3 Hz, 1H), 7.40 7.28 (m, 5H), 5.79 5.68 (m, 1H), 5.32 (s, 1H), 4.93 (ddd, J = 17.5, 9.5, 5.9 Hz, 2H), 4.43 (q, J = 11.5 Hz, 2H), 3.47 3.33 (m, 1H), 3.22 3.02 (m, 2H), 2.76 2.54 (m, 2H), 2.26 (s, 1H), 1.90 1.68 (m, 3H), 1.64 (s, 1H), 1.57 1.43 (m, 1H).

 13 C-NMR:
 (126 MHz, CDCl₃)

 150.17, 148.60, 146.38, 141.84, 137.81, 130.52, 129.09, 128.42, 127.73, 127.64, 126.69, 126.52, 123.21, 118.59, 114.25, 71.31, 60.80, 57.03, 43.15, 39.99, 27.92, 27.73.
 - <u>LRMS</u>: (ESI⁺, Q-tof) 385.2 (100, M+H⁺)
 - HRMS: $C_{26}H_{29}N_2O^+$ (ESI⁺, Q-tof)Calcd:385.2280Found:385.2278
 - <u>TLC</u>: $R_f 0.38$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Allylcinchonidine (D)

Potassium hydride (164 mg, 4.08 mmol, 1.2 equiv) was placed in a 100-mL, single-neck,, round-bottomed flask fitted with an argon inlet adapter and septum in a glove box. This flask was then removed from the glove box and a solution of cinchonidine (1.00 g, 3.40 mmol) in THF (43 mL, 0.08 M) was then added *via* syringe under argon. The reaction mixture was stirred for 15 min at 22 °C until it became a light orange solution and no further gas evolution was observed.

page S9

The reaction mixture was cooled to 0 °C (external) on an ice bath over 2 h. Allyl bromide (310 μ L, 3.57 mmol, 1.05 equiv) was then added *via* syringe and the mixture was stirred for 4 h at 0 °C.

The reaction mixture was quenched with sat. aq. NH₄Cl solution (~2 mL), and then was diluted with Et₂O (30 mL). The quenched reaction mixture was transferred to a 125-mL separatory funnel and then was extracted with 1 N aq. HCl solution (3 x 30 mL). The combined aqueous extracts were washed with Et₂O (3 x 30 mL) then were basified with solid K₂CO₃ until a white suspension persisted with a pH of 9-11. The aqueous suspension was diluted with H₂O (20 mL) and then was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, and then concentrated on a rotavap (20 mm Hg, 25 °C) to afford 1.13 g (99+%) of crude **D** as a light-brown oil. The product was purified by silica gel flash chromatography (40 g SiO₂, $\emptyset = 30$, 20:1 to 10:1, EtOAc/MeOH) to afford 1.03 g (79%) of **D** as a light-amber oil.

Data for D:

<u>¹H-NMR:</sub> (500 MHz, CDCl₃)</u>

8.90 (d, J = 4.4 Hz, 1 H), 8.13 (dd, J = 13.3, 8.5 Hz, 2 H), 7.72 (ddd, J = 8.3, 6.9, 1.3 Hz, 1 H), 7.57 (ddd, J = 8.2, 6.9, 1.2 Hz, 1 H), 7.49 (d, J = 4.4 Hz, 1 H), 5.93 (ddt, J = 17.1, 10.6, 5.4 Hz, 1 H), 5.77 - 5.65 (m, 1 H), 5.36 - 5.21 (m, 2 H), 5.21 -5.13 (m, 1 H), 4.99 - 4.84 (m, 2 H), 3.95 (ddt, J = 12.8, 5.1, 1.4 Hz, 1 H), 3.87 (dd, J = 12.8, 5.7 Hz, 1 H), 3.44 (s, 1 H), 3.10 (dd, J = 13.5, 10.1 Hz, 2 H), 2.71 (dd, J = 17.0, 7.3 Hz, 1 H), 2.63 (d, J = 13.4 Hz, 1 H), 2.27 (s, 1 H), 1.88 - 1.74 (m, 3 H), 1.53 (ddd, J = 15.4, 12.7, 8.7 Hz, 2 H).

¹³C-NMR: (126 MHz, CDCl₃)
 150.14, 148.54, 146.31, 141.73, 134.31, 130.49, 129.05, 126.68, 126.41, 123.12, 118.39, 116.95, 114.27, 70.14, 60.65, 57.09, 43.27, 39.98, 27.93, 27.69, 22.04.

<u>Analysis:</u> C₂₂H₂₆N₂O (334.45)

	Calc:	C, 79.00;	Н, 7.84;	N, 8.38
	Found:	C, 78.76;	Н, 8.21;	N, 8.11
LRMS:	$(ESI^+, Q-to$	f)		
	335.2 (100,	$M+H^+$)		

<u>HRMS</u> :	$C_{22}H_{27}N_2O^+$	$(ESI^+, Q-tof)$
	Calcd:	335.2123
	Found:	335.2117
TLC	R_{c} 0 34 (CH ₂)	Cl ₂ /MeOH 10:1) [silica gel L]

Preparation of O-Methylcinchonidine (E)

Potassium hydride (164 mg, 4.08 mmol, 1.2 equiv) was placed in a 100-mL, single-neck,, round-bottomed flask fitted with an argon inlet adapter and septum in a glove box. This flask was then removed from the glove box and a solution of cinchonidine (1.00 g, 3.40 mmol) in THF (43 mL, 0.08 M) was then added *via* syringe under argon. The reaction mixture was stirred for 15 min at 22 °C until it became a light orange solution and no further gas evolution was observed. The reaction mixture was cooled to 0 °C (external) on an ice bath over 2 h. Methyl iodide (220 μ L, 3.57 mmol, 1.05 equiv) was then added *via* syringe and the mixture was stirred for 4 h at 0 °C.

The reaction mixture was quenched with sat. aq. NH₄Cl solution (~2 mL), and then was diluted with Et₂O (30 mL). The quenched reaction mixture was transferred to a 125-mL separatory funnel and then was extracted with 1 N aq. HCl solution (3 x 30 mL). The combined aqueous extracts were washed with Et₂O (3 x 30 mL) then were basified with solid K₂CO₃ until a white suspension persisted with a pH of 9-11. The aqueous suspension was diluted with H₂O (20 mL) and then was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, and then concentrated on a rotavap (20 mm Hg, 25 °C) to afford 1.17 g of crude **E** as a light-yellow, crystalline solid.

The product was purified by silica gel flash chromatography (40 g SiO₂, $\emptyset = 30$, 20:1 to 10:1, CH₂Cl₂/MeOH) to afford 781 mg (75%) of **E** as a white, crystalline solid. The entire product was further purified by recrystallization from boiling hexane. Data for **E**:

page	<i>S11</i>
------	------------

<u>m.p.</u> :	125-126 °C			
¹ H-NMR:	(500 MHz, CDCl ₃)			
	8.90 (d, J = 4.4 Hz, 1 H), 8.12 (dd, J = 21.0, 8.4 Hz, 2 H), 7.72 (ddd, J = 8.3, 6.9,			
	1.3 Hz, 1 H),	7.57 (ddd, J	= 8.3, 6.9, 1.2	Hz, 1 H), 7.46 (d, <i>J</i> = 4.4 Hz, 1 H), 5.71
	(ddd, J = 17.	7, 10.3, 7.7 H	z, 1 H), 5.07 (s	s, 1 H), 4.91 (ddt, <i>J</i> = 20.2, 10.3, 1.4 Hz,
	2 H), 3.39 (t	J = 9.0 Hz,	1 H), 3.30 (s,	3 H), 3.09 (dd, <i>J</i> = 13.5, 10.2 Hz, 2 H),
	2.75 - 2.65 (r	n, 1 H), 2.65 -	2.55 (m, 1 H)), 2.25 (s, 1 H), 1.84 - 1.69 (m, 3 H), 1.51
	(ddd, J = 16.)	8, 12.5, 7.7 Hz	z, 2 H).	
¹³ C-NMR:	(126 MHz, C	DCl ₃)		
	150.14, 148.	56, 146.07, 14	1.67, 130.49,	129.04, 126.69, 126.52, 123.16, 118.34,
	114.34, 82.83	3, 60.57, 57.18	8, 56.96, 43.21	, 39.92, 27.88, 27.59, 21.90.
Analysis:	$C_{20}H_{24}N_2O$ (2)	308.42)		
	Calcd:	C, 77.89;	Н, 7.84;	N, 9.08
	Found:	C, 77.96;	Н, 7.95;	N, 9.17
LRMS:	$(ESI^+, Q-tof)$			
	309.2 (100, N	(H^+H^+)		
HRMS:	$C_{20}H_{25}N_2O^+$	$(ESI^+, Q-tof)$		
	Calcd:	309.1967		
	Found:	309.1960		
<u>TLC</u> :	$R_f 0.29 (CH_2)$	Cl ₂ /MeOH, 10	:1) [silica gel,	I ₂]

Preparation of O-Methyl-epi-cinchonidine (F)

Potassium hydride (120 mg, 3.00 mmol, 1.2 equiv) was placed in a 50-mL, single-neck, round-bottomed flask fitted with an argon inlet adapter and septum in a glove box. This flask was then removed from the glove box and a solution of *epi*-cinchonidine (736 mg, 2.50 mmol) in THF (31.0 mL, 0.08 M) was then added *via* syringe under argon. The reaction mixture was

stirred for 15 min at 22 °C until it became a light orange solution and no further gas evolution was observed. The reaction mixture was cooled to 0 °C (external) on an ice bath over 2 h. Methyl iodide (164 μ L, 2.63 mmol, 1.05 equiv) was then added *via* syringe and the mixture was stirred for 4 h at 0 °C.

The reaction mixture was quenched with sat. aq. NH₄Cl solution (~2 mL), and then was diluted with Et₂O (30 mL). The quenched reaction mixture was transferred to a 125-mL separatory funnel and then was extracted with 1 N aq. HCl solution (3 x 30 mL). The combined aqueous extracts were washed with Et₂O (3 x 30 mL) then were basified with solid K₂CO₃ until a white suspension persisted with a pH of 9-11. The aqueous suspension was diluted with H₂O (20 mL) and then was extracted with CH₂Cl₂ (3 x 30 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, and then concentrated on a rotavap (20 mm Hg, 25 °C) to afford 1.04 g of crude **F** as a light-yellow, crystalline solid.

The product was purified by silica gel flash chromatography (50 g SiO₂, $\emptyset = 30$, 20:1 to 5:1, CH₂Cl₂/MeOH, gradient elution) to afford 665 mg (86%) of **F** as a white, crystalline solid. The entire product was further purified by recrystallization from boiling hexane.

Data for F:

<u>m.p.</u> :	125-126 °C	2			
¹ H-NMR:	(500 MHz,	CDCl ₃)			
	8.90 (d, <i>J</i> =	= 4.4 Hz, 1 H),	8.18 - 8.06 (m	n, 2 H), 7.72 (ddd, $J = 8.3$, 6.9, 1.3 Hz	, 1
	H), 7.57 (d	dd, $J = 8.3, 6.9,$	1.2 Hz, 1 H),	7.46 (d, <i>J</i> = 4.4 Hz, 1 H), 5.76 - 5.66 (m,
	1 H), 5.07	(s, 1 H), 4.91 (d	ddt, J = 20.2,	10.3, 1.4 Hz, 2 H), 3.43 - 3.33 (m, 1 H	H),
	3.30 (s, 3 I	H), $3.08 (dt, J =$	18.9, 9.6 Hz, 2	2 H), 2.75 - 2.64 (m, 1 H), 2.64 - 2.57 (m,
	1 H), 2.26	(s, 1 H), 1.83 - 1	.69 (m, 3 H),	1.51 (ddd, J = 16.4, 12.1, 7.7 Hz, 2 H).	
¹³ C-NMR:	(126 MHz,	CDCl ₃)			
	150.14, 14	8.51, 146.25, 14	41.85, 130.46,	129.00, 126.61, 126.51, 123.10, 118.3	33,
	114.20, 83	.09, 60.55, 57.17	7, 57.03, 43.16	5, 40.03, 27.87, 27.67, 21.98.	
<u>analysis</u> :	$C_{20}H_{24}N_2C$	0 (308.42)			
	Calcd:	C, 77.89;	Н, 7.84;	N, 9.08	
	Found:	C, 77.90;	Н, 7.95;	N, 9.14	
LRMS:	$(ESI^+, Q-tc$	of)			
	309.2 (100	, M+H ⁺)			

 $\begin{array}{cccc} \underline{\text{HRMS}}: & C_{20}\text{H}_{25}\text{N}_2\text{O}^+ (\text{ESI}^+, \text{Q-tof}) \\ & Calcd: & 309.1967 \\ & Found: & 309.1965 \\ \hline \underline{\text{TLC}}: & R_f \ 0.30 \ (\text{CH}_2\text{Cl}_2/\text{MeOH}, 10:1) \ [\text{silica gel, I}_2] \end{array}$

Preparation of Deoxyfluorocinchondine (G)

Cinchonidine (2.36 g, 8.00 mmol) was placed in a 50-mL, single-neck,, PTFE roundbottomed flask fitted with a septum and was then suspended in THF (16.0 mL, 0.50 M). The suspension was cooled to -20 °C (external) with a refrigerator unit in an *i*-PrOH bath over 2-3 h. Diethylaminosulfur trifluoride (1.58 mL, 12.0 mmol, 1.50 equiv) was then added slowly over several minutes *via* a polypropylene syringe under an argon atmosphere, and the mixture was then stirred for 14 h at -20 °C. The reaction was quenched by transferring the brown solution to a 250-mL separatory funnel containing a sat. aq. NaHCO₃ solution (60 mL) which was then extracted with CH₂Cl₂ (3 x 60 mL). The combined organic extracts were washed with brine (60 mL), dried over MgSO₄, and then were concentrated on a rotavap (20 mm Hg, 25 °C) to afford 2.75 g (116%) of **G** as an orange-amber, viscous oil.

The crude product was purified by three successive chromatographic separations on silica gel. The first column (100 g SiO₂, $\emptyset = 40$, 20:1 to 5:1, CH₂Cl₂/MeOH gradient elution) afforded 1.42 g (60%) of crude **G** as a brown-amber oil. The second column (40 g SiO₂, $\emptyset = 30$, 20:1 to 5:1, EtOAc/MeOH gradient elution) afforded 521 mg (22%) of crude **G** as a yellow oil. The third column (50 g SiO₂, $\emptyset = 30$, 10:1 to 8:1, TBME/MeOH) afforded 253 mg (11%) of **G** as a white, crystalline solid. The entire product was further purified by recrystallization from boiling pentane.

Data for G:

<u>m.p.</u>: 78-81 °C

¹ H-NMR:	(500 MHz, C	CD ₃ OD)		
	8.81 (d, <i>J</i> = 4	4.6 Hz, 1 H), 8	.03 (d, $J = 8.3$	Hz, 1 H), 7.98 (d, <i>J</i> = 8.4 Hz, 1 H), 7.75
	(ddd, J = 8.4, 6.9, 1.3 Hz, 1 H), 7.63 (ddd, J = 8.3, 6.9, 1.2 Hz, 1 H), 7.58 (d, J =			
	4.6 Hz, 1 H)	$, 6.40 (\mathrm{dd}, J = $	48.5, 2.2 Hz, 1	1 H), 5.70 (ddd, <i>J</i> = 17.6, 10.4, 7.5 Hz, 1
	H), 4.91 (dd,	J = 17.1, 1.5 J	Hz, 1 H), 4.87	- 4.81 (m, 1 H), 3.39 - 3.28 (m, 1 H),
	3.10 (dd, <i>J</i> =	13.7, 10.2 Hz	, 1 H), 2.80 - 2	2.70 (m, 1 H), 2.65 (ddd, $J = 13.7, 5.1$,
	2.5 Hz, 1 H)	, 2.32 (s, 1 H),	1.80 - 1.69 (m	n, 3 H), 1.62 - 1.52 (m, 1 H), 1.46 (td, $J =$
	10.4, 5.1 Hz	1 H).		
¹³ C-NMR:	(126 MHz, C	CD ₃ OD)		
	150.89, 148.	81, 145.79 (d,	J = 20.5 Hz),	, 142.31, 131.13, 130.33, 128.78, 125.91
	(d, J = 5.3 H)	(z), 124.09, 11	8.93 (d, $J = 1$)	1.6 Hz), 115.15, 93.76 (d, <i>J</i> = 178.9 Hz),
	60.81 (d, <i>J</i> =	21.9 Hz), 57.2	27, 44.22 (d, <i>J</i>	v = 5.4 Hz), 40.66, 29.03, 27.99, 21.27 (d,
	<i>J</i> = 5.8 Hz).			
¹⁹ F-NMR:	(376 MHz, C	CD ₃ OD)		
	-199.29 (dd,	$J_{\text{H-F}} = 48.4, 27$	7.4 Hz).	
<u>analysis</u> :	$C_{19}H_{21}FN_2$ (2)	296.38)		
	Calcd:	C, 77.00;	Н, 7.14;	N, 9.45
	Found:	C, 77.04;	Н, 7.33;	N, 9.47
LRMS:	(ESI ⁺ , Q-tof)		

297.2 (100, M+H⁺)

- $C_{19}H_{22}FN_{2}^{+}$ (ESI⁺, Q-tof) HRMS: Calcd: 297.1767 Found: 297.1776
 - *R*_f 0.42 (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂] <u>TLC</u>:

Preparation of Cinchonan-9-ol, 9-(phenol thiocarbonate) (H')

Cinchonidine (1.77 g, 6.00 mmol) and 4-dimethylaminopyridine (367 mg, 3.00 mmol, 0.50 equiv) were added to a 100-mL, single-neck, round-bottomed flask fitted with an argon inlet adapter and septum and followed by THF (67.0 mL, 0.09 M). Triethylamine (1.92 mL, 13.8 mmol, 2.30 equiv) was then added and the mixture was stirred until it became homogeneous. Phenyl chlorothionoformate (1.67 mL, 12.0 mmol, 2.0 equiv) was then added *via* syringe to afford a suspension with a yellow precipitate and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was transferred to 125-mL separatory funnel followed by the addition of a sat. aq. NaHCO₃ solution (70 mL) and the suspension was extracted with EtOAc (3 x 70 mL). The combined organic extracts were washed with brine (70 mL), dried over Na₂SO₄, and concentrated on a rotavap (20 mm Hg, 30 - 35 °C) to afford 6.07 g of crude **H'** as a dark-brown liquid. The product was purified by silica gel flash chromatography (100 g SiO₂, \emptyset = 40, 20:1 to 10:1, EtOAc/MeOH) to afford 2.18 g (85%) of **H'** as an brown, amorphous solid.

Data for H':

LRMS:

 $\frac{^{1}\text{H-NMR:}}{(500 \text{ MHz, CDCl}_{3})}$

8.94 (d, J = 4.5 Hz, 1 H), 8.20 (d, J = 8.2 Hz, 1 H), 8.16 (dd, J = 8.5, 0.8 Hz, 1 H), 7.74 (ddd, J = 8.3, 6.9, 1.3 Hz, 1 H), 7.61 (ddd, J = 8.3, 6.9, 1.3 Hz, 1 H), 7.48 (d, J = 4.5 Hz, 1 H), 7.42 - 7.35 (m, 2 H), 7.31 - 7.23 (m, 1 H), 7.09 - 7.00 (m, 3 H), 5.81 (ddd, J = 17.6, 10.4, 7.5 Hz, 1 H), 4.99 (ddt, J = 10.3, 6.4, 1.4 Hz, 2 H), 3.43 (dd, J = 16.9, 7.8 Hz, 1 H), 3.28 - 3.16 (m, 1 H), 3.07 (dd, J = 13.9, 10.1 Hz, 1 H), 2.78 - 2.67 (m, 1 H), 2.60 (ddd, J = 13.7, 4.5, 2.4 Hz, 1 H), 2.30 (s, 1 H), 1.96 -1.85 (m, 2 H), 1.85 - 1.76 (m, 1 H), 1.76 - 1.68 (m, 1 H), 1.64 - 1.52 (m, 1 H). (ESI⁺, ZMD)

277.2 (47), 431.1 (100, M+H⁺)

Preparation of Deoxycinchonidine (H)

Azo bis(isobutyrodinitrile) (333 mg, 2.00 mmol, 0.40 equiv) and a solution of

Cinchonan-9-ol, 9-(phenol thiocarbonate) (2.15 g, 5.00 mmol) in toluene (50 mL, 0.10 M) were combined in a 100-mL, single-neck, round-bottomed flask fitted with a condenser and argon inlet. Tributyltin hydride (2.73 mL, 10.0 mmol, 2.00 equiv) was then added *via* syringe and the reaction mixture was stirred at reflux for 1 h. The reaction mixture was allowed to cool to 22 °C and was then concentrated on a rotavap (20 mm Hg, 35-40 °C) to afford a yellow liquid.

The product was purified by silica gel flash chromatography [50 g SiO₂, $\emptyset = 30$, 10:1, EtOAc : (10% aq. NH₄OH in MeOH)] to afford 1.38 g (97%) of **H** as a light-brown, crystalline solid. The product was further purified by recrystallization from concentrated pentane solution and cooling overnight in a freezer to afford an off-white, crystalline solid.

Data for H:

<u>m.p.</u> :	58 – 59 °C			
¹ H-NMR:	(500 MHz,	CDCl ₃)		
	8.81 (d, J = 4.4 Hz, 1 H), 8.09 (dd, J = 19.7, 8.4 Hz, 2 H), 7.74 - 7.66 (m, 1 H)			
	7.61 - 7.52	(m, 1 H), 7.28 ((d, J = 4.4 Hz,	1 H), 5.79 (ddd, <i>J</i> = 17.8, 10.3, 7.6 Hz, 1
	H), 4.97 (d	dd, $J = 13.7, 11$.3, 1.2 Hz, 2 H), 3.41 (dd, <i>J</i> = 13.8, 5.8 Hz, 1 H), 3.28 -
	3.15 (m, 3	H), 3.08 (dd, J	= 13.8, 8.5 Hz	, 1 H), 2.85 - 2.74 (m, 1 H), 2.70 (ddd, J
	= 13.8, 4.9	, 2.4 Hz, 1 H), 2	.33 - 2.22 (m,	1 H), 1.87 - 1.72 (m, 2 H), 1.71 - 1.62 (m,
	1 H), 1.62 ·	- 1.51 (m, 1 H),	1.17 (dd, $J = 1$	3.2, 6.6 Hz, 1 H).
¹³ C-NMR:	(126 MHz,	CDCl ₃)		
	150.04, 14	8.37, 145.40, 14	41.77, 130.31,	128.95, 127.76, 126.38, 123.44, 121.52,
	114.29, 56.	25, 56.05, 41.06	5, 39.54, 38.18	, 28.87, 27.96, 27.90.
<u>analysis:</u>	$C_{19}H_{22}N_2O$	(278.39)		
	Calcd:	C, 81.97;	Н, 7.97;	N, 10.06
	Found:	C, 82.13;	H, 8.11;	N, 10.13
<u>LRMS:</u>	$(ESI^+, Q-to$	of)		
	279.2 (100	, M+H ⁺)		
HRMS:	$C_{19}H_{23}N_2O$	$^+$ (ESI ⁺ , Q-tof)		
	Calcd:	279.1861		
	Found:	279.1864		
<u>TLC</u> :	<i>R</i> _f 0.28 (CH	H ₂ Cl ₂ /MeOH, 10):1) [silica gel,	I ₂]

Preparation of Cinchonidinium Salts in Series A Preparation of *N*-9-Anthracenylmethylcinchonidinium Bromide (1a)

Following General Procedure I, cinchonidine (1.31 g, 4.4 mmol), MeCN (25 mL), and 9bromomethylanthracene (1.32 g, 4.84 mmol, 1.1 equiv) were combined in a 50-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the mixture was stirred overnight. Care was taken to avoid light exposure. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and yellow solid residue was triturated with Et₂O (25-mL) and filtered to afford 2.16 g (86%) of **1a** as a light-yellow, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH₂Cl₂ solution by slow diffusion of Et₂O in a chamber.

Data for 1a:

<u>m.p.</u>: 154 °C (decomp.)

 $^{1}\underline{\text{H-NMR}}$: (500 MHz, CD₃OD)

9.01 (d, J = 4.6 Hz, 1 H), 8.86 - 8.77 (m, 2 H), 8.66 - 8.56 (m, 2 H), 8.22 (d, J = 8.5 Hz, 2 H), 8.20 - 8.14 (m, 1 H), 8.08 (d, J = 4.5 Hz, 1 H), 7.96 - 7.88 (m, 2 H), 7.83 - 7.75 (m, 2 H), 7.63 (ddd, J = 8.4, 6.6, 4.1 Hz, 2 H), 7.11 (d, J = 1.8 Hz, 1 H), 6.50 (d, J = 14.0 Hz, 1 H), 5.93 (d, J = 14.0 Hz, 1 H), 5.71 (ddd, J = 17.4, 10.4, 7.2 Hz, 1 H), 5.01 (dd, J = 26.2, 13.8 Hz, 2 H), 4.74 - 4.63 (m, 1 H), 4.48 (t, J = 9.0 Hz, 1 H), 3.86 (ddd, J = 12.5, 4.9, 3.2 Hz, 1 H), 3.24 (dd, J = 12.4, 10.9 Hz, 1 H), 2.80 (td, J = 11.7, 4.6 Hz, 1 H), 2.45 (s, 1 H), 2.30 (dd, J = 13.4, 8.2 Hz, 1 H), 2.18 - 2.07 (m, 1 H), 1.93 (d, J = 2.7 Hz, 1 H), 1.62 - 1.50 (m, 1 H), 1.50 - 1.39 (m, 1 H).

13 C-NMR: (126 MHz, CD₃OD)

151.03, 148.72, 147.83, 138.79, 134.80, 134.71, 133.72, 133.04, 133.00, 131.35, 131.16, 131.08, 130.29, 129.29, 126.59, 126.32, 125.60, 125.12, 124.51, 121.55, 121.52, 119.25, 117.63, 69.95, 67.24, 63.74, 56.84, 53.37, 39.66, 27.29, 26.26,

	23.04.	
LRMS:	$(ESI^+, Q-tof)$)
	191.1 (35), 2	295.2 (25), 485.3 m/z (100, M-Br+)
<u>HRMS:</u>	$C_{34}H_{33}N_2O^+$	$(ESI^+, Q-tof)$
	Calcd:	485.2593
	Found:	485.2598
TLC:	<i>R</i> _f 0.31 (CH ₂	$Cl_2/MeOH$, 5:1) [silica gel, I_2]

Preparation of *N***-(2-Naphthylmethyl)cinchonidinium Bromide (2a)**

Following General Procedure I, cinchonidine (1.47 g, 5 mmol), MeCN (50 mL), and 2bromomethylnaphthalene (2.35 g, 10.5 mmol, 2.1 equiv) were combined in a 100-mL, singleneck, round-bottomed flask and the mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the remaining off-white solid was triturated in Et₂O (3 x 25 mL) then was filtered three times separately to afford 2.27 g (88%) of **2a** as a white, crystalline solid. <u>Data for **2a**</u>:

<u>m.p.:</u> 236 °C (decomp.)

```
<u><sup>1</sup>H-NMR:</u> (500 MHz, d_6-DMSO)
```

9.00 (d, J = 4.4 Hz, 1 H), 8.37 - 8.28 (m, 2 H), 8.12 (dd, J = 7.9, 6.0 Hz, 2 H), 8.08 - 8.01 (m, 2 H), 7.89 - 7.80 (m, 3 H), 7.79 - 7.72 (m, 1 H), 7.69 - 7.61 (m, 2 H), 6.78 (d, J = 4.3 Hz, 1 H), 6.62 (s, 1 H), 5.69 (ddd, J = 17.2, 10.5, 6.5 Hz, 1 H), 5.31 (d, J = 12.4 Hz, 1 H), 5.17 (dd, J = 14.5, 13.3 Hz, 2 H), 4.96 (d, J = 10.5 Hz, 1 H), 4.35 (t, J = 10.6 Hz, 1 H), 3.98 (t, J = 8.9 Hz, 1 H), 3.81 (dd, J = 8.9, 3.7 Hz, 1 H), 3.46 - 3.34 (m, 2 H), 2.64 (s, 1 H), 2.11 (dt, J = 22.9, 10.9 Hz, 2 H), 1.99 (d, J = 2.3 Hz, 1 H), 1.79 (t, J = 10.4 Hz, 1 H), 1.31 (dd, J = 12.9, 10.3 Hz, 1 H). ¹³C-NMR: (126 MHz, d_6 -DMSO)

150.17, 147.62, 145.26, 138.13, 133.91, 133.27, 132.55, 130.15, 129.88, 129.45,

128.38, 128.33, 127.65, 127.54, 127.17, 126.83, 125.41, 124.30, 123.64, 120.06, 116.36, 67.57, 64.20, 62.92, 59.29, 50.67, 36.93, 25.87, 24.25, 20.92.

<u>LRMS:</u> (ESI⁺, Q-tof) 295.2 (10), 435.2 (100, M-Br+)

<u>HRMS:</u> $C_{30}H_{31}N_2O^+$ (ESI⁺, Q-tof)

Calcd:	435.2436
Found:	435.2439

<u>TLC</u>: $R_f 0.25$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of N-(1-Naphthylmethyl)cinchonidinium Bromide (3a)

Following General Procedure I, cinchonidine (1.47 g, 5.00 mmol), MeCN (50.0 mL), and 1-bromomethylnaphthalene (1.22 g, 5.50 mmol, 1.1 equiv) were combined in a 100-mL, singleneck, round-bottomed flask fitted with an argon inlet and the reaction mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and remaining solid was triturated with Et₂O (50 mL) then was filtered to afford 2.33 g (90%) of **3a** as a white, crystalline solid. The entire crude product was further purified by recrystallization from a concentrated CH₂Cl₂ solution by slow diffusion of Et₂O in a chamber.

Data for 3a:

<u>m.p.:</u> 200 °C (decomp.)

```
<sup>1</sup>H-NMR:
```

(500 MHz, CD₃OD)

8.98 (d, J = 4.6 Hz, 1 H), 8.40 (d, J = 8.2 Hz, 2 H), 8.20 - 8.11 (m, 2 H), 8.09 - 7.99 (m, 3 H), 7.87 (dtd, J = 16.5, 6.9, 1.2 Hz, 2 H), 7.79 - 7.73 (m, 1 H), 7.73 - 7.67 (m, 1 H), 7.65 (t, J = 7.5 Hz, 1 H), 6.87 (s, 1 H), 5.91 (d, J = 13.1 Hz, 1 H), 5.70 (ddd, J = 17.3, 10.5, 6.8 Hz, 1 H), 5.37 (d, J = 13.1 Hz, 1 H), 5.14 (d, J = 17.2 Hz, 1 H), 5.00 (d, J = 10.5 Hz, 1 H), 4.68 - 4.57 (m, 1 H), 4.22 (t, J = 9.1 Hz, 1 H), 3.88 - 3.78 (m, 1 H), 3.56 (dd, J = 12.5, 10.8 Hz, 1 H), 3.16 (td, J = 11.4, 3.7

	Hz, 1 H), 2.65 (s, 1 H), 2.35 - 2.25 (m, 1 H), 2.24 - 2.14 (m, 1 H), 2.04 (s, 1 H),
	1.80 - 1.69 (m, 1 H), 1.42 (td, $J = 10.2$, 3.2 Hz, 1 H).
¹³ C-NMR:	(126 MHz, CDCl ₃)
	149.28, 146.89, 144.85, 135.77, 134.29, 133.01, 132.77, 130.27, 129.31, 128.64,
	128.06, 127.41, 126.88, 125.70, 124.74, 124.11, 123.45, 123.25, 122.09, 119.48,
	117.78, 65.92, 65.80, 59.49, 57.22, 50.99, 37.89, 25.93, 25.31, 22.81
LRMS:	(ESI ⁺ , Q-tof)
	435.2 (100, M-Br ⁺)
<u>HRMS:</u>	$C_{30}H_{31}N_2O^+$ (ESI ⁺ , Q-tof) Calcd: 435.2436
	Found: 435.2436
<u>TLC</u> :	$R_f 0.31 (CH_2Cl_2/MeOH, 5:1)$ [silica gel, I ₂]

Preparation of N-(Benzyl)cinchonidinium Bromide (4a)

Following General Procedure I, cinchonidine (1.47 g, 5.00 mmol), MeCN (50.0 mL), and benzyl bromide (650 µL, 5.50 mmol, 1.1 equiv) were combined in a 100-mL, single-neck, roundbottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was filtered and the filter cake washed several times with MeCN (50 mL). The filtrate was concentrated on a rotavap (20 mm Hg, 25 °C) and the solid residue triturated with Et₂O (50 mL) then filtered. Both filter cakes were combined to afford 2.25 g (97%) of 4a as a white, crystalline solid. The entire crude product was further purified by recrystallization from a concentrated CH₂Cl₂ solution by slow diffusion of Et₂O in a chamber.

Data for 4a:

<u>m.p.:</u>	164 °C (decomp.)
¹ H-NMR:	(500 MHz, CD ₃ OD)
	8.95 (d, J = 4.6 Hz, 1 H), 8.28 (d, J = 8.2 Hz, 1 H), 8.13 (d, J = 8.2 Hz, 1 H), 7.97
	(d, J = 4.6 Hz, 1 H), 7.90 - 7.84 (m, 1 H), 7.84 - 7.77 (m, 1 H), 7.74 (dd, J = 6.5,

2.9 Hz, 2 H), 7.62 - 7.55 (m, 3 H), 6.66 (s, 1 H), 5.69 (ddd, *J* = 17.3, 10.5, 6.8 Hz, 1 H), 5.17 (dd, *J* = 21.7, 14.8 Hz, 2 H), 5.00 (d, *J* = 11.9 Hz, 2 H), 4.50 - 4.40 (m, 1 H), 4.00 (t, *J* = 9.1 Hz, 1 H), 3.66 (ddd, *J* = 12.7, 4.7, 3.3 Hz, 1 H), 3.48 (dd, *J* = 12.7, 10.8 Hz, 1 H), 3.41 (td, *J* = 11.3, 3.8 Hz, 1 H), 2.72 (s, 1 H), 2.33 - 2.19 (m, 2 H), 2.08 (d, *J* = 2.8 Hz, 1 H), 1.88 (ddd, *J* = 15.1, 5.2, 2.6 Hz, 1 H), 1.42 (ddd, *J* = 13.4, 6.5, 3.4 Hz, 1 H).

¹³C-NMR: (126 MHz, CDCl₃)
 149.42, 147.14, 144.42, 135.97, 134.02, 129.92, 129.58, 128.62, 128.34, 127.28, 126.90, 123.57, 122.88, 119.76, 117.77, 66.96, 65.06, 62.16, 60.04, 50.28, 37.79, 26.44, 25.08, 22.36
 LRMS: (ESI⁺, Q-tof)

 $\frac{2KW3.}{385.2 (100, M-Br^{+})}$

- - <u>TLC</u>: $R_f 0.27$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of N-(3,5-Bis-trifluoromethylbenzyl)cinchonidinium Bromide (5a)

Following General Procedure I, cinchonidine 589 mg (2.00 mmol), MeCN (20.0 mL), and bis-(3,5-trifluoromethyl)benzyl bromide (404 μ L, 2.20 mmol, 1.1 equiv) were combined in a 50-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 72 hours. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with Et₂O (30 mL) then filtered to afford 1.04 g (87%) of **5a** as a white, crystalline solid. The product was further purified by recrystallization from a concentrated CH₂Cl₂ solution by slow diffusion of Et₂O in a chamber.

Data for 5a:

<u>m.p.:</u>	173 °C	(decomp.)
--------------	--------	-----------

- ¹<u>H-NMR:</u> (500 MHz, CD₃OD) 8.95 (d, J = 4.6 Hz, 1 H), 8.45 (s, 2 H), 8.33 (d, J = 8.1 Hz, 1 H), 8.24 (s, 1 H), 8.13 (dd, J = 8.4, 1.0 Hz, 1 H), 7.96 (d, J = 4.5 Hz, 1 H), 7.85 (dddd, J = 16.5, 8.2, 6.9, 1.3 Hz, 2 H), 6.66 (s, 1 H), 5.69 (ddd, J = 17.3, 10.5, 6.8 Hz, 1 H), 5.34 (dd, J = 63.7, 12.6 Hz, 2 H), 5.17 (d, J = 17.2 Hz, 1 H), 5.01 (d, J = 10.5 Hz, 1 H), 4.64 -4.52 (m, 1 H), 4.05 (t, J = 8.4 Hz, 1 H), 3.83 - 3.70 (m, 1 H), 3.47 (dd, J = 12.3, 10.8 Hz, 1 H), 3.39 (td, J = 11.3, 3.8 Hz, 1 H), 2.74 (s, 1 H), 2.38 - 2.20 (m, 2 H), 2.10 (d, J = 2.4 Hz, 1 H), 1.96 - 1.84 (m, 1 H), 1.50 - 1.38 (m, 1 H).
- $\frac{^{13}\text{C-NMR:}}{151.06, 148.76, 147.28, 138.52, 135.45, 133.68 (q, J_{C-F} = 33.8 \text{ Hz}), 132.03, 131.22, 130.41, 129.25, 126.06, 125.50 (m), 124.10, 123.43, 121.31, 117.69, 70.34, 66.32, 63.43, 61.93, 53.02, 39.13, 27.92, 25.86, 22.51.$ LRMS: (ESI⁺, Q-tof)
 - $521.2 (100, M-Br^{+})$
 - <u>HRMS:</u> $C_{28}H_{27}N_2OF_6^+$ (ESI⁺, Q-tof)
 - Calcd: 521.2028 Found: 521.2029
 - <u>TLC</u>: $R_f 0.28$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of Cinchonidinium Salts in Series B

Preparation of N-(9-Anthracenylmethyl)-epi-cinchonidinium Bromide (1b)

Following General Procedure I, epi-cinchonidine (100 mg, 0.340 mmol), MeCN (3.4 mL), and 9-bromomethylanthracene (101 mg, 0.374 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the

mixture was stirred overnight. Care was taken to avoid light exposure. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, $CH_2Cl_2/MeOH$ gradient elution) to afford 169 mg (88%) of **1b** as a light-yellow, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH_2Cl_2 solution by slow diffusion of Et_2O in a chamber.

Data for 1b:

- <u>mp</u>: 154-162 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

9.01 (d, J = 4.6 Hz, 1 H), 8.85 (s, 1 H), 8.80 (d, J = 9.0 Hz, 1 H), 8.63 (d, J = 9.0 Hz, 1 H), 8.61 - 8.56 (m, 1 H), 8.23 (d, J = 8.5 Hz, 2 H), 8.20 - 8.15 (m, 1 H), 8.08 (d, J = 4.5 Hz, 1 H), 7.95 - 7.88 (m, 2 H), 7.80 (dtd, J = 7.7, 6.2, 1.1 Hz, 2 H), 7.67 - 7.59 (m, 2 H), 7.11 (d, J = 1.9 Hz, 1 H), 6.51 (d, J = 14.0 Hz, 1 H), 5.93 (d, J = 14.0 Hz, 1 H), 5.70 (ddd, J = 17.4, 10.4, 7.2 Hz, 1 H), 5.01 (dd, J = 23.7, 13.8 Hz, 2 H), 4.74 - 4.64 (m, 1 H), 4.46 (t, J = 9.0 Hz, 1 H), 3.85 (ddd, J = 12.5, 4.9, 3.2 Hz, 1 H), 3.24 (dd, J = 12.4, 10.9 Hz, 1 H), 2.81 (td, J = 11.3, 4.2 Hz, 1 H), 2.45 (s, 1 H), 2.30 (dd, J = 13.6, 8.1 Hz, 1 H), 2.19 - 2.08 (m, 1 H), 1.93 (d, J = 2.7 Hz, 1 H), 1.62 - 1.52 (m, 1 H), 1.47 (ddd, J = 13.3, 8.3, 3.3 Hz, 1 H).

- <u>1³C-NMR:</u> (126 MHz, CD₃OD)
 151.10, 148.88, 147.65, 138.76, 134.82, 134.73, 133.74, 133.07, 133.03, 131.28, 131.17, 131.09, 130.44, 129.30, 129.25, 129.22, 126.60, 126.56, 126.32, 125.50, 125.07, 124.38, 121.50, 119.23, 117.61, 70.06, 67.24, 63.80, 56.89, 53.42, 39.66, 27.29, 26.27, 23.04
 - <u>LRMS</u>: (ESI⁺, Q-tof) 485.2 (100, M-Br⁺)
 - - <u>TLC</u>: $R_f 0.58$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of N-(2-Naphthylmethyl)-epi-cinchonidinium Bromide (2b)

Following General Procedure I, epi-cinchonidine (100 mg, 0.340 mmol), MeCN (3.4 mL), and 2-bromomethylnaphthalene (83.0 mg, 0.374 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. Reaction was diluted with CH_2Cl_2 (~5 mL) and MeOH (several drops) then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH_2Cl_2 /MeOH gradient elution) to afford 125 mg (71%) of **2b** as a pale-yellow, crystalline solid.

Data for 2b

<u>m.p.</u>: 198-210 °C (decomp.)

<u>¹H-NMR</u>: (500 MHz, d_6 -DMSO)

9.00 (d, J = 4.5 Hz, 1 H), 8.37 - 8.29 (m, 2 H), 8.15 - 8.08 (m, 2 H), 8.08 - 8.00 (m, 2 H), 7.85 (ddd, J = 11.4, 8.3, 2.5 Hz, 3 H), 7.76 (ddd, J = 8.2, 6.9, 1.2 Hz, 1 H), 7.69 - 7.60 (m, 2 H), 6.82 (d, J = 4.3 Hz, 1 H), 6.62 (d, J = 2.9 Hz, 1 H), 5.69 (ddd, J = 17.2, 10.6, 6.5 Hz, 1 H), 5.33 (d, J = 12.4 Hz, 1 H), 5.17 (t, J = 14.5 Hz, 2 H), 4.96 (d, J = 10.5 Hz, 1 H), 4.36 (t, J = 10.6 Hz, 1 H), 3.98 (t, J = 8.9 Hz, 1 H), 3.86 - 3.76 (m, 1 H), 3.39 (ddd, J = 18.8, 12.1, 7.8 Hz, 2 H), 2.65 (d, J = 3.7 Hz, 1 H), 2.19 - 2.02 (m, 2 H), 1.99 (d, J = 2.5 Hz, 1 H), 1.79 (t, J = 9.3 Hz, 1 H), 1.31 (dd, J = 12.9, 10.2 Hz, 1 H).

¹³C-NMR: (126 MHz, *d₆*-DMSO)
 150.11, 147.60, 145.21, 138.08, 133.86, 133.24, 132.51, 130.10, 129.84, 129.38, 128.33, 128.28, 127.60, 127.49, 127.12, 126.77, 125.38, 124.28, 123.59, 120.03, 116.31, 67.58, 64.14, 62.88, 59.33, 50.64, 36.90, 25.85, 24.22, 20.90, 19.27.

<u>LRMS</u>: (ESI⁺, Q-tof) 435.2 (100, M-Br⁺) <u>HRMS</u>: $C_{30}H_{31}N_2O^+$ (ESI⁺, Q-tof) Calcd: 435.2436 Found: 435.2432 <u>TLC</u>: $R_f 0.51$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of N-(1-Naphthylmethyl)-epi-cinchonidinium Bromide (3b)

Following General Procedure I, *epi*-cinchonidine (100 mg, 0.340 mmol), MeCN (3.4 mL), and 1-bromomethylnaphthalene (83.0 mg, 0.374 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH_2Cl_2 /MeOH gradient elution) to afford 141 mg (81%) of **3b** as a white, crystalline solid.

Data for 3b:

<u>m.p.</u>: 189-197 °C (decomp.)

 1 H-NMR: (500 MHz, CD₃OD)

8.98 (d, J = 4.5 Hz, 1 H), 8.41 (dd, J = 8.0, 4.6 Hz, 2 H), 8.21 - 8.10 (m, 2 H), 8.10 - 7.99 (m, 3 H), 7.93 - 7.80 (m, 2 H), 7.76 (t, J = 7.6 Hz, 1 H), 7.72 - 7.67 (m, 1 H), 7.64 (t, J = 7.5 Hz, 1 H), 6.87 (s, 1 H), 5.91 (d, J = 13.1 Hz, 1 H), 5.70 (ddd, J = 17.2, 10.5, 6.8 Hz, 1 H), 5.39 (d, J = 13.1 Hz, 1 H), 5.14 (d, J = 17.2 Hz, 1 H), 5.00 (d, J = 10.5 Hz, 1 H), 4.63 (t, J = 10.2 Hz, 1 H), 4.22 (t, J = 8.9 Hz, 1 H), 3.89 - 3.79 (m, 1 H), 3.61 - 3.51 (m, 1 H), 3.16 (td, J = 11.3, 3.8 Hz, 1 H), 2.65 (s, 1 H), 2.35 - 2.24 (m, 1 H), 2.24 - 2.13 (m, 1 H), 2.04 (s, 1 H), 1.81 - 1.68 (m, 1 H), 1.42 (td, J = 10.0, 2.8 Hz, 1 H).

```
    1<sup>3</sup>C-NMR: (126 MHz, CD<sub>3</sub>OD)
    151.07, 148.81, 147.54, 138.73, 135.81, 135.65, 134.80, 133.10, 131.20, 130.64,
    130.42, 129.18, 128.96, 127.60, 126.41, 126.16, 124.53, 124.14, 121.35, 117.52,
```

	69.68, 66.7	4, 62.70, 61.28, 53.30, 39.36, 27.64, 26.08, 22.74	
LRMS:	$(ESI^+, Q-tc$	f)	
	435.2 (100, M-Br ⁺)		
HRMS:	C ₃₀ H ₃₁ N ₂ O	⁺ (ESI ⁺ , Q-tof)	
	Calcd:	435.2436	
	Found:	435.2444	
<u>TLC</u> :	<i>R</i> _f 0.55 (CH	$H_2Cl_2/MeOH, 5:1$ [silica gel, I_2]	

Preparation of N-(Benzyl)-epi-cinchonidinium Bromide (4b)

Following General Procedure I, *epi*-cinchonidine (100 mg, 0.340 mmol), MeCN (3.4 mL), and benzyl bromide (44.0 μ L, 0.374 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, \emptyset = 20, 100:0 to 10:1, CH₂Cl₂/MeOH gradient elution) to afford 137 mg (87%) of **4b** as a white, crystalline solid.

Data for 4b:

<u>m.p.</u>: 165-169 °C (decomp.)

 $\frac{1}{\text{H-NMR}}$: (500 MHz, CD₃OD)

8.95 (d, J = 4.6 Hz, 1 H), 8.29 (d, J = 7.9 Hz, 1 H), 8.13 (dd, J = 8.4, 0.9 Hz, 1 H), 7.97 (d, J = 4.4 Hz, 1 H), 7.84 (dtd, J = 16.5, 7.0, 1.2 Hz, 2 H), 7.75 (dd, J = 6.4, 2.9 Hz, 2 H), 7.59 (dd, J = 4.7, 1.8 Hz, 3 H), 6.66 (s, 1 H), 5.69 (ddd, J = 17.2, 10.5, 6.8 Hz, 1 H), 5.17 (dd, J = 22.4, 14.8 Hz, 2 H), 5.01 (t, J = 11.5 Hz, 2 H), 4.46 (t, J = 10.5 Hz, 1 H), 4.01 (t, J = 9.1 Hz, 1 H), 3.68 (ddd, J = 12.7, 4.5, 3.1 Hz, 1 H), 3.48 (dd, J = 12.6, 10.9 Hz, 1 H), 3.41 (td, J = 11.2, 3.5 Hz, 1 H), 2.72 (s, 1 H), 2.26 (ddd, J = 25.9, 14.7, 6.5 Hz, 2 H), 2.07 (s, 1 H), 1.94 - 1.81 (m, 1 H), 1.42 (td, J = 10.1, 2.8 Hz, 1 H).

¹³ C-NMR:	(126 MHz, CD ₃ OD)
	151.04, 148.78, 147.52, 138.73, 134.90, 131.76, 131.15, 130.40, 129.15, 128.72,
	126.11, 124.08, 121.32, 117.50, 69.70, 66.32, 65.26, 62.10, 52.75, 39.13, 28.04,
	25.95, 22.51.
LRMS:	(ESI ⁺ , Q-tof)
	295.2 (40), 385.2 m/z (100, M-Br ⁺)
HRMS:	$C_{26}H_{29}N_2O^+$ (ESI ⁺ , Q-tof)
	Calcd: 385.2280
	Found: 385.2285
<u>TLC</u> :	$R_f 0.51 (CH_2Cl_2/MeOH, 5:1)$ [silica gel, I ₂]

Preparation of N-(3,5-Bis-trifluoromethylbenzyl)-epi-cinchonidinium Bromide (5b)

Following General Procedure I, *epi*-cinchonidine (100 mg, 0.340 mmol), MeCN (3.4 mL), and bis-(3,5-trifluormethyl)-benzyl bromide (69.0 μ L, 0.374 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH gradient elution) to afford 200 mg (98%) of **5b** as a white, crystalline solid.

Data for 5b:

<u>m.p.</u>: 200-212 °C (decomp.)

1
H-NMR: (500 MHz, CD₃OD)

8.96 (d, J = 4.6 Hz, 1 H), 8.45 (s, 2H), 8.32 (d, J = 8.5 Hz, 1 H), 8.25 (s, 1 H), 8.14 (dd, J = 8.4, 1.0 Hz, 1 H), 7.96 (d, J = 4.4 Hz, 1 H), 7.85 (dddd, J = 24.2, 8.2, 6.9, 1.3 Hz, 2H), 6.66 (s, 1 H), 5.69 (ddd, J = 17.3, 10.5, 6.8 Hz, 1 H), 5.40 (d, J =12.6 Hz, 1 H), 5.27 (d, J = 12.6 Hz, 1 H), 5.17 (d, J = 17.2 Hz, 1 H), 5.01 (d, J =10.5 Hz, 1 H), 4.63 - 4.52 (m, 1 H), 4.05 (t, J = 9.1 Hz, 1 H), 3.81 - 3.69 (m, 1 H),

page S28

3.48 (dd, *J* = 12.3, 10.8 Hz, 1 H), 3.39 (td, *J* = 11.3, 4.2 Hz, 1 H), 2.74 (s, 1 H), 2.37 - 2.21 (m, 2H), 2.10 (d, *J* = 2.3 Hz, 1 H), 1.97 - 1.85 (m, 1 H), 1.45 (td, *J* = 10.3, 3.3 Hz, 1 H).

- $\frac{^{13}\text{C-NMR}}{151.07, 148.80, 147.24, 138.51, 135.43, 133.71 (q, J_{C-F} = 33.7 Hz), 132.02, 131.21, 130.45, 129.23, 126.07, 125.59, 124.05, 123.42, 121.30, 117.70, 70.39, 66.34, 63.48, 62.00, 53.04, 39.14, 27.92, 25.87, 22.51.$ $\frac{\text{LRMS}}{1600} = (\text{ESI}^+, \text{Q-tof}) = 261.1 (15), 521.2 (100, \text{M-Br}^+) = 1000 \text{ M} \text{-Br}^+ \text{MRMS} = C_{28}H_{27}N_2OF_6^+ (\text{ESI}^+, \text{Q-tof}) = C_{28}H_{27}N_2OF_6^+ (\text{ESI}^+, \text{Q-tof}) = 21.2028$
 - <u>TLC</u>: $R_f 0.55$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

521.2023

Preparation of Cinchonidinium Salts in Series C

Found:

Preparation of O-Benzyl-N-(9-Anthracenylmethyl)cinchonidinium Bromide (1c)

Following General Procedure I, a solution *O*-benzyl-cinchonidine (100 mg, 0.260 mmol) in MeCN (2.60 mL, 0.1 M) was combined with 9-bromomethylanthracene (82.0 mg, 0.286 mmol, 1.1 equiv) in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the mixture was stirred overnight. Care was taken to avoid light exposure. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 2.5:1, TBME/MeOH, gradient elution) to afford 140 mg (82%) of **1c** as a light-yellow, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH_2Cl_2 solution via Et₂O slow diffusion in a chamber. <u>m.p.</u>: 185-188 °C (decomp.)

 $^{\underline{1}}\underline{\text{H-NMR}}$: (500 MHz, CD₃OD)

9.08 (d, J = 4.5 Hz, 1 H), 8.87 (s, 1 H), 8.69 (d, J = 9.0 Hz, 1 H), 8.59 (s, 1 H), 8.28 - 8.16 (m, 3 H), 8.09 (dd, J = 10.3, 6.8 Hz, 2 H), 8.01 - 7.90 (m, 2 H), 7.79 (ddd, J = 8.9, 6.6, 1.2 Hz, 1 H), 7.72 (d, J = 7.3 Hz, 2 H), 7.66 - 7.47 (m, 5 H), 7.41 - 7.32 (m, 1 H), 7.06 (s, 1 H), 6.27 (d, J = 13.7 Hz, 1 H), 5.87 (d, J = 13.9 Hz, 1 H), 5.67 (ddd, J = 17.4, 10.2, 7.4 Hz, 1 H), 4.99 (ddd, J = 17.6, 14.9, 8.0 Hz, 4 H), 4.47 (t, J = 8.8 Hz, 1 H), 4.43 - 4.34 (m, 1 H), 3.69 (ddd, J = 12.6, 5.6, 3.0 Hz, 1 H), 3.21 - 3.09 (m, 1 H), 2.85 (td, J = 11.4, 5.6 Hz, 1 H), 2.61 - 2.50 (m, 1 H), 2.40 (s, 1 H), 2.19 - 2.07 (m, 1 H), 1.97 (d, J = 2.8 Hz, 1 H), 1.71 - 1.50 (m, 2H).

¹³C-NMR: (126 MHz, CD₃OD)
150.46, 148.26, 144.28, 138.46, 138.11, 134.78, 134.43, 133.91, 133.02, 132.96,
132.15, 131.21, 131.15, 130.29, 129.86, 129.77, 129.45, 129.31, 129.17, 126.63,
126.44, 125.33, 124.75, 118.74, 117.82, 79.47, 72.73, 70.28, 63.31, 57.62, 53.82,
39.48, 27.33, 26.17, 23.31.

<u>LRMS</u>: $(ESI^+, Q-tof)$

575.3 (100, M-Br⁺)

<u>HRMS</u>: $C_{41}H_{39}N_2O^+$ (ESI⁺, Q-tof) Calcd: 575.3062

Found:	575.3059

<u>TLC</u>: $R_f 0.24$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Benzyl-N-(2-Naphthylmethyl)cinchonidinium Bromide (2c)

Following General Procedure I, a solution of *O*-benzyl-cinchonidine (100 mg, 0.260 mmol) in MeCN (2.60 mL, 0.1 M) was combined with 2-bromomethylnaphthalene (63.0 mg, 0.286 mmol, 1.10 equiv) in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, \emptyset = 20, 100:0 to 10:1, $CH_2Cl_2/MeOH$, gradient elution) to afford 146 mg (93%) of **2c** as a pale-yellow, crystalline solid. The entire product was further purified by recrystallization from a CH_2Cl_2 solution via Et_2O slow diffusion in a chamber.

Data for 2c:

<u>m.p.</u>: 167-175 °C (decomp.)

¹H-NMR:

(500 MHz, CD₃OD)

9.03 (d, J = 4.4 Hz, 1 H), 8.26 (d, J = 7.6 Hz, 1 H), 8.20 (d, J = 8.4 Hz, 1 H), 8.08 - 7.95 (m, 5 H), 7.95 - 7.87 (t, J = 7.5 Hz, 1 H), 7.83 (t, J = 7.4 Hz, 1 H), 7.63 (ddd, J = 21.1, 11.3, 6.2 Hz, 4 H), 7.58 - 7.49 (m, 3 H), 7.45 (t, J = 7.3 Hz, 1 H), 6.51 (s, 1 H), 5.68 (ddd, J = 17.3, 10.4, 6.9 Hz, 1 H), 5.11 (d, J = 17.2 Hz, 1 H), 5.00 (d, J = 10.5 Hz, 1 H), 4.93 (dd, J = 13.9, 12.1 Hz, 2 H), 4.80 (d, J = 12.3 Hz, 1 H), 4.67 (d, J = 11.5 Hz, 1 H), 4.20 (dd, J = 14.5, 7.2 Hz, 1 H), 4.01 (t, J = 9.0Hz, 1 H), 3.63 (ddd, J = 12.6, 5.0, 3.0 Hz, 1 H), 3.57 - 3.46 (m, 1 H), 3.40 (td, J = 11.3, 4.8 Hz, 1 H), 2.65 (s, 1 H), 2.47 (dd, J = 13.1, 7.9 Hz, 1 H), 2.20 (dd, J = 13.2, 10.7 Hz, 1 H).

 13C-NMR:
 (126 MHz, CD₃OD)

 151.11, 149.29, 142.99, 138.50, 137.75, 135.37, 135.35, 134.44, 131.45, 130.72,

 130.55, 130.49, 130.32, 130.12, 130.10, 129.47, 129.45, 129.02, 128.85, 128.26,

<u>LRMS</u>: $(ESI^+, Q-tof)$

525.3 (100, M-Br⁺)

- <u>HRMS</u>: $C_{37}H_{37}N_2O^+$ (ESI⁺, Q-tof)
 - Calcd: 525.2906 Found: 525.2910
 - <u>TLC</u>: $R_f 0.28$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Benzyl-l-N-(1-Naphthylmethyl)cinchonidinium Bromide (3c)

Following General Procedure I, a solution of *O*-benzyl-cinchonidine (100 mg, 0.260 mmol) in MeCN (2.6 mL, 0.1 M) was combined with 1-bromomethylnaphthalene (63.0 mg, 0.286 mmol, 1.10 equiv) in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, \emptyset = 20, 100:0 to 10:1, $CH_2Cl_2/MeOH$, gradient elution) to afford 144 mg (92%) of **3c** as a pale-yellow, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH_2Cl_2 solution via Et₂O slow diffusion in a chamber.

Data for 3c:

<u>m.p.</u>: 164-173 °C (decomp.)

```
^{1}\text{H-NMR}: (500 \text{ MHz}, \text{CD}_{3}\text{OD})
```

9.05 (d, *J* = 4.5 Hz, 1 H), 8.43 (d, *J* = 5.2 Hz, 1 H), 8.21 (d, *J* = 7.8 Hz, 1 H), 8.14 (d, *J* = 8.2 Hz, 1 H), 8.03 (dd, *J* = 11.0, 5.8 Hz, 3 H), 7.98 - 7.80 (m, 3 H), 7.67 (dd, *J* = 13.4, 7.5 Hz, 3 H), 7.60 (t, *J* = 7.5 Hz, 1 H), 7.51 (ddd, *J* = 23.2, 14.8, 7.3 Hz, 4 H), 6.75 (s, 1 H), 5.68 (ddd, *J* = 17.3, 10.4, 7.0 Hz, 1 H), 5.49 (d, *J* = 12.9

Hz, 1 H), 5.30 (d, *J* = 13.0 Hz, 1 H), 5.09 (d, *J* = 17.1 Hz, 1 H), 4.97 (dd, *J* = 22.8, 10.9 Hz, 2 H), 4.81 (d, *J* = 11.3 Hz, 1 H), 4.33 - 4.16 (m, 2 H), 3.79 - 3.67 (m, 1 H), 3.44 (t, *J* = 11.7 Hz, 1 H), 3.15 (td, *J* = 11.2, 4.8 Hz, 1 H), 2.59 (s, 1 H), 2.55 - 2.42 (m, 1 H), 2.16 (dd, *J* = 19.2, 7.9 Hz, 1 H), 2.05 (d, *J* = 2.5 Hz, 1 H), 1.73 (t, *J* = 9.4 Hz, 1 H), 1.59 (dd, *J* = 13.0, 10.6 Hz, 1 H).

1³C-NMR: (126 MHz, CD₃OD)
151.10, 149.35, 142.89, 138.47, 137.98, 135.76, 134.53, 133.23, 131.50, 130.70, 130.65, 130.26, 129.94, 129.84, 129.50, 128.91, 127.57, 127.00, 126.36, 124.38, 124.16, 124.08, 121.78, 117.72, 79.46, 72.62, 69.90, 62.63, 61.89, 53.44, 39.17, 27.65, 25.96, 23.07.

 $\underline{\text{LRMS}}: \quad (\text{ESI}^+, \text{Q-tof})$

- $525.3 (100, M-Br^{+})$ <u>HRMS</u>: C₃₇H₃₇N₂O⁺ (ESI⁺, Q-tof) Calcd: 525.2906 Found: 525.2914
 - <u>TLC</u>: $R_f 0.31$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Benzyl-N-(Benzyl)cinchonidinium Bromide (4c)

Following General Procedure I, a solution of *O*-benzyl-cinchonidine (100 mg, 0.260 mmol) in MeCN (2.6 mL, 0.1 M) was combined with benzyl bromide (34 μ L, 0.286 mmol, 1.1 equiv) in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 134 mg (93%) of **4c** as a white, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH₂Cl₂ solution via Et₂O slow

diffusion in a chamber.

Data for 4c:

- <u>m.p.</u>: 201 205 °C(decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

9.02 (d, J = 4.5 Hz, 1 H), 8.25 (d, J = 7.6 Hz, 1 H), 8.19 (dd, J = 8.4, 0.9 Hz, 1 H), 7.95 (d, J = 4.5 Hz, 1 H), 7.91 (ddd, J = 8.3, 6.9, 1.2 Hz, 1 H), 7.85 (ddd, J = 8.2, 7.0, 1.2 Hz, 1 H), 7.61 - 7.45 (m, 9 H), 7.44 - 7.38 (m, 1 H), 6.46 (s, 1 H), 5.67 (ddd, J = 17.3, 10.5, 6.9 Hz, 1 H), 5.11 (d, J = 17.2 Hz, 1 H), 4.99 (d, J = 10.5 Hz, 1 H), 4.90 - 4.76 (m, 2 H), 4.65 (dd, J = 11.8, 7.1 Hz, 2 H), 4.17 - 4.06 (m, 1 H), 3.97 (dd, J = 9.8, 8.4 Hz, 1 H), 3.57 (ddd, J = 12.8, 5.3, 3.1 Hz, 1 H), 3.43 (dd, J =12.8, 10.7 Hz, 1 H), 3.32 (dd, J = 16.6, 10.6 Hz, 1 H), 2.72 - 2.61 (m, 1 H), 2.49 -2.38 (m, 1 H), 2.24 - 2.12 (m, 1 H), 2.07 (dd, J = 6.0, 2.9 Hz, 1 H), 1.84 (ddd, J =14.4, 4.7, 2.3 Hz, 1 H), 1.61 - 1.49 (m, 1 H).

¹³C-NMR: (126 MHz, CD₃OD)
 151.09, 149.26, 142.99, 138.51, 137.69, 134.83, 131.83, 131.46, 130.65, 130.41, 130.37, 130.24, 130.04, 129.50, 128.25, 126.93, 123.95, 121.75, 117.66, 73.17, 72.41, 69.59, 65.33, 61.98, 52.70, 38.91, 27.99, 25.79, 22.80.

<u>LRMS</u>: (ESI⁺, Q-tof) 475.3 (100, M-Br⁺)

- - <u>TLC</u>: $R_f 0.26$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Following General Procedure I, a solution of *O*-benzyl-cinchonidine (100 mg, 0.260 mmol) in MeCN (2.60 mL, 0.1 M) was combined with benzyl bromide (34.0 μ L, 0.286 mmol, 1.10 equiv) in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 166 mg (92%) of **5c** as a white, crystalline solid. The entire product was further purified by trituration in hexane then filtered.

Data for 5c:

<u>m.p.</u>: 164-170 °C (decomp.)

¹<u>H-NMR</u>: (500 MHz, CD₃OD)

9.02 (d, J = 4.5 Hz, 1 H), 8.31 (d, J = 7.8 Hz, 1 H), 8.24 (s, 1 H), 8.21 - 8.12 (m, 3 H), 7.96 (d, J = 4.5 Hz, 1 H), 7.92 (t, J = 7.2 Hz, 1 H), 7.87 (dd, J = 11.2, 3.9 Hz, 1 H), 7.60 (d, J = 7.2 Hz, 2 H), 7.48 (t, J = 7.5 Hz, 2 H), 7.41 (t, J = 7.4 Hz, 1 H), 6.46 (s, 1 H), 5.67 (ddd, J = 17.3, 10.5, 6.9 Hz, 1 H), 5.12 (t, J = 14.8 Hz, 2 H), 5.00 (d, J = 10.5 Hz, 1 H), 4.88 (d, J = 11.5 Hz, 1 H), 4.75 (d, J = 12.5 Hz, 1 H), 4.68 (d, J = 11.4 Hz, 1 H), 4.19 (dd, J = 12.4, 8.7 Hz, 1 H), 4.02 (t, J = 9.0 Hz, 1 H), 3.68 (ddd, J = 12.3, 4.7, 3.2 Hz, 1 H), 3.47 - 3.37 (m, 1 H), 3.36 - 3.21 (m, 1 H), 2.70 (s, 1 H), 2.53 - 2.41 (m, 1 H), 2.28 - 2.15 (m, 1 H), 2.10 (d, J = 2.6 Hz, 1 H), 1.87 (t, J = 9.5 Hz, 1 H), 1.58 (dd, J = 13.2, 10.6 Hz, 1 H).

¹³C-NMR: (126 MHz, CD₃OD)

151.11, 149.27, 142.81, 138.25, 137.86, 135.29, 133.68 (q, $J_{C-F} = 33.8$ Hz), 131.46 (d, $J_{C-F} = 4.3$ Hz), 130.71, 130.41, 130.23, 130.09, 129.59, 126.87, 125.76 (d, $J_{C-F} = 3.7$ Hz), 125.52, 123.95, 123.35, 121.68, 117.86, 73.37 (d, $J_{C-F} = 11.2$ Hz), 72.52, 70.28, 63.61, 61.91, 52.97, 38.90, 27.85, 25.74, 22.79.

LRMS:	$(ESI^+, Q-to$	of)	
	611.2 (100,	, M-Br ⁺)	
HRMS:	$C_{35}H_{33}N_2OF_6^+$ (ESI ⁺ , Q-tof)		
	Calcd:	611.2497	
	Found:	611.2499	
TLC:	<i>R</i> _f 0.29 (CH	H ₂ Cl ₂ /MeOH, 10:1) [silica gel, I ₂]	

Preparation of Cinchonidinium Salts in Series D Preparation of *O*-Allyl-*N*-(9-Anthracenylmethyl)cinchonidinium Bromide (1d)

Following General Procedure I, a solution of *O*-allyl-cinchonidine (190 mg, 0.568 mmol) in MeCN (5.70 mL, 0.1 M) was combined with 9-bromomethylanthracene (169 mg, 0.620 mmol, 1.10 equiv) in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the mixture was stirred overnight. Care was taken to avoid light exposure. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the yellow, solid residue was purified by silica gel flash chromatography (20 g SiO₂, \emptyset =20, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 197 mg (57%) of **1d** as a yellow, crystalline solid.

Data for 1d:

<u>m.p.:</u> 102 °C (decomp.)

$$\frac{1}{\text{H-NMR:}}$$
 (500 MHz, CD₃OD)

9.04 (d, J = 4.5 Hz, 1 H), 8.89 (s, 1 H), 8.77 (d, J = 9.0 Hz, 1 H), 8.59 (d, J = 5.8 Hz, 1 H), 8.45 (d, J = 9.0 Hz, 1 H), 8.30 - 8.17 (m, 3 H), 7.94 (dt, J = 12.5, 5.7 Hz, 3 H), 7.85 - 7.71 (m, 2 H), 7.69 - 7.59 (m, 2 H), 6.95 (s, 1 H), 6.41 (ddd, J = 15.4, 10.7, 5.3 Hz, 2 H), 5.91 (d, J = 14.0 Hz, 1 H), 5.75 - 5.62 (m, 2 H), 5.55 (d, J = 10.5 Hz, 1 H), 4.99 (t, J = 13.3 Hz, 2 H), 4.60 - 4.36 (m, 4 H), 3.80 (dd, J = 7.5, 3.2 Hz, 1 H), 3.24 (t, J = 11.6 Hz, 1 H), 2.90 (td, J = 11.2, 4.9 Hz, 1 H), 2.54 -

page S36

2.35 (m, 2 H), 2.18 (t, *J* = 11.2 Hz, 1 H), 1.97 (d, *J* = 2.5 Hz, 1 H), 1.61 (dd, *J* = 24.9, 12.3 Hz, 2 H).

¹³C NMR: (126 MHz, CD₃OD)
 151.05, 149.35, 142.99, 138.54, 134.81, 134.71, 134.62, 133.92, 133.10, 133.03, 131.53, 131.30, 131.15, 130.60, 129.45, 129.43, 129.25, 127.09, 126.66, 126.56, 125.42, 124.94, 124.45, 121.68, 119.05, 118.91, 117.80, 71.42, 70.04, 63.50, 57.41, 53.65, 39.50, 27.32, 26.26, 23.34.

 LRMS:
 (ESI⁺, Q-tof)

 191.1 (10), 335.2 (5), 525.3 (100, M-Br⁺)

 HRMS:
 $C_{37}H_{37}N_2O^+$ (ESI⁺, Q-tof)

 Calcd:
 525.2906

 Found:
 525.2906

 TLC:
 $R_f 0.32$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Allyl-N-(2-Naphthylmethyl)cinchonidinium Bromide (2d)

Following General Procedure I, a solution of *O*-allyl-cinchonidine (201 mg, 0.598 mmol) in MeCN (6.00 mL, 0.1 M) was combined with 2-bromomethylnaphthalene (146 mg, 0.660 mmol, 1.10 equiv) in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with Et₂O (10 mL) and then filtered. The filter cake was purified by silica gel flash chromatography (20 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 215 mg (64%) of **2d** as an off-white, crystalline solid.

Data for 2d:

<u>m.p.:</u> 133 °C (decomp.)
¹H-NMR: (500 MHz, CD₃OD)

- 8.99 (d, J = 4.4 Hz, 1 H), 8.31 (d, J = 6.4 Hz, 2 H), 8.17 (d, J = 8.4 Hz, 1 H), 8.07 (dd, J = 18.2, 8.2 Hz, 2 H), 7.99 (d, J = 7.6 Hz, 1 H), 7.94 - 7.80 (m, 3 H), 7.77 (d, J)J = 8.4 Hz, 1 H), 7.68 - 7.59 (m, 2 H), 6.53 (s, 1 H), 6.28 (dg, J = 10.5, 5.8 Hz, 1 H), 5.71 (ddd, J = 17.3, 10.4, 7.0 Hz, 1 H), 5.52 (d, J = 17.2 Hz, 1 H), 5.41 (d, J =10.4 Hz, 1 H), 5.28 (d, J = 12.4 Hz, 1 H), 5.14 (d, J = 14.7 Hz, 2 H), 5.01 (d, J =10.5 Hz, 1 H), 4.41 - 4.19 (m, 3 H), 4.06 (t, J = 8.6 Hz, 1 H), 3.77 - 3.65 (m, 1 H), 3.63 - 3.45 (m, 2 H), 2.69 (s, 1 H), 2.51 - 2.37 (m, 1 H), 2.28 (t, J = 11.6 Hz, 1 H),2.10 (d, J = 2.1 Hz, 1 H), 1.90 (t, J = 10.1 Hz, 1 H), 1.58 (dd, J = 13.1, 10.9 Hz, 1 H).
- ¹³C-NMR: (126 MHz, CD₃OD) 151.04, 149.22, 143.33, 138.54, 135.49, 135.42, 134.76, 134.56, 131.43, 130.75, 130.58, 130.17, 129.54, 129.41, 129.00, 128.86, 128.22, 126.87, 125.79, 124.10, 121.39, 119.40, 117.69, 73.98, 71.34, 69.77, 66.05, 62.13, 53.10, 39.02, 28.08, 25.95, 22.80.
 - LRMS: $(ESI^+, Q-tof)$

475.3 (100, M-Br⁺)

HRMS: $C_{33}H_{35}N_2O^+$ (ESI⁺, Q-tof)

Calcd:	475.2749		
Found:	475.2758		

TLC: $R_f 0.33$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Allyl-N-(1-Naphthylmethyl)cinchonidinium Bromide (3d)

Following General Procedure I, a solution of O-allyl-cinchonidine (201 mg, 0.598 mmol) in MeCN (6.00 mL, 0.1 M) was combined with 1-bromomethylnaphthalene (146 mg, 0.660

mmol, 1.10 equiv) in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with Et₂O (10 mL) then filtered. The filter cake was purified by silica gel flash chromatography (20 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 280 mg (84%) of **3d** as a white, crystalline solid.

Data for 3d:

- <u>m.p.:</u> 119 °C (decomp.)
- $\frac{1}{\text{H-NMR:}}$ (500 MHz, CD₃OD)

9.01 (d, J = 4.5 Hz, 1 H), 8.42 (d, J = 8.1 Hz, 1 H), 8.30 (d, J = 8.5 Hz, 1 H), 8.18 (t, J = 7.3 Hz, 2 H), 8.06 (dd, J = 15.2, 7.6 Hz, 2 H), 7.95 - 7.83 (m, 3 H), 7.72 (dd, J = 15.4, 8.0 Hz, 2 H), 7.65 (t, J = 7.5 Hz, 1 H), 6.69 (s, 1 H), 6.35 (ddd, J = 22.2, 10.9, 5.6 Hz, 1 H), 5.71 (ddd, J = 17.3, 15.9, 10.1 Hz, 2 H), 5.60 (dd, J = 17.2, 1.2 Hz, 1 H), 5.49 (d, J = 10.5 Hz, 1 H), 5.38 (d, J = 13.0 Hz, 1 H), 5.12 (d, J = 17.2 Hz, 1 H), 4.99 (d, J = 10.5 Hz, 1 H), 4.38 (ddd, J = 17.4, 12.3, 5.6 Hz, 3 H), 4.23 (t, J = 9.1 Hz, 1 H), 3.90 - 3.75 (m, 1 H), 3.55 (t, J = 11.7 Hz, 1 H), 3.24 (td, J = 11.4, 4.5 Hz, 1 H), 2.65 (s, 1 H), 2.44 (dd, J = 13.2, 8.3 Hz, 1 H), 2.23 (dd, J = 19.5, 7.7 Hz, 1 H), 2.07 (d, J = 2.4 Hz, 1 H), 1.79 (t, J = 9.3 Hz, 1 H), 1.55 (dd, J = 13.1, 10.6 Hz, 1 H).

- ¹³C-NMR: (126 MHz, CD₃OD)
 151.04, 149.27, 143.04, 138.51, 135.76, 134.72, 134.67, 133.21, 131.45, 130.71, 130.60, 129.42, 128.92, 127.64, 126.91, 126.47, 124.45, 124.32, 124.17, 121.43, 119.28, 117.69, 71.40, 69.73, 62.60, 61.86, 53.49, 39.19, 27.67, 26.04, 23.07.
 - $\underline{\text{LRMS:}} \quad (\text{ESI}^+, \text{Q-tof})$

335.2 (5), 475.3 (100, M-Br⁺)

- HRMS: $C_{33}H_{35}N_2O^+$ (ESI⁺, Q-tof)Calcd:475.2749Found:475.2758
 - <u>TLC</u>: $R_f 0.28$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Allyl-N-(Benzyl)cinchonidinium Bromide (4d)

Following General Procedure I, a solution of *O*-allyl-cinchonidine (201 mg, 0.598 mmol) in MeCN (6.00 mL, 0.1 M) was combined with benzyl bromide (78.5 μ L, 0.660 mmol, 1.10 equiv) in a 10-mL, single-neck, round bottom flask fitted with an argon inlet and the mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with hexane then filtered. The filter cake was purified by silica gel flash chromatography (20 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 222 mg (73%) of **4d** as a white, crystalline solid.

Data for 4d:

<u>m.p.:</u> 123 °C (decomp.)

 $\frac{^{1}\text{H-NMR:}}{(500 \text{ MHz, CD}_{3}\text{OD})}$

8.98 (d, J = 4.5 Hz, 1 H), 8.28 (d, J = 8.3 Hz, 1 H), 8.16 (d, J = 8.4 Hz, 1 H), 7.94 - 7.80 (m, 3 H), 7.73 (dd, J = 6.3, 2.7 Hz, 2 H), 7.65 - 7.55 (m, 3 H), 6.47 (s, 1 H), 6.24 (ddd, J = 22.9, 11.0, 5.8 Hz, 1 H), 5.69 (ddd, J = 17.3, 10.5, 6.9 Hz, 1 H), 5.49 (dd, J = 17.2, 1.3 Hz, 1 H), 5.38 (d, J = 10.4 Hz, 1 H), 5.12 (t, J = 14.9 Hz, 2 H), 4.99 (dd, J = 18.8, 11.4 Hz, 2 H), 4.26 (ddd, J = 17.5, 12.3, 5.7 Hz, 3 H), 4.01 (t, J = 9.0 Hz, 1 H), 3.63 (ddd, J = 12.6, 5.1, 3.1 Hz, 1 H), 3.56 - 3.38 (m, 2 H), 2.72 (s, 1 H), 2.42 (dd, J = 13.1, 7.9 Hz, 1 H), 2.32 - 2.19 (m, 1 H), 2.10 (d, J =2.8 Hz, 1 H), 1.92 (t, J = 9.5 Hz, 1 H), 1.61 - 1.48 (m, 1 H).

¹³C-NMR: (126 MHz, CD₃OD)
151.02, 149.22, 143.25, 138.52, 134.91, 134.69, 131.87, 131.40, 130.59, 130.47, 129.39, 128.51, 126.84, 124.07, 121.37, 119.43, 117.68, 73.99, 71.33, 69.76, 65.86, 62.02, 52.94, 38.98, 28.08, 25.92, 22.80.

<u>LRMS:</u> (ESI⁺, Q-tof) 425.3 (100, M-Br⁺)

HRMS:	$C_{29}H_{33}N_2O^+$	$(ESI^+, Q-tof)$	
	Calcd:	425.2593	
	Found:	425.2603	
<u>TLC</u> :	Rf 0.28 (CH	Cl ₂ /MeOH, 10:1) [silica gel, I ₂]

Preparation of O-Allyl-N-(3,5-Bistrifluoromethylbenzyl)cinchonidinium Bromide (5d)

Following General Procedure I, a solution of *O*-allyl-cinchonidine (201 mg, 0.598 mmol) in MeCN (6.00 mL, 0.1 M) was combined with bis-(3,5-trifluoromethyl)benzyl bromide (121 μ L, 0.660 mmol, 1.10 equiv) in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with hexane then filtered. The filter cake was purified by silica gel flash chromatography (20 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 307 mg (85%) of **5d** as a white, crystalline solid.

Data for 5d:

- <u>m.p.:</u> 140 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

8.98 (d, J = 4.6 Hz, 1 H), 8.46 (s, 2 H), 8.31 (d, J = 8.2 Hz, 1 H), 8.26 (s, 1 H), 8.20 - 8.13 (m, 1 H), 7.94 - 7.81 (m, 3 H), 6.45 (s, 1 H), 6.24 (ddd, J = 22.9, 10.9, 5.7 Hz, 1 H), 5.70 (ddd, J = 17.3, 10.5, 7.0 Hz, 1 H), 5.49 (dd, J = 17.2, 1.5 Hz, 1 H), 5.36 (dd, J = 10.5, 1.2 Hz, 1 H), 5.27 (dd, J = 36.6, 12.6 Hz, 2 H), 5.15 (d, J =17.2 Hz, 1 H), 5.02 (d, J = 10.5 Hz, 1 H), 4.37 (td, J = 11.8, 4.7 Hz, 2 H), 4.19 (dd, J = 12.2, 5.5 Hz, 1 H), 4.10 - 3.98 (m, 1 H), 3.71 (ddd, J = 12.3, 5.0, 3.1 Hz, 1 H), 3.54 - 3.40 (m, 2 H), 2.74 (s, 1 H), 2.48 (dd, J = 13.1, 7.8 Hz, 1 H), 2.35 - 2.23 (m, 1 H), 2.13 (d, J = 2.9 Hz, 1 H), 1.95 (t, J = 9.5 Hz, 1 H), 1.59 (td, J = 10.5, 3.1 Hz, 1 H).

¹³ C-NMR:	(126 MHz, CD ₃ OD)
	151.02, 149.25, 143.04, 138.29, 135.50, 134.81, 133.74 (q, $J_{C-F} = 33.9$ Hz),
	131.81, 131.43, 130.62, 129.48, 126.79, 125.77, 125.58, 124.08, 123.41, 121.35,
	119.05, 117.89, 73.95, 71.30, 70.58, 64.18, 61.95, 53.27, 39.00, 27.97, 25.87,
	22.76.
LRMS:	(ESI ⁺ , Q-tof)
	561.2 (100, M-Br ⁺)
HRMS:	$C_{31}H_{31}N_2OF_6^+$ (ESI ⁺ , Q-tof)
	Calcd: 561.2341
	Found: 561.2344
<u>TLC</u> :	$R_f 0.32$ (CH ₂ Cl ₂ /MeOH, 10:1) [silica gel, I ₂]

Preparation of Cinchonidinium Salts in Series E Preparation of *O*-Methyl-*N*-(9-Anthracenylmethyl)cinchonidinium Bromide (1e)

Following General Procedure I, *O*-methyl-cinchonidine (100 mg, 0.324 mmol), MeCN (3.2 mL, 0.1 M), and 9-bromomethylanthracene (97.0 mg, 0.360 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the mixture was stirred overnight. Care was taken to avoid light exposure. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the yellow solid residue was then purified by silica gel flash chromatography (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 141 mg (75%) of **1e** as a light-yellow, crystalline solid.

Data for 1e:

<u>m.p.:</u> 120 °C (decomp.) <u>¹H-NMR:</u> (500 MHz, CD₃OD) 9.05 (d, J = 4.5 Hz, 1 H), 8.89 (s, 1 H), 8.75 (d, J = 9.0 Hz, 1 H), 8.57 (d, J = 8.7Hz, 1 H), 8.52 (d, J = 9.0 Hz, 1 H), 8.23 (ddd, J = 9.2, 7.7, 4.6 Hz, 3 H), 7.98 - 7.89 (m, 3 H), 7.85 (ddd, J = 8.9, 6.6, 1.2 Hz, 1 H), 7.80 (ddd, J = 8.9, 6.5, 1.2 Hz, 1 H), 7.65 (ddd, J = 11.6, 8.3, 6.8 Hz, 2 H), 6.82 (s, 1 H), 6.42 (d, J = 14.0 Hz, 1 H), 5.90 (d, J = 14.0 Hz, 1 H), 5.69 (ddd, J = 17.4, 10.4, 7.3 Hz, 1 H), 5.04 - 4.93 (m, 2 H), 4.55 - 4.40 (m, 2 H), 3.85 (s, 3 H), 3.78 (ddd, J = 12.5, 5.4, 3.1 Hz, 1 H), 3.24 (dd, J = 12.4, 10.9 Hz, 1 H), 2.95 - 2.85 (m, 1 H), 2.42 (dd, J = 15.6, 5.0 Hz, 2 H), 2.20 - 2.08 (m, 1 H), 1.95 (d, J = 2.8 Hz, 1 H), 1.58 (ddd, J = 13.8, 13.4, 8.4 Hz, 2 H).

- ¹³C-NMR: (126 MHz, CD₃OD)
 151.06, 149.35, 142.98, 138.54, 134.79, 134.66, 133.90, 133.09, 133.05, 131.50, 131.28, 131.17, 130.59, 129.43, 129.41, 129.36, 127.23, 126.65, 126.61, 125.37, 124.81, 124.44, 121.67, 119.00, 117.77, 70.22, 63.45, 57.51, 57.48, 53.77, 39.53, 27.31, 26.22, 23.13.
 - $\underline{\text{LRMS:}} \quad (\text{ESI}^+, \text{Q-tof})$

191.1 (15), 499.3 (100, M-Br⁺)

- HRMS: $C_{35}H_{35}N_2O^+$ (ESI⁺, Q-tof)Calcd:499.2749Found:499.2739
 - <u>TLC</u>: $R_f 0.34$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Methyl-N-(2-Naphthylmethyl)cinchonidinium Bromide (2e)

Following General Procedure I, *O*-methyl-cinchonidine (185 mg, 0.600 mmol), MeCN (6.0 mL, 0.1 M), and 2-bromomethylnaphthalene (146 mg, 0.660 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was then purified by silica gel flash chromatography (15 g SiO₂, \emptyset = 20, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 265 mg (83%) of **2e** as an off-white, crystalline

solid.

Data for 2e:

- <u>m.p.:</u> 144 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

9.00 (d, J = 4.5 Hz, 1 H), 8.39 - 8.28 (m, 2 H), 8.17 (d, J = 8.4 Hz, 1 H), 8.07 (dd, J = 16.9, 7.8 Hz, 2 H), 8.00 (d, J = 8.3 Hz, 1 H), 7.93 - 7.87 (m, 1 H), 7.87 - 7.77 (m, 3 H), 7.68 - 7.59 (m, 2 H), 6.39 (s, 1 H), 5.70 (ddd, J = 17.3, 10.4, 6.9 Hz, 1 H), 5.27 (d, J = 12.4 Hz, 1 H), 5.14 (dd, J = 15.1, 4.8 Hz, 2 H), 5.01 (d, J = 10.5 Hz, 1 H), 4.33 (t, J = 10.8 Hz, 1 H), 4.04 (t, J = 9.0 Hz, 1 H), 3.78 - 3.69 (m, 1 H), 3.65 (s, 3 H), 3.54 (dd, J = 22.1, 9.9 Hz, 2 H), 2.69 (s, 1 H), 2.39 (dd, J = 13.1, 8.1 Hz, 1 H), 2.25 (t, J = 11.6 Hz, 1 H), 2.08 (d, J = 2.5 Hz, 1 H), 1.88 (t, J = 9.4 Hz, 1 H), 1.54 (dd, J = 13.3, 10.6 Hz, 1 H).

- ¹³C-NMR: (126 MHz, CD₃OD)
 151.04, 149.23, 143.10, 138.58, 135.54, 135.42, 134.57, 131.39, 130.81, 130.55, 130.10, 129.53, 129.36, 128.97, 128.86, 128.19, 127.01, 125.88, 124.15, 121.34, 117.65, 76.06, 69.81, 66.04, 62.04, 57.42, 53.03, 39.03, 28.05, 25.90, 22.74.
 <u>LRMS:</u> (ESI⁺, Q-tof)
 449.2 (100, M-Br⁺)
 - <u>HRMS</u>: $C_{31}H_{33}N_2O^+$ (ESI⁺, Q-tof)

Calcd:	449.2593
Found:	449.2594

<u>TLC</u>: $R_f 0.38$ (CH₂Cl₂:MeOH, 10:1) [silica gel, I₂]

Preparation of O-Methyl-N-(1-Naphthylmethyl)cinchonidinium Bromide (3e)

Following General Procedure I, *O*-methyl-cinchonidine (185 mg, 0.600 mmol), MeCN (6.0 mL, 0.1 M), and 1-bromomethylnaphthalene (146 mg, 0.660 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the

mixture was stirred overnight. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with Et₂O then filtered. The filter cake was purified by silica gel flash chromatography (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 287 mg (90%) of **3e** as a white, crystalline solid.

Data for 3e:

- <u>m.p.:</u> 132 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

9.02 (d, J = 4.5 Hz, 1 H), 8.40 (d, J = 8.2 Hz, 1 H), 8.34 (d, J = 8.6 Hz, 1 H), 8.21 - 8.14 (m, 2 H), 8.06 (dd, J = 11.3, 7.7 Hz, 2 H), 7.94 - 7.83 (m, 3 H), 7.79 (dd, J = 11.3, 4.1 Hz, 1 H), 7.75 - 7.69 (m, 1 H), 7.66 (t, J = 7.5 Hz, 1 H), 6.55 (s, 1 H), 5.70 (ddd, J = 17.3, 16.5, 10.0 Hz, 2 H), 5.37 (d, J = 13.1 Hz, 1 H), 5.10 (d, J = 17.2 Hz, 1 H), 4.99 (d, J = 10.5 Hz, 1 H), 4.39 (ddd, J = 11.7, 8.0, 4.6 Hz, 1 H), 4.21 (t, J = 9.0 Hz, 1 H), 3.78 (ddd, J = 12.7, 5.0, 3.2 Hz, 1 H), 3.74 (s, 3 H), 3.56 - 3.45 (m, 1 H), 3.30 - 3.21 (m, 1 H), 2.63 (s, 1 H), 2.40 (dd, J = 13.3, 8.0 Hz, 1 H), 2.21 (dd, J = 19.5, 8.4 Hz, 1 H), 2.05 (d, J = 2.9 Hz, 1 H), 1.86 - 1.71 (m, 1 H), 1.54 (td, J = 10.5, 3.1 Hz, 1 H).

- <u>1³C-NMR</u>: (126 MHz, CD₃OD)
 151.05, 149.30, 143.00, 138.51, 135.82, 135.77, 134.71, 133.22, 131.42, 130.71, 130.60, 129.37, 129.07, 127.65, 127.07, 126.45, 124.39, 124.37, 124.18, 121.42, 117.69, 76.30, 69.98, 62.55, 62.03, 57.43, 53.53, 39.24, 27.70, 26.03, 22.87.
 - <u>LRMS:</u> (ESI⁺, Q-tof) 449.2 (100, M-Br⁺)
 - HRMS: $C_{31}H_{33}N_2O^+$ (ESI⁺, Q-tof)Calcd:449.2593Found:449.2574
 - <u>TLC</u>: $R_f 0.38$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Methyl-N-(Benzyl)cinchonidinium Bromide (4e)

Following General Procedure I, *O*-methyl-cinchonidine (185 mg, 0.60 mmol), MeCN (6.0 mL, 0.1 M), and benzyl bromide (78.0 μ L, 0.660 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 41 h. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with hexanes then filtered. The filter cake was purified by silica gel flash chromatography (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 211 mg (73%) of **4e** as a white, crystalline solid.

Data 4e:

- <u>m.p.:</u> 140 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

8.98 (d, J = 4.5 Hz, 1 H), 8.28 (d, J = 8.3 Hz, 1 H), 8.19 - 8.12 (m, 1 H), 7.93 - 7.86 (m, 1 H), 7.84 (dd, J = 11.4, 3.1 Hz, 2 H), 7.76 (dd, J = 6.6, 2.9 Hz, 2 H), 7.60 (dd, J = 4.0, 1.8 Hz, 3 H), 6.33 (s, 1 H), 5.68 (ddd, J = 17.3, 10.5, 6.9 Hz, 1 H), 5.18 - 5.06 (m, 2 H), 4.98 (dd, J = 16.9, 11.4 Hz, 2 H), 4.28 - 4.16 (m, 1 H), 3.98 (t, J = 9.1 Hz, 1 H), 3.69 - 3.56 (m, 4 H), 3.53 - 3.38 (m, 2 H), 2.71 (s, 1 H), 2.42 - 2.31 (m, 1 H), 2.23 (tdd, J = 10.9, 6.9, 4.3 Hz, 1 H), 2.08 (d, J = 2.9 Hz, 1 H), 1.96 - 1.83 (m, 1 H), 1.58 - 1.45 (m, 1 H).

¹³C-NMR: (126 MHz, CD₃OD)
 151.02, 149.24, 143.03, 138.56, 134.95, 131.83, 131.36, 130.56, 130.43, 129.33, 128.59, 126.98, 124.10, 121.32, 117.64, 76.03, 69.85, 65.90, 61.95, 57.36, 52.90, 39.00, 28.05, 25.88, 22.72.

<u>LRMS:</u> (ESI⁺, Q-tof) 399.2 (100, M-Br⁺) $\begin{array}{cccc} \underline{\text{HRMS}}: & C_{27}\text{H}_{31}\text{N}_2\text{O}^+ (\text{ESI}^+, \text{Q-tof}) \\ & Calcd: & 399.2436 \\ & Found: & 399.2420 \\ \hline \underline{\text{TLC}}: & R_f \ 0.38 \ (\text{CH}_2\text{Cl}_2:\text{MeOH}, 10:1) \ [\text{silica gel}, I_2] \end{array}$

Preparation of O-Methyl-N-(3,5-Bistrifluoromethylbenzyl)cinchonidinium Bromide (5e)

Following General Procedure I, *O*-methyl-cinchonidine (185 mg, 0.600 mmol), MeCN (6.0 mL, 0.1 M), and bis-(3,5-trifluoromethyl)benzyl bromide (121 μ L, 0.660 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 41 h. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with hexane then filtered. The filter cake was purified by silica gel flash chromatography (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 249 mg (67%) of **5e** as a white, crystalline solid.

Data for 5e:

- <u>m.p.:</u> 154 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

8.99 (d, J = 4.5 Hz, 1 H), 8.51 (s, 2 H), 8.32 (d, J = 8.3 Hz, 1 H), 8.26 (s, 1 H), 8.16 (d, J = 8.4 Hz, 1 H), 7.94 - 7.78 (m, 3 H), 6.30 (s, 1 H), 5.68 (ddd, J = 17.3, 10.5, 6.9 Hz, 1 H), 5.25 (q, J = 12.6 Hz, 2 H), 5.15 (d, J = 17.2 Hz, 1 H), 5.01 (d, J = 10.5 Hz, 1 H), 4.39 (t, J = 11.2 Hz, 1 H), 4.01 (t, J = 9.1 Hz, 1 H), 3.76 - 3.68 (m, 1 H), 3.62 (s, 3 H), 3.45 (t, J = 11.5 Hz, 2 H), 2.73 (s, 1 H), 2.40 (dd, J = 12.3, 9.1 Hz, 1 H), 2.24 (dd, J = 19.5, 8.4 Hz, 1 H), 2.11 (s, 1 H), 1.93 (t, J = 11.7 Hz, 1 H), 1.54 (t, J = 11.8 Hz, 1 H).

 $\frac{^{13}\text{C NMR}}{151.03, 149.27, 142.72, 138.36, 135.55, 133.72} (q, J_{C-F} = 33.9 \text{ Hz}). 131.90, 131.40, 130.62, 129.43, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 123.44, 125.69, 125.61, 124.08, 123.44, 121.35, 117.83, 126.94, 125.69, 125.61, 124.08, 125.61,$

76.01, 70.52, 64.05, 61.90, 57.49, 53.21, 39.01, 27.92, 25.81, 22.79 <u>LRMS:</u> (ESI⁺, Q-tof) 535.2 (100, M-Br⁺) <u>HRMS:</u> $C_{29}H_{29}N_2OF_6^+$ (ESI⁺, Q-tof) Calcd: 535.2184 Found: 535.2187 <u>TLC</u>: $R_f 0.34$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of Cinchonidinium Salts in Series F

Preparation of O-Methyl-N-(9-Anthracenylmethyl)-epi-cinchonidinium Bromide (1f)

Following General Procedure I, *O*-methyl-*epi*-cinchonidine (81 mg, 0.26 mmol), MeCN (2.6 mL, 0.1 M), and 9-bromomethylanthracene (78 mg, 0.29 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the mixture was stirred overnight. Care was taken to avoid light exposure. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, \emptyset = 20, 100:0 to 2.5:1, TBME/MeOH, gradient elution) to afford 136 mg (90%) of **1f** as a light-yellow, crystalline solid.

Data for 1f:

<u>m.p.</u>: 143 °C (decomp.)

$$^{\text{H}}$$
-NMR: (500 MHz, CD₃OD)

9.04 (d, J = 4.5 Hz, 1 H), 8.89 (s, 1 H), 8.76 (d, J = 9.0 Hz, 1 H), 8.58 (d, J = 7.4 Hz, 1 H), 8.51 (d, J = 9.0 Hz, 1 H), 8.22 (ddd, J = 9.5, 7.5, 4.6 Hz, 3 H), 7.98 - 7.89 (m, 3 H), 7.88 - 7.76 (m, 2 H), 7.65 (ddd, J = 11.8, 8.3, 6.7 Hz, 2 H), 6.82 (s, 1 H), 6.42 (d, J = 14.0 Hz, 1 H), 5.91 (d, J = 14.0 Hz, 1 H), 5.69 (ddd, J = 17.4, 10.4, 7.3 Hz, 1 H), 4.99 (m, 2 H), 4.53 - 4.40 (m, 2 H), 3.85 (s, 3 H), 3.79 (ddd, J = 12.5, 5.4, 3.0 Hz, 1 H), 3.23 (dd, J = 12.4, 10.9 Hz, 1 H), 2.90 (td, J = 11.0, 4.7

page S48

Hz, 1 H), 2.41 (dd, *J* = 15.4, 4.6 Hz, 2 H), 2.20 - 2.08 (m, 1 H), 1.95 (d, *J* = 3.0 Hz, 1 H), 1.66 - 1.49 (m, 2 H).

¹³ C-NMR:	(126 MHz, CD ₃ OD)
	151.05, 149.37, 142.95, 138.54, 134.79, 134.66, 133.89, 133.09, 133.05, 131.48
	131.27, 131.16, 130.61, 129.43, 129.41, 129.36, 127.23, 126.64, 126.60, 125.39
	124.80, 124.45, 121.67, 118.99, 117.76, 76.76, 70.24, 63.48, 57.53, 53.79, 39.52
	27.31, 26.23, 23.15.
LRMS:	(ESI ⁺ , Q-tof) 191.1 (10), 499.3 (100, M-Br ⁺)
HRMS:	$C_{35}H_{35}N_2O^+$ (ESI ⁺ , Q-tof)
	Calcd: 499.2749
	Found: 499.2741
TLC:	$R_f 0.36$ (CH ₂ Cl ₂ /MeOH, 10:1) [silica gel, I ₂]

Preparation of O-Methyl-N-(2-Naphthylmethyl)-epi-cinchonidinium Bromide (2f)

Following General Procedure I, *O*-methyl-*epi*-cinchonidine (90 mg, 0.29 mmol), MeCN (2.9 mL, 0.1 M), and 2-bromomethylnaphthalene (71 mg, 0.32 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, $CH_2Cl_2/MeOH$, gradient elution) to afford 170 mg of **2f** as an off-white, crystalline solid. The entire product was further purified by trituration in Et₂O (~10 mL) then filtered to afford 115 mg (74%) of **2f** as an off-white crystalline solid.

Data for 2f:

m.p.: 163 °C (decomp.)
¹H-NMR: (500 MHz, CD₃OD)
9.00 (d,
$$J = 4.4$$
 Hz, 1 H), 8.38 - 8.26 (m, 2 H), 8.17 (d, $J = 8.3$ Hz, 1 H), 8.12 -

8.02 (m, 2 H), 7.99 (d, J = 6.9 Hz, 1 H), 7.93 - 7.76 (m, 4 H), 7.70 - 7.58 (m, 2 H),6.38 (s, 1 H), 5.70 (ddd, J = 17.3, 10.5, 6.9 Hz, 1 H), 5.27 (d, J = 12.4 Hz, 1 H), $5.19 - 5.08 \text{ (m, 2 H)}, 5.01 \text{ (d, } J = 10.4 \text{ Hz}, 1 \text{ H)}, 4.33 \text{ (t, } J = 10.4 \text{ Hz}, 1 \text{ H)}, 4.04 \text{ ($ J = 8.7 Hz, 1 H), 3.77 - 3.68 (m, 1 H), 3.65 (s, 3 H), 3.61 - 3.45 (m, 3 H), 2.68 (s, 1 H), 2.46 - 2.33 (m, 1 H), 2.24 (dd, J = 18.6, 8.0 Hz, 1 H), 2.08 (s, 1 H), 1.88 (t, J) = 11.6 Hz, 1 H), 1.54 (t, J = 10.5 Hz, 1 H). ¹³C-NMR: (126 MHz, CD₃OD) 151.04, 149.25, 143.07, 138.57, 135.52, 135.42, 134.57, 131.37, 130.79, 130.58, 130.11, 129.53, 129.35, 128.97, 128.85, 128.19, 127.01, 125.86, 124.12, 121.34, 117.65, 76.08, 69.84, 66.07, 62.10, 57.42, 53.05, 39.03, 28.05, 25.91, 22.75. $(ESI^+, Q-tof)$ LRMS: 142.0 (10), 449.2 (100, M-Br⁺) $C_{31}H_{33}N_2O^+$ (ESI⁺, Q-tof) HRMS:

- Calcd: 449.2573 Found: 449.2576
- <u>TLC</u>: $R_f 0.36$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Methyl-N-(1-Naphthylmethyl)-epi-cinchonidinium bromide (3f)

Following General Procedure I, *O*-methyl-*epi*-cinchonidine (90 mg, 0.29 mmol), MeCN (2.9 mL, 0.1 M), and 1-bromomethylnaphthalene (71 mg, 0.32 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) then loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH_2Cl_2 /MeOH, gradient elution) to afford 176 mg of **3f** as an off-white, crystalline solid. The entire product was further purified by trituration in Et₂O (~10 mL) the filtered to afford 111 mg (72%) of **3f** as an off-white, crystalline solid.

Data for **3f**:

<u>m.p.</u>: 158 °C (decomp.)

 $^{1}\text{H-NMR}: (500 \text{ MHz}, \text{CD}_{3}\text{OD})$

9.01 (d, J = 4.5 Hz, 1 H), 8.40 (d, J = 8.2 Hz, 1 H), 8.34 (d, J = 8.5 Hz, 1 H), 8.22 - 8.14 (m, 2 H), 8.06 (t, J = 8.4 Hz, 2 H), 7.95 - 7.83 (m, 3 H), 7.78 (ddd, J = 8.4, 6.9, 1.2 Hz, 1 H), 7.72 (dd, J = 8.1, 7.3 Hz, 1 H), 7.66 (t, J = 7.2 Hz, 1 H), 6.55 (s, 1 H), 5.80 - 5.62 (m, 2 H), 5.38 (d, J = 13.1 Hz, 1 H), 5.10 (d, J = 17.2 Hz, 1 H), 4.99 (d, J = 10.5 Hz, 1 H), 4.45 - 4.34 (m, 1 H), 4.21 (t, J = 9.0 Hz, 1 H), 3.83 -3.69 (m, 4 H), 3.56 - 3.47 (m, 1 H), 3.29 - 3.21 (m, 1 H), 2.63 (s, 1 H), 2.46 - 2.34 (m, 1 H), 2.21 (ddd, J = 10.8, 8.7, 4.8 Hz, 1 H), 2.05 (d, J = 2.9 Hz, 1 H), 1.85 -1.73 (m, 1 H), 1.54 (td, J = 10.3, 3.0 Hz, 1 H).

- ¹³C-NMR: (126 MHz, CD₃OD)
 151.05, 149.26, 143.03, 138.52, 135.79, 134.71, 133.20, 131.43, 130.70, 130.56,
 129.38, 129.07, 127.64, 127.07, 126.45, 124.40, 124.39, 124.22, 121.42, 117.69,
 76.26, 69.93, 62.48, 61.99, 57.42, 53.51, 39.25, 27.70, 26.02, 22.86.
 - $\underline{LRMS}: \quad (ESI^+, Q-tof)$
 - 449.2 m/z (100, M-Br⁺)
 - HRMS: $C_{31}H_{33}N_2O^+$ (ESI⁺, Q-tof)Calcd:449.2593Found:449.2580
 - <u>TLC</u>: $R_f 0.33$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of O-Methyl-N-(Benzyl)-epi-cinchonidinium Bromide (4f)

Following General Procedure I, *O*-methyl-*epi*-cinchonidine (90 mg, 0.29 mmol), MeCN (2.9 mL, 0.1 M), and benzyl bromide (38 μ L, 0.32 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred

page S51

overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, $CH_2Cl_2/MeOH$, gradient elution) to afford 156 mg of **4f** as a light-yellow, crystalline solid. The entire product was further purified by trituration in Et₂O (~10 mL) and then filtered to afford 136 mg (97%) of **4f** as an off-white, crystalline solid.

Data for 4f:

<u>m.p.</u> :	176 – 180 °C (decomp.)
¹ H-NMR:	(500 MHz, CDCl ₃)
	8.98 (d, J = 4.5 Hz, 1 H), 8.93 (d, J = 8.6 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.02
	7.93 (m, 3 H), 7.82 (t, J = 7.2 Hz, 1 H), 7.54 - 7.50 (m, 3 H), 6.74 (d, J = 11.8 Hz
	1 H), 6.06 (d, J = 3.2 Hz, 1 H), 5.74 (ddd, J = 17.0, 10.5, 6.3 Hz, 1 H), 5.41 (dd, J
	= 17.2, 1.3 Hz, 1 H), 5.05 (dd, J = 10.6, 1.3 Hz, 2 H), 4.79 (s, 1 H), 4.51 (d, J =
	11.8 Hz, 1 H), 4.33 - 4.23 (m, 1 H), 3.54 (s, 3 H), 3.51 - 3.39 (m, 1 H), 3.19 (dd, .
	= 12.9, 10.8 Hz, 1 H), 2.59 (s, 1 H), 2.10 (ddd, <i>J</i> = 31.5, 20.0, 9.3 Hz, 3 H), 1.78
	(dd, J = 19.3, 11.5 Hz, 1 H), 1.40 (t, J = 14.3 Hz, 1 H).
¹³ C-NMR:	(126 MHz, CD ₃ OD)
LRMS:	(ESI ⁺ , Q-tof)
	142.0 (20), 178.9 (10), 309.2 (5), 329.9 (10), 399.2 (100, M-Br ⁺), 449.3 (5)
HRMS:	$C_{27}H_{31}N_2O^+$ (ESI ⁺ , Q-tof)
	Calcd: 399.2436
	Found: 399.2421

Preparation of *O*-Methyl-*N*-(3,5-Bistrifluoromethylbenzyl)-*epi*-cinchonidinium Bromide (5f)

Following General Procedure I, *O*-methyl-*epi*-cinchonidine (90 mg, 0.29 mmol), MeCN (2.9 mL, 0.1 M), and bis-(3,5-trifluoromethyl)benzyl bromide (59 μ L, 0.32 mmol, 1.1 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the

mixture was stirred overnight. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, $CH_2Cl_2/MeOH$, gradient elution) to afford 168 mg (93%) of **5f** as a white, crystalline solid.

Data for 5f:

- <u>m.p.</u>: 165 °C (decomp.)
- 1 H-NMR: (500 MHz, CD₃OD)

8.99 (d, J = 4.5 Hz, 1 H), 8.51 (s, 2 H), 8.32 (d, J = 8.1 Hz, 1 H), 8.25 (s, 1 H), 8.16 (dd, J = 8.4, 1.0 Hz, 1 H), 7.92 - 7.80 (m, 3 H), 6.30 (s, 1 H), 5.68 (ddd, J =17.3, 10.5, 6.9 Hz, 1 H), 5.30 - 5.20 (m, 2 H), 5.15 (d, J = 17.2 Hz, 1 H), 5.00 (d, J = 10.5 Hz, 1 H), 4.44 - 4.33 (m, 1 H), 4.01 (dd, J = 9.8, 8.5 Hz, 1 H), 3.73 (ddd, J = 12.4, 4.8, 3.2 Hz, 1 H), 3.63 (s, 3 H), 3.45 (dd, J = 14.9, 8.2 Hz, 2 H), 2.73 (d, J = 1.5 Hz, 1 H), 2.46 - 2.34 (m, 1 H), 2.31 - 2.19 (m, 1 H), 2.11 (d, J = 2.8 Hz, 1 H), 1.93 (ddd, J = 15.2, 5.0, 2.4 Hz, 1 H), 1.59 - 1.47 (m, 1 H).

- $\frac{^{13}\text{C NMR}}{151.03, 149.27, 142.73, 138.36, 135.56, 133.72} (q, J_{C-F} = 33.8 \text{ Hz}), 131.91, 131.40, 130.61, 129.43, 126.94, 125.61, 124.10, 123.44, 121.35, 117.83, 76.02, 70.51, 64.05, 61.90, 57.49, 53.21, 39.01, 27.92, 25.81, 22.80.$
 - <u>LRMS</u>: $(ESI^+, Q-tof)$ 535.2 (100, M-Br⁺)
 - HRMS:
 $C_{29}H_{29}N_2OF_6^+$ (ESI⁺, Q-tof)

 Calcd:
 535.2184

 Found:
 535.2179
 - <u>TLC</u>: $R_f 0.34$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Following General Procedure I, deoxyfluorocinchonidine (50 mg, 0.17 mmol), MeCN (1.7 mL, 0.1 M), and 9-bromomethylanthracene (48 mg, 0.18 mmol, 1.05 equiv) were combined in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum and the mixture was stirred for 2 days. Care was taken to avoid light exposure. The reaction mixture was cooled to 0 °C (external) in an ice bath and the product was then precipitated with ice-cold Et₂O (3-4 mL). The reaction mixture was filtered and the filter cake was washed several times with cold Et₂O (5-10 mL) to afford 84 mg (88%) of **1g** as a yellow, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH_2Cl_2 solution (2-4 mL), layering Et₂O (6-12 mL), and then cooling overnight at -20 °C.

Data for 1g:

<u>m.p.</u>: $183 - 186 \,^{\circ}\text{C}$ (decomp.)

 1 <u>H-NMR</u>: (500 MHz, CDCl₃)

9.68 (d, J = 9.0 Hz, 1 H), 9.03 (d, J = 4.4 Hz, 1 H), 8.93 (d, J = 8.4 Hz, 1 H), 8.67 (s, 1 H), 8.35 (d, J = 9.0 Hz, 1 H), 8.18 (dd, J = 8.4, 0.9 Hz, 1 H), 8.12 (d, J = 8.3 Hz, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 7.96 - 7.90 (m, 2 H), 7.88 (ddd, J = 8.9, 6.5, 1.2 Hz, 1 H), 7.83 (ddd, J = 8.2, 6.9, 1.1 Hz, 1 H), 7.73 (dd, J = 49.6, 1.9 Hz, 1 H), 7.72 (ddd, J = 8.9, 6.5, 1.2 Hz, 1 H), 7.57 (ddd, J = 13.3, 8.2, 6.6 Hz, 2 H), 7.25 (d, J = 13.5 Hz, 1 H), 6.26 - 6.09 (m, 2 H), 5.99 (ddd, J = 17.3, 10.5, 7.1 Hz, 1 H), 5.33 - 5.20 (m, 2 H), 5.14 (d, J = 9.9 Hz, 1 H), 4.14 (t, J = 11.7 Hz, 1 H), 3.23 (dd, J = 12.8, 10.7 Hz, 1 H), 2.67 (td, J = 12.4, 4.9 Hz, 1 H), 2.39 (s, 1 H), 2.08 - 1.90 (m, 3 H), 1.84 (td, J = 10.6, 3.2 Hz, 1 H), 1.54 (s, 3H), 1.25 (s, 1 H).

 13 C-NMR: (126 MHz, CD₃OD)

151.06, 149.06, 141.87 (d, ${}^{2}J_{C-F} = 20.0$ Hz), 137.94, 134.86, 134.62, 134.12, 133.13, 133.05, 131.68, 131.22 (d, ${}^{3}J_{C-F} = 6.3$ Hz), 130.75, 129.59, 129.51, 126.66

page S54

(d, J = 3.4 Hz), 125.15, 124.95, 124.32, 120.43 (d, ${}^{3}J_{C-F} = 12.5$ Hz), 118.68, 118.10, 87.83 (d, ${}^{1}J_{C-F} = 182.0$ Hz), 70.41 (d, ${}^{2}J_{C-F} = 20.3$ Hz), 62.68, 58.47, 54.15 (d, ${}^{3}J_{C-F} = 7.4$ Hz), 39.49, 27.30, 25.95, 22.17. (376 MHz, CDCl₃) 198.65 (dd, J = 48.8, 33.7 Hz).

 LRMS:
 (ESI⁺, Q-tof)

 150 (20), 191.1 (70), 487.2 (100, M-Br⁺)

 HRMS:
 $C_{34}H_{32}N_2F^+$ (ESI⁺, Q-tof)

 Calcd:
 487.2550

 Found:
 487.2551

 TLC:
 R_f 0.60 (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of N-(2-Naphthylmethyl)deoxyfluorocinchonidinium Bromide (2g)

Following General Procedure I, deoxyfluorocinchonidine (100 mg, 0.337 mmol), MeCN (3.4 mL, 0.1 M), and 1-bromomethylnaphthalene (82.0 mg, 0.371 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 2 days. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and MeOH (<1 mL) and then was loaded directly on a silica gel column (20 g SiO₂, \emptyset = 20, 100:0 to 5:1, CH₂Cl₂/MeOH, gradient elution) to afford 126 mg (72%) of **2g** as a light-orange, crystalline solid.

The entire product was further purified by recrystallization from a CH_2Cl_2 solution (2-4 mL), layered with Et_2O (6-12 mL), and then was allowed to cool overnight in a freezer to afford **2g** as an off-white, crystalline solid.

Data for 2g:

<u>m.p.</u>: 210-213 °C (decomp.) <u>¹H-NMR</u>: (500 MHz, CD₃OD) 9.01 (d, J = 4.6 Hz, 1 H), 8.27 (s, 1 H), 8.18 (dd, J = 12.9, 8.3 Hz, 2 H), 8.08 (d, J = 8.5 Hz, 1 H), 8.00 (d, J = 8.1 Hz, 2 H), 7.95 - 7.89 (m, 1 H), 7.87 - 7.79 (m, 2 H), 7.73 (d, $J_{\text{H-F}}$ = 48.0 Hz, 1 H), 7.76 (m, 1 H), 7.64 (pd, J = 7.0, 1.4 Hz, 2 H), 5.79 (ddd, J = 17.4, 10.4, 7.2 Hz, 1 H), 5.54 (d, J = 12.5 Hz, 1 H), 5.22 - 5.05 (m, 3 H), 4.35 (ddd, J = 30.6, 10.9, 6.3 Hz, 1 H), 4.17 - 4.07 (m, 1 H), 3.78 - 3.54 (m, 3 H), 2.75 (dd, J = 15.9, 7.6 Hz, 1 H), 2.42 - 2.21 (m, 2 H), 2.15 (d, J = 2.7 Hz, 1 H), 1.99 (t, J = 11.4 Hz, 1 H), 1.86 (dd, J = 13.7, 11.1 Hz, 1 H)

- $\frac{^{13}\text{C-NMR}}{^{15}\text{C-NMR}}: \quad (126 \text{ MHz, CD}_3\text{OD}) \\ 151.05, 148.97, 141.69 \text{ (d, }^2J_{\text{C-F}} = 19.7 \text{ Hz}), 138.09, 135.47, 134.56, 131.63, \\ 130.73, 130.56, 130.29, 129.56, 129.50, 129.09, 128.89, 128.29, 125.55, 125.24 \\ \text{(d, }^3J_{\text{C-F}} = 5.2 \text{ Hz}), 124.04, 121.34, 120.24 \text{ (d, }^3J_{\text{C-F}} = 12.5 \text{ Hz}), 118.08, 87.26 \text{ (d, } \\ ^1J_{\text{C-F}} = 182.3 \text{ Hz}), 69.28 \text{ (d, }^2J_{\text{C-F}} = 20.4 \text{ Hz}), 66.22, 61.84, 53.18, 39.15, 28.10, \\ 25.68, 21.87 \\ \frac{^{19}\text{F-NMR}}{^{19}\text{F-NMR}}: \quad (376 \text{ MHz, CD}_3\text{OD}) \\ -199.46 \text{ (dd, } J = 48.0, 30.8 \text{ Hz})$
 - <u>LRMS</u>: (ESI⁺, Q-tof) 150 (8), 437.2 (100, M-Br⁺)
 - - <u>TLC</u>: $R_f 0.60 (CH_2Cl_2/MeOH, 5:1)$ [silica gel, I₂]

Preparation of N-(1-Naphthylmethyl)deoxyfluorocinchonidinium Bromide (3g)

Following General Procedure I, deoxyfluorocinchonidine (100 mg, 0.337 mmol), MeCN (3.4 mL, 0.1 M), and 1-bromomethylnaphthalene (82.0 mg, 0.371 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 2 days. The reaction mixture was diluted with CH_2Cl_2 (~5 mL) and then

was loaded directly on a silica gel column (15 g SiO₂, $\emptyset = 20$, 100:0 to 10:1, CH₂Cl₂/MeOH, gradient elution) to afford 90 mg (52%) of **3g** as a light-orange, crystalline solid. The entire product was further purified by recrystallization from a CH₂Cl₂ solution (2-4 mL), layered with Et₂O (6-12 mL), and then was allowed to cool overnight in a freezer to afford **3g** as an light-amber, crystalline solid.

Data for 3g:

- <u>m.p.</u>: $150 155 \,^{\circ}C$ (decomp.)
- <u>¹H-NMR</u>: $(500 \text{ MHz}, \text{CD}_3\text{OD})$

9.03 (d, J = 4.5 Hz, 1 H), 8.40 (d, J = 8.6 Hz, 1 H), 8.27 - 8.16 (m, 3 H), 8.07 (d, J = 8.2 Hz, 1 H), 7.99 (d, J = 6.8 Hz, 1 H), 7.96 - 7.79 (m, 4 H), 7.77 - 7.68 (m, 2 H), 7.65 (t, J = 7.3 Hz, 1 H), 5.94 (d, J = 13.1 Hz, 1 H), 5.77 (ddd, J = 17.4, 10.4, 7.2 Hz, 1 H), 5.38 (d, J = 13.0 Hz, 1 H), 5.08 (dd, J = 18.8, 13.8 Hz, 2 H), 4.57 (ddd, J = 30.7, 10.6, 6.0 Hz, 1 H), 4.17 (dd, J = 16.0, 7.5 Hz, 1 H), 3.71 (ddd, J = 12.5, 6.7, 3.0 Hz, 1 H), 3.60 - 3.41 (m, 2 H), 2.65 (d, J = 8.3 Hz, 1 H), 2.38 (d, J = 13.7 Hz, 1 H), 2.32 - 2.20 (m, 1 H), 2.11 (d, J = 2.6 Hz, 1 H), 1.90 (dd, J = 27.2, 13.6 Hz, 2 H)

- ¹³C-NMR: (126 MHz, CD₃OD) 151.05, 148.99, 141.79 (d, ${}^{2}J_{C-F} = 19.8$ Hz), 137.97, 135.85, 135.73, 134.67, 133.40, 131.65, 130.71 (d, ${}^{3}J_{C-F} = 4.1$ Hz), 129.59, 129.10, 127.72, 126.44, 125.30, 125.26, 124.52, 124.19, 124.10, 120.32 (d, ${}^{3}J_{C-F} = 12.4$ Hz), 118.10, 87.40 (d, ${}^{1}J_{C-F} = 182.2$ Hz), 69.95 (d, ${}^{2}J_{C-F} = 20.1$ Hz), 62.62, 62.12, 53.50, 39.29, 27.75, 25.78, 21.94
- 19 F-NMR: (376 MHz, CD₃OD)

-199.38 (dd, J = 48.0, 31.0 Hz)

<u>LRMS</u>: $(ESI^+, Q-tof)$

```
437.2 (100, M-Br<sup>+</sup>)
```

- HRMS: $C_{30}H_{30}N_2F^+$ (ESI⁺, Q-tof)Calcd:437.2393Found:437.2400
 - <u>TLC</u>: $R_f 0.60 (CH_2Cl_2/MeOH, 5:1)$ [silica gel, I_2]

Preparation of N-(Benzyl)deoxyfluorocinchonidinium Bromide (4g)

Following General Procedure I, deoxyfluorocinchonidine (50.0 mg, 0.170 mmol), MeCN (1.70 mL, 0.10 M), and benzyl bromide (21.0 μ L, 0.180 mmol, 1.05 equiv) were combined in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 2 days. The mixture was cooled to 0 °C (external) in an ice bath and then the product was precipitated with ice-cold Et₂O (3-4 mL). The suspension was filtered and then washed several times with cold Et₂O (~5 mL) to afford 65 mg (82%) of **4g** as a light-yellow, crystalline solid. The entire product was further purified by recrystallization from a concentrated CH₂Cl₂ solution (2-4 mL), layered with Et₂O (6-12 mL), and was then allowed to cool in a freezer overnight.

Data for **4g**:

<u>m.p.</u>: 150-155 °C (decomp.)

 1 H-NMR: (500 MHz, CDCl₃)

8.98 (d, J = 4.5 Hz, 1 H), 8.77 (d, J = 8.4 Hz, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.94 (dt, J = 5.4, 3.2 Hz, 3 H), 7.82 (t, J = 7.2 Hz, 1 H), 7.64 (d, J = 4.4 Hz, 1 H), 7.56 - 7.46 (m, 4 H), 7.32 (d, J = 49.8 Hz, 2 H), 6.73 (d, J = 11.8 Hz, 1 H), 5.82 (ddd, J = 17.1, 10.6, 6.5 Hz, 1 H), 5.43 (dd, J = 17.2, 1.2 Hz, 1 H), 5.28 (dt, J = 20.2, 9.8 Hz, 1 H), 5.21 - 5.15 (m, 1 H), 5.13 (dd, J = 10.6, 1.2 Hz, 1 H), 4.78 (d, J = 11.8 Hz, 1 H), 3.97 (t, J = 11.4 Hz, 1 H), 3.54 - 3.47 (m, 1 H), 3.32 (dd, J = 13.0, 10.7 Hz, 1 H), 2.65 (s, 1H), 2.22 - 2.13 (m, 1 H), 2.11 (d, J = 2.3 Hz, 1 H), 1.99 (dd, J = 13.6, 8.8 Hz, 1 H), 1.88 (t, J = 14.2 Hz, 1 H), 1.68 (td, J = 10.3, 3.1 Hz, 1 H)

 $\frac{1^{3}\text{C-NMR}}{126}$ (126 MHz, CD₃OD)

151.04, 148.98, 141.63 (d, ${}^{2}J_{C-F} = 20.3 \text{ Hz}$), 138.08, 134.82, 132.02, 131.61, 130.74, 130.56, 129.54, 128.29, 125.21 (d, ${}^{3}J_{C-F} = 5.3 \text{ Hz}$), 123.99, 120.21 (d, ${}^{3}J_{C}$. _F = 12.5 Hz), 118.06, 87.20 (d, ${}^{1}J_{C-F} = 182.3 \text{ Hz}$), 69.37 (d, ${}^{2}J_{C-F} = 20.3 \text{ Hz}$), 66.04, 61.68, 52.99 (d, ${}^{3}J_{C-F} = 7.2 \text{ Hz}$), 39.10, 28.10, 25.64, 21.84 (d, ${}^{4}J_{C-F} = 3.9 \text{ Hz}$)

¹⁹F-NMR: (376 MHz, CDCl₃)

-201.07 (dd, J = 48.9, 32.7 Hz) <u>LRMS</u>: (ESI⁺, Q-tof) 367.2 (5), 387.2 (100, M-Br⁺) <u>HRMS</u>: C₂₆H₂₈N₂F⁺ (ESI⁺, Q-tof) Calcd: 387.2237 Found: 387.2246 <u>TLC</u>: $R_f 0.49$ (CH₂Cl₂/MeOH, 5:1) [silica gel, I₂]

Preparation of N-(9-Anthracenylmethyl)deoxyfluorocinchonidinium Bromide (5g)

Following General Procedure I, deoxyfluorocinchonidine (44 mg, 0.15 mmol), MeCN (1.5 mL), and bis-(3,5-trifluoromethyl)benzyl bromide (28 μ L, 0.16 mmol, 1.05 equiv) were combined in a 5-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 4 days. The reaction mixture was cooled to 0 °C (external) in an ice bath and then the product was precipitated with ice-cold Et₂O (3-4 mL) then filtered. The filter cake was washed several times with ice-cold Et₂O (~5 mL) to afford 68 mg (76%) of **5g** as a light-orange, crystalline solid. The entire product was further purified by recrystallization from a CH₂Cl₂ solution (2-4 mL), layered with Et₂O (6-12 mL), and then was allowed to cool overnight in a freezer.

Data for 5g:

<u>m.p.</u>: 150-155 °C (decomp.)

¹<u>H-NMR</u>:

(500 MHz, CDCl₃)

8.98 (d, J = 4.5 Hz, 1 H), 8.80 (d, J = 8.4 Hz, 1 H), 8.56 (s, 2 H), 8.14 (d, J = 8.3 Hz, 1 H), 8.06 (s, 1 H), 7.92 (t, J = 7.7 Hz, 1 H), 7.81 (t, J = 7.6 Hz, 1 H), 7.63 (d, J = 4.4 Hz, 1 H), 7.33 (dd, J = 30.5, 23.3 Hz, 2 H), 5.81 (ddd, J = 17.1, 10.6, 6.4 Hz, 1 H), 5.54 - 5.30 (m, 4 H), 5.16 (d, J = 10.5 Hz, 1 H), 4.92 (d, J = 12.1 Hz, 1 H), 4.10 (s, 1 H), 3.36 (td, J = 11.8, 4.3 Hz, 1 H), 3.14 (dd, J = 12.5, 10.8 Hz, 1 H),

page S59

	2./1 (s, 1 H), 2.23 (dd, $J = 19.2$, 8.6 Hz, 1 H), $2.1/$ (s, 1 H), $2.08 - 1.99$ (m, 1 H),
	1.94 (t, J = 15.2 Hz, 1 H), 1.69 (dd, J = 13.1, 10.1 Hz, 1 H)
¹³ C-NMR:	(126 MHz, CD ₃ OD)
	151.06, 149.00, 141.32 (d, ${}^{2}J_{C-F} = 20.7$ Hz), 137.87, 135.35, 133.72 (dd, $J_{C-F} =$
	36.5, 31.1 Hz), 131.66, 131.53, 130.80, 129.65, 125.92, 125.54, 125.14 (d, ${}^{3}J_{C-F} =$
	5.3 Hz), 123.91, 120.21 (d, ${}^{3}J_{C-F} = 12.5$ Hz), 118.27, 87.10 (d, ${}^{1}J_{C-F} = 182.9$ Hz),
	70.00 (d, ${}^{2}J_{C-F} = 20.4$ Hz), 64.14, 61.75, 53.16, 39.11, 27.95, 25.56, 21.87
¹⁹ F-NMR:	(376 MHz, CDCl ₃)
	-63.03 (s, 6 F), -200.89 (dd, J = 48.1, 32.3 Hz, 1 F)
<u>LRMS</u> :	(ESI ⁺ , Q-tof)
	503.2 (5), 523.2 (100, M-Br ⁺)
HRMS:	$C_{28}H_{26}N_2F_7^+$ (ESI ⁺ , Q-tof)
	Calcd: 523.1984
	Found: 523.1984
TLC:	$R_f 0.49 (CH_2Cl_2/MeOH, 5:1)$ [silica gel, I ₂]

Preparation of Cinchonidinium Salts in Series H

Preparation of N-(9-Anthracenylmethyl)deoxycinchonidinium Bromide (1h)

Following General Procedure I, deoxycinchonidine (100 mg, 0.359 mmol), MeCN (3.6 mL), and 9-bromomethylanthracene (107 mg, 0.390 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet, wrapped in aluminum foil and the mixture was stirred for 4 h. Care was taken to avoid light exposure. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the yellow, solid residue was sonicated in Et₂O (10 mL) then filtered. The entire product was purified by recrystallization from a concentrated CH_2Cl_2 solution by a slow diffusion of Et₂O in a chamber stored in a freezer. The first crop of recrystallized product afforded 29.0 mg (15%) of **1h** as a light-yellow, crystalline solid.

Data for 1h:

<u>m.p.:</u>	132 °C (decom	ıp.)
--------------	---------------	------

- ¹<u>H-NMR:</u> (500 MHz, CDCl₃) 9.16 (d, J = 9.0 Hz, 1 H), 8.80 (d, J = 8.9 Hz, 1 H), 8.45 (d, J = 8.2 Hz, 1 H), 8.40 (s, 1 H), 8.04 (s, 2 H), 7.98 (d, J = 8.2 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.77 -7.68 (m, 2 H), 7.55 - 7.38 (m, 4 H), 7.33 - 7.27 (m, 1 H), 6.74 (d, J = 14.2 Hz, 1 H), 6.04 (d, J = 14.2 Hz, 1 H), 5.60 (ddd, J = 17.2, 10.5, 6.8 Hz, 1 H), 5.45 - 5.32 (m, 1 H), 4.98 (dd, J = 32.1, 13.8 Hz, 2 H), 4.75 (dd, J = 13.4, 4.7 Hz, 1 H), 4.55 (t, J = 11.5 Hz, 1 H), 4.43 (t, J = 12.5 Hz, 1 H), 3.75 (dd, J = 11.7, 5.0 Hz, 1 H), 2.94 (td, J = 11.9, 6.1 Hz, 1 H), 2.84 (dd, J = 13.0, 10.7 Hz, 1 H), 2.13 (d, J = 7.3Hz, 1 H), 1.99 - 1.87 (m, 1 H), 1.81 (dd, J = 13.6, 10.7 Hz, 1 H), 1.66 (d, J = 2.5Hz, 1 H), 1.52 (t, J = 10.0 Hz, 1 H), 1.21 (dd, J = 18.2, 11.2 Hz, 1 H). LRMS: (ESI⁺, Q-tof) 191.1 (80), 279.2 (35), 469.3 (100, M-Br⁺)
 - <u>HRMS</u>: $C_{34}H_{33}N_2^+$ (ESI⁺, Q-tof) Calcd: 469.2644 Found: 469.2639

Preparation of N-(2-Naphthylmethyl)deoxycinchonidinium Bromide (2h)

Following General Procedure I, deoxycinchonidine (100 mg, 0.359 mmol), MeCN (3.60 mL, 0.1 M), and 2-bromomethylnaphthalene (87.0 mg, 0.390 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 3 h. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with Et₂O (10 mL) then filtered. The filter cake was then sonicated in TBME (10 mL) and then filtered to afford 156 mg (87%) of **2h** as an off-white, crystalline solid. Data for **2h**:

<u>m.p.:</u> 165 °C (decomp.)

- $\frac{^{1}\text{H-NMR:}}{^{1}\text{H-NMR:}} (500 \text{ MHz, CDCl}_{3})$ 8.61 (d, J = 4.4 Hz, 1 H), 8.44 8.37 (m, 1 H), 8.09 (s, 1 H), 8.02 7.95 (m, 1 H), 7.72 - 7.57 (m, 5 H), 7.52 (d, J = 8.4 Hz, 1 H), 7.48 - 7.43 (m, 1 H), 7.43 - 7.36 (m, 2 H), 5.88 (d, J = 12.8 Hz, 1 H), 5.65 (ddd, J = 17.2, 14.4, 9.9 Hz, 2 H), 5.12 (dd, J = 13.7, 9.2 Hz, 2 H), 4.52 (dt, J = 13.9, 8.4 Hz, 2 H), 4.37 (dd, J = 14.5, 3.7 Hz, 1 H), 3.97 - 3.79 (m, 3 H), 3.50 - 3.39 (m, 1 H), 2.65 (dd, J = 16.6, 7.5 Hz, 1 H), 2.08 (dd, J = 18.4, 11.5 Hz, 1 H), 1.96 - 1.77 (m, 3 H), 1.61 (s (br), 1 H), 1.36 (d, J = 13.2 Hz, 1 H).
- 1³C-NMR: (126 MHz, CD₃OD)
 150.90, 148.95, 143.86, 137.88, 135.41, 134.96, 134.54, 131.36, 130.26, 130.24, 129.42, 129.07, 128.95, 128.93, 128.85, 128.22, 125.91, 125.05, 123.30, 118.11, 66.03, 65.89, 61.41, 50.93, 39.22, 33.22, 28.38, 27.62, 25.54.
 - <u>LRMS</u>: (ESI⁺, Q-tof) 419.2 (100, M-Br⁺)
 - <u>HRMS</u>: $C_{30}H_{31}N_2^+$ (ESI⁺, Q-tof) Calcd: 419.2487

Found: 419.2491

<u>TLC</u>: $R_f 0.55$ (CH₂Cl₂/MeOH, 10:1) [silica gel, I₂]

Preparation of N-(1-Naphthylmethyl)deoxycinchonidinium Bromide (3h)

Following General Procedure I, deoxycinchonidine (100 mg, 0.359 mmol), MeCN (3.60 mL, 0.1 M), and 2-bromomethylnaphthalene (87.0 mg, 0.390 mmol, 1.10 equiv) were combined in a 10-mL, single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 2 days. The solvent was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was triturated with Et_2O (10 mL) then filtered. The filter cake was then sonicated in

page S62

TBME (10 mL) in an ultrasonic bath and then filtered to afford 156 mg (87%) of **2h** as an offwhite, crystalline solid.

Data for 3h

<u>m.p.:</u>	165 °C (decomp.)
¹ H-NMR:	(500 MHz, CDCl ₃)
	8.64 (d, J = 8.6 Hz, 1 H), 8.30 (dd, J = 10.2, 6.4 Hz, 2 H), 8.02 (d, J = 7.0 Hz, 1
	H), 7.90 (dd, <i>J</i> = 8.3, 1.1 Hz, 1 H), 7.69 - 7.53 (m, 5 H), 7.48 - 7.38 (m, 2 H), 6.96
	- 6.88 (m, 1 H), 6.42 (d, J = 13.1 Hz, 1 H), 5.86 (d, J = 13.2 Hz, 1 H), 5.59 (ddd, J
	= 17.3, 10.5, 7.0 Hz, 1 H), 5.01 (dd, <i>J</i> = 27.1, 13.8 Hz, 2 H), 4.92 (dt, <i>J</i> = 15.7, 5.3
	Hz, 1 H), 4.64 (t, J = 12.0 Hz, 1 H), 4.42 (dd, J = 13.8, 4.8 Hz, 1 H), 4.09 - 4.00
	(m, 1 H), 3.53 - 3.35 (m, 2 H), 3.10 (dd, <i>J</i> = 13.0, 10.6 Hz, 1 H), 2.33 (d, <i>J</i> = 9.2
	Hz, 1 H), 1.99 (dd, <i>J</i> = 17.1, 10.8 Hz, 1 H), 1.80 - 1.62 (m, 3 H), 1.19 (d, <i>J</i> = 10.3
	Hz, 1 H)
¹³ C-NMR:	(126 MHz, CDCl ₃)
	153.60, 141.23, 136.86, 136.67, 135.52, 134.41, 133.33, 132.72, 131.70, 130.65,
	129.51, 128.25, 128.10, 126.94, 125.67, 124.88, 124.44, 122.84, 122.35, 121.78,
	118.61, 66.25, 60.83, 59.68, 48.67, 37.76, 33.26, 27.16, 25.98, 24.94
LRMS:	(ESI ⁺ , Q-tof)
	110.1 (20), 141.1 (80), 170.1 (8), 279.2 (100), 419.2 (50, M-Br ⁺)
HRMS:	$C_{30}H_{31}N_2^+$ (ESI ⁺ , Q-tof)

 $\begin{array}{ccc} \underline{\text{MS}}. & \underline{\text{C}}_{30} \\ & \underline{\text{Calcd}}: & \underline{\text{419.2487}} \\ & \underline{\text{Found}}: & \underline{\text{419.2490}} \end{array}$

Preparation of N-(Benzyl)deoxycinchonidinium Bromide (4h)

Following General Procedure I, deoxycinchonidine (101 mg, 0.362 mmol), MeCN (3.60 mL, 0.1 M), and benzyl bromide (47.0 μ L, 0.400 mmol, 1.10 equiv) were combined in a 10-mL,

single-neck, round-bottomed flask fitted with an argon inlet and the mixture was stirred for 3 h. The solvent removed was removed on a rotavap (20 mm Hg, 25 °C) and the solid residue was then triturated with hexane and filtered. The filter cake sonicated twice with Et_2O (2 x 10 mL) and then filtered to afford 136 mg (84%) of **4h** as a pale-green, crystalline solid.

Data for 4h:

<u>m.p.:</u>	113 °C (decomp)				
¹ H-NMR:	(500 MHz, CDCl ₃)				
	8.73 (d, J = 4.5 Hz, 1 H), 8.50 - 8.44 (m, 1 H), 8.06 (dd, J = 8.2, 1.2 Hz, 1 H),				
	7.75 - 7.62 (m, 4 H), 7.44 (d, J = 4.5 Hz, 1 H), 7.31 - 7.25 (m, 1 H), 7.22 (t, J =				
	7.3 Hz, 2 H), 5.75 - 5.59 (m, 2 H), 5.45 (d, <i>J</i> = 12.7 Hz, 1 H), 5.16 (dd, <i>J</i> = 17.8,				
	14.0 Hz, 2 H), 4.62 - 4.46 (m, 2 H), 4.27 (dd, <i>J</i> = 14.5, 3.6 Hz, 1 H), 3.86 (dd, <i>J</i> =				
	25.2, 12.8 Hz, 2 H), 3.79 - 3.69 (m, 1 H), 3.54 - 3.44 (m, 1 H), 2.69 (dd, <i>J</i> = 16.0,				
	7.6 Hz, 1 H), 2.15 - 2.03 (m, 1 H), 1.97 - 1.83 (m, 3 H), 1.44 - 1.34 (m, 1 H).				
LRMS:	(ESI ⁺ , Q-tof)				
	91.1 (10), 110.1 (10), 279.2 (40), 369.2 (100, M-Br ⁺)				
HRMS:	$C_{26}H_{29}N_2^+$ (ESI ⁺ , Q-tof)				
	Calcd: 369.2331				
	Found: 369.2337				
<u>TLC</u> :	$R_f 0.54 (CH_2Cl_2/MeOH, 10:1)$ [silica gel, I ₂]				

References

- #
- (i) H. Langhals, and S. Saulich, Chem. Eur. J. 2002, 8(24), 5630-5643.
- (ii) E. A. Dixon, A. Fischer, and F. P. Robinson, Can. J. Chem. 1981, 59(17), 2629-2641.
- (iii) P. L. Pickard, and T. L. Tolbert, Org. Syn. Coll. Vol. 5 1973, 520.
- (iv) P. L. Dutton, B. R. Lichtenstein, J. F. Cerda, and R. L. Koder, Chem. Comm. 2009, 168-170.
- (v) I. Lee, H. K. Oh, J. S. Ha, D. D. Sung, J. Org. Chem. 2004, 69, 8219-8223

Catalyst 1a: Run 1

Kinetic Analyses of Catalysts in Series A

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.00	0.0
4	254.0	6315.24	68.36	3.27	1.0
8	254.0	6655.10	462.93	21.03	6.2
12	254.0	6107.59	1115.00	55.20	16.3
16	254.0	5897.88	2466.57	126.45	37.3
20	254.0	6424.48	3549.97	167.08	49.3
24	254.0	7382.42	4765.74	195.19	57.6
28	254.0	6173.24	4297.34	210.48	62.1
32	254.0	6503.01	4885.58	227.16	67.0
36	254.0	7039.97	5559.75	238.79	70.4
40	254.0	6655.06	5052.67	229.56	67.7

Time (min)

Half-Life = $20 \min$

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
4	254.0	6525.65	70.70	3.3	1.0
8	254.0	6077.37	336.71	16.8	4.9
12	254.0	6667.15	879.72	39.9	11.8
16	254.0	6060.03	1905.65	95.1	28.0
20	254.0	6189.47	3102.61	151.6	44.7
24	254.0	6697.23	4101.86	185.2	54.6
28	254.0	7045.90	4652.70	199.7	58.9
32	254.0	6297.25	4608.70	221.3	65.3
36	254.0	8091.08	6307.97	235.7	69.5
40	254.0	7020.25	5777.23	248.8	73.4

Catalyst 1a : Ku	$\ln 2$	
-------------------------	---------	--

Half-Life = 22 min Average Half-Life = 21 min

Time (min)	Standard (umol)	Standard Area	Product Area	Product (umol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	6090.60	113.01	5.6	1.7
61	254.4	6386.44	362.39	17.2	5.1
120	254.4	7553.15	1097.38	44.0	13.0
180	254.4	7437.62	1885.13	76.8	22.6
244	254.4	7170.76	2708.80	114.4	33.7
300	254.4	7017.54	3317.81	143.2	42.2
360	254.4	7163.19	3952.86	167.1	49.3
420	254.4	7223.67	4427.49	185.6	54.8
480	254.4	7401.25	4928.23	201.6	59.5
540	254.4	7653.35	5427.32	214.8	63.3
600	254.4	7117.47	5262.02	223.9	66.0
1320	254.4	7197.75	5979.38	251.6	74.2
1860	254.4	7042.44	5868.89	252.4	74.4

6162.11

7217.98

Catalyst 2a: Run 1

2760

254.4

Half-Life = 363 min

76.3

258.5

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
60	254.4	7764.86	557.63	21.7	6.4
120	254.4	7135.54	1641.45	69.7	20.5
180	254.4	7211.92	2565.60	107.7	31.8
240	254.4	7838.86	3141.89	121.4	35.8
300	254.4	7704.01	4191.80	164.8	48.6
360	254.4	7821.57	4611.86	178.6	52.7
420	254.4	7893.62	5272.90	202.3	59.7
1103	254.4	6816.47	5738.17	254.9	75.2
1468	254.4	7103.48	5878.89	250.6	73.9
2550	254.4	7509 56	6426 51	259.2	76.4

Half-Life = 340 min Average Half-Life = 351 min

Catalyst 3a: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	5724.09	20.61	1.1	0.3
9	254.0	5899.33	112.17	5.7	1.7
18	254.0	6511.32	404.84	18.8	5.5
30	254.0	6584.82	961.62	44.2	13.0
45	254.0	7436.89	2004.76	81.5	24.0
63	254.0	6987.36	2794.91	120.9	35.7
84	254.0	7502.23	4116.53	165.9	48.9
108	254.0	6968.71	4740.95	205.7	60.7
135	254.0	7027.91	5503.32	236.8	69.8
165	254.0	7938.40	6373.96	242.8	71.6

Half-Life = 85 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	7109.33	115.26	4.9	1.4
10	254.0	8054.54	347.28	13.0	3.8
20	254.0	7641.84	831.24	32.9	9.7
30	254.0	7735.89	1426.57	55.8	16.4
45	254.0	7214.04	2169.73	90.9	26.8
60	254.0	7402.72	3129.77	127.8	37.7
90	254.0	7277.34	4554.41	189.2	55.8
120	254.0	7206.75	5415.82	227.2	67.0
180	254.0	7633.05	6456.10	255.7	75.4
240	254.0	7413.94	6464.79	263.7	77.8
300	254.0	7155.78	6019.47	254.3	75.0
1020	254.0	8491.11	7208.87	256.7	75.7

Catalyst 3a: Run 2

Half-Life = 78 min Average Half-Life = 82 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
7	254.0	8099.77	491.92	18.4	5.4
14	254.0	6473.20	988.06	46.2	13.6
21	254.0	6481.47	1618.83	75.5	22.3
28	254.0	6848.23	2427.94	107.2	31.6
30	254.0	7449.53	3034.09	123.1	36.3
35	254.0	6195.73	2686.33	131.1	38.7
42	254.0	6774.26	3486.69	155.6	45.9
49	254.0	6132.76	3660.82	180.5	53.2
56	254.0	6327.44	4259.80	203.6	60.0
60	254.0	6343.97	4323.58	206.1	60.8
63	254.0	7591.06	5350.65	213.1	62.9
70	254.0	6811.49	5282.45	234.5	69.2
90	254.0	6360.96	5518.83	262.3	77.4
120	254.0	4711.11	4270.64	274.1	80.9
150	254.0	7115.57	6684.37	284.0	83.8
182	254.0	5451.71	5158.49	286.1	84.4

Catalyst 4a: Run 1

Half-Life = 44 min

Catalyst 4a: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6956.27	246.78	10.7	3.2
10	254.0	6983.71	671.26	29.1	8.6
20	254.0	7170.84	1646.42	69.4	20.5
30	254.0	7011.34	2755.72	118.8	35.1
45	254.0	6993.50	3834.21	165.8	48.9
60	254.0	6879.12	4722.85	207.6	61.2
90	254.0	6727.30	5568.84	250.3	73.8
120	254.0	7350.99	6770.02	278.5	82.1
180	254.0	7308.84	6618.29	273.8	80.8
240	254.0	7265.55	6626.65	275.8	81.3

Reduced Chi-Sqr

Adj. R-Square

% conversion to pdt.

100

4.85856

0.99554

A1

A2

x0

р

Time (min)

150

Value

1.4027

85.61827

37.46509

200

1.9753

Standard Error

1.60912

2.13627

1.77045

0.18073

250

20

0

1

1 50

Catalyst 5a: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.00	0.00
60	254.0	6551.96	646.15	29.82	8.80
120	254.0	6880.21	1634.19	71.82	21.19
180	254.0	6970.26	2422.03	105.06	30.99
240	254.0	6266.68	2842.73	137.16	40.46
300	254.0	6886.98	3625.36	159.17	46.95
360	254.0	7310.40	4273.93	176.77	52.15
420	254.0	7259.71	4668.02	194.42	57.35
480	254.0	7312.95	4913.18	203.14	59.92
540	254.0	7515.24	5182.03	208.49	61.50
600	254.0	6708.92	4674.66	210.68	62.15
1440.00	254.00	6427.62	4976.42	234.10	69.05

Half-Life = 343 min
Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	6588.01	481.52	22.1	6.5
60	254.4	6964.99	963.41	41.9	12.4
90	254.4	6707.41	1436.32	64.8	19.1
120	254.4	6766.07	1799.51	80.5	23.8
180	254.4	6944.72	2876.93	125.5	37.0
240	254.4	6749.27	3543.57	159.0	46.9
300	254.4	7027.41	4341.94	187.1	55.2
360	254.4	6643.04	4358.22	198.7	58.6
420	254.4	6885.22	4763.41	209.5	61.8
1153	254.4	6768.02	6137.83	274.6	81.0
1478	254.4	6887.19	6364.26	279.8	82.5

Catalyst 5a: Run 2

Half-Life = 277 min Average Half-Life = 310 min

Kinetic Analyses of Catalysts in Series B

Catalyst	1b:	Run	1
----------	-----	-----	---

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
6	254.0	7748.79	985.04	38.4	11.3
12	254.0	6567.97	1942.93	89.4	26.4
20	254.0	6318.09	3202.96	153.3	45.2
30	254.0	6684.17	4851.38	219.5	64.7
42	254.0	7460.54	6563.10	266.0	78.5
56	254.0	7489.41	7423.38	299.7	88.4
72	254.0	6878.57	6611.26	290.6	85.7
90	254.0	7598.74	7197.71	286.4	84.5
110	254.0	7548.24	7130.15	285.6	84.3
300	254.0	6857.69	6376.37	281.1	82.9

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.00	0.0
2	254.0	6518.76	184.72	8.57	2.5
6	254.0	7542.25	970.35	38.90	11.5
12	254.0	6598.10	2082.50	95.43	28.2
20	254.0	6865.16	3758.28	165.53	48.8
30	254.0	6773.70	4987.07	222.61	65.7
42	254.0	7644.02	6455.82	255.36	75.3
56	254.0	6410.66	5388.35	254.14	75.0
72	254.0	7777.18	6948.31	270.14	79.7
90	254.0	7805.40	7196.24	278.76	82.2
110	254.0	6747.65	5967.86	267.42	78.9
300	254.0	6757.47	6230.80	278.80	82.2

Catalyst 1b: Run 2

Half-Life = 21 min Average Half-Life = 21 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	7879.88	0.00	0.0	0.0
30	254.0	7671.50	40.44	1.6	0.5
60	254.0	7635.95	456.30	18.1	5.3
120	254.0	7556.02	2331.50	93.3	27.5
180	254.0	7112.89	3454.01	146.8	43.3
240	254.0	7590.22	4029.87	160.5	47.4
300	254.0	7260.17	4909.52	204.5	60.3
1341	254.0	7782.06	6790.97	263.9	77.8
1837	254.0	8306.82	7412.94	269.8	79.6

Catalyst 2b: Run 1

Time (min)	Standard (umol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	7841.88	0.00	0.0	0.0
30	254.0	6461.39	107.85	5.0	1.5
60	254.0	6917.40	978.41	42.8	12.6
120	254.0	7423.29	2971.22	121.0	35.7
180	254.0	6886.53	3387.69	148.7	43.9
240	254.0	7504.17	3946.61	159.0	46.9
300	254.0	7686.25	4676.79	184.0	54.3
1341	254.0	7581.39	6448.81	257.2	75.9
1837	254.0	7969.25	6801.76	258.1	76.1

Catalyst **2b**: Run 2

Half-Life = 244 min Average Half-Life = 246 min

Catalyst 3b: Run 1

page S78

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	7116.94	0.00	0.0	0.0
15	254.0	7529.49	78.86	3.2	0.9
30	254.0	6689.77	486.96	22.0	6.5
45	254.0	8134.10	1481.62	55.1	16.2
60	254.0	6632.84	1941.55	88.5	26.1
90	254.0	7293.13	3324.44	137.8	40.7
120	254.0	7563.81	4471.39	178.7	52.7
180	254.0	6919.37	5506.73	240.6	71.0
240	254.0	6872.94	5607.03	246.7	72.8
300	254.0	7407.61	6136.27	250.5	73.9
1042	254.0	6839.24	5655.01	250.0	73.7

Half-Life = 106 min

Time (min)	Standard (µmol)	Product Area	Standard Area	Product (µmol)	% Product
0	254.0	0.00	1.00	0.0	0.0
5	254.0	0.00	7250.08	0.0	0.0
15	254.0	90.06	7390.36	3.7	1.1
30	254.0	579.70	7280.64	24.1	7.1
45	254.0	1385.53	6780.43	61.8	18.2
60	254.0	2690.50	7804.84	104.2	30.7
90	254.0	4150.43	7281.74	172.3	50.8
120	254.0	5310.07	7363.24	218.1	64.3
180	254.0	6169.84	6990.93	266.8	78.7
240	254.0	5813.56	6602.04	266.3	78.5
300	254.0	6631.58	7357.89	272.5	80.4
1042	254.0	6154.85	7266.25	256.1	75.5

Half-Life = 85 min Average Half-Life = 95 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6915.34	783.53	34.3	10.1
15	254.0	6980.95	2308.70	100.0	29.5
30	254.0	6784.76	3985.27	177.6	52.4
45	254.0	7278.12	5281.28	219.4	64.7
60	254.0	7019.90	6137.38	264.3	78.0
90	254.0	7091.19	5962.76	254.2	75.0
120	254.0	6239.32	5139.75	249.1	73.5
180	254.0	7578.16	6326.69	252.4	74.5
240	254.0	6972.50	5818.39	252.3	74.4
300	254.0	7026.35	5921.27	254.8	75.2
1039	254.0	6420.38	5643.17	265.8	78.4

Catalyst	4 b:	Run	1
----------	-------------	-----	---

Time (min)

Half-Life = 27 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	8268.86	752.64	27.5	8.1
15	254.0	7168.00	2337.65	98.6	29.1
30	254.0	6913.03	3949.39	172.7	51.0
45	254.0	8533.48	6104.96	216.3	63.8
60	254.0	7106.51	5246.87	223.2	65.9
90	254.0	6864.22	5574.94	245.6	72.4
120	254.0	6501.38	5222.00	242.9	71.6
180	254.0	7052.11	5870.49	251.7	74.2
240	254.0	7260.77	5750.17	239.5	70.6
300	254.0	7612.69	6545.06	260.0	76.7
1039	254.0	6977.30	6410.19	277.8	81.9

Catalyst 4b: Run 2

Half-Life = 30 min Average Half-Life = 29 min

Time (min)	Standard (umol)	Standard Area	Product Area	Product (umol)	% Product
0	254.0	1.00	0.00	0	0.0
60	254.0	7515.93	648.02	26.06956273	7.7
120	254.0	7213.64	1646.44	69.01101463	20.4
180	254.0	7913.31	2972.46	113.5755569	33.5
240	254.0	6753.74	3360.49	150.4474812	44.4
300	254.0	8002.67	4513.40	170.5276886	50.3
360	254.0	7199.20	4499.93	188.9939234	55.8
420	254.0	7478.48	4977.12	201.229079	59.4
480	254.0	7621.79	5265.14	208.8716046	61.6
1260	254.0	7331.66	6477.10	267.1191093	78.8
4320	254.0	5576.05	4908.26	266.1507443	78.5

% conversion to pdt. ExpDec1 of % conversion to pdt. 80 12 60 % conversion to pdt. Equation $y = A1^{*}exp(-x/t1) + y0$ 40 Reduced Chi-Sqr 6.27839 Adj. R-Square 0.99109 20 Value Standard Error % conversion to y0 pdt. 79.5476 1.84478 % conversion to A1 -83.21279 2.49874 pdt. $\mathbf{0}$ % conversion to t1 pdt. 300.47062 19.15731 . 0 1000 3000 2000 4000 5000 Time (min)

Catalyst	5 b:	Run	1
----------	-------------	-----	---

Half-Life = 311 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	7351.52	670.73	27.6	8.1
120	254.0	7540.39	1830.13	73.4	21.6
180	254.0	7364.30	2762.87	113.4	33.5
240	254.0	8103.71	3953.71	147.5	43.5
300	254.0	7115.94	4055.55	172.3	50.8
360	254.0	7554.33	4646.77	186.0	54.9
420	254.0	8041.56	5237.67	196.9	58.1
480	254.0	7699.79	5380.62	211.3	62.3
1260	254.0	8157.51	6690.44	248.0	73.2
4320	254.0	7505.50	6188.76	249.3	73.5

Half-Life = 313 min Average Half-Life = 312 min

Catalyst 1c: Run 1

Kinetic Analyses of Catalysts in Series C

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	7229.86	157.52	6.6	1.9
15	254.0	7227.43	715.20	29.9	8.8
30	254.0	6995.94	1360.21	58.8	17.3
45	254.0	6953.89	1844.50	80.2	23.7
60	254.0	5980.81	2065.91	104.4	30.8
90	254.0	6568.27	2955.29	136.0	40.1
120	254.0	7866.16	4215.99	162.1	47.8
180	254.0	6561.58	4296.26	198.0	58.4
240	254.0	5995.08	4624.01	233.2	68.8
300	254.0	6436.51	5480.08	257.4	75.9
1044	254.0	6175.21	5432.38	266.0	78.5

Time (min)

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
5	254.4	7566.30	462.68	18.5	5.5
10	254.4	6850.47	952.01	42.1	12.4
20	254.4	7288.12	2061.08	85.6	25.3
30	254.4	6502.60	2648.20	123.3	36.4
45	254.4	6975.58	3500.42	152.0	44.8
60	254.4	7321.79	4625.62	191.3	56.4
90	254.4	6842.20	5492.58	243.1	71.7
120	254.4	7374.77	5984.07	245.7	72.5
180	254.4	7073.91	5517.55	236.2	69.7
240	254.4	6882.90	6210.53	273.3	80.6
300	254.4	7013.31	5829.00	251.7	74.2
1020	254.4	7014.34	6614.44	285.6	84.2

Catalyst 1c: Run 2

Half-Life = 49 min Average Half = 87 min

Catalyst 2c: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6948.18	1947.79	84.8	25.0
10	254.0	6930.96	2691.80	117.4	34.6
15	254.0	6307.47	3143.71	150.7	44.5
30	254.0	7164.98	4270.94	180.2	53.2
45	254.0	7140.67	5408.34	229.0	67.6
60	254.0	6757.77	5358.52	239.8	70.7
90	254.0	7322.81	5914.76	244.2	72.0
120	254.0	8230.17	6404.85	235.3	69.4
240	254.0	5617.81	4482.36	241.2	71.2
390	254.0	6697.65	5419.45	244.7	72.2

Half-Life = 20 min

Catalyst 2c: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6953.20	1845.14	80.2	23.7
10	254.0	6970.82	2801.66	121.5	35.8
15	254.0	6513.41	3364.79	156.2	46.1
30	254.0	5798.28	3899.58	203.4	60.0
45	254.0	6796.95	5018.23	223.2	65.9
60	254.0	7426.89	5575.46	227.0	67.0
90	254.0	6143.65	5050.34	248.6	73.3
120	254.0	7148.17	5951.79	251.8	74.3
180	254.0	7203.04	5868.43	246.3	72.7
240	254.0	6860.76	5555.94	244.9	72.2
390	254.0	6819.18	5583.45	247.6	73.0

Half-Life = 18 min Average Half-Life = 19 min

Catalyst 3c: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6366.78	1987.10	94.4	27.8
10	254.0	7271.42	3898.83	162.1	47.8
15	254.0	6256.49	4213.33	203.6	60.1
30	254.0	7361.20	6309.61	259.2	76.5
45	254.0	6798.22	5649.22	251.3	74.1
60	254.0	6758.95	5936.93	265.6	78.3
90	254.0	6501.51	5679.15	264.1	77.9
120	254.0	7536.02	6606.41	265.1	78.2
180	254.0	6462.61	5706.41	267.0	78.8
240	254.0	7300.15	6235.80	258.3	76.2
390	254.0	6181 25	5085 59	248.8	73 4

Half-Life = 11 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6497.60	2556.45	119.0	35.1
10	254.0	6409.23	3971.14	187.3	55.3
15	254.0	6714.73	5077.76	228.6	67.4
30	254.0	6316.60	5565.02	266.4	78.6
45	254.0	7164.22	6347.19	267.9	79.0
60	254.0	7023.72	6111.76	263.1	77.6
90	254.0	6812.49	6027.83	267.5	78.9
120	254.0	6956.38	6147.80	267.2	78.8
180	254.0	7296.56	6422.69	266.1	78.5
240	254.0	6965.82	6136.37	266.4	78.6
390	254.0	6369.80	5385.45	255.6	75.4

Half-Life = 8 min Average Half-Life = 9 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	7863.59	474.71	18.3	5.4
60	254.4	7367.71	840.71	34.6	10.2
120	254.4	7404.97	1189.20	48.6	14.3
180	254.4	7649.45	1421.59	56.3	16.6
240	254.4	6730.51	1595.53	71.8	21.2
300	254.4	7201.13	1955.34	82.2	24.3
360	254.4	8112.84	2425.10	90.5	26.7
420	254.4	7489.21	2506.72	101.4	29.9
1096	254.4	7413.32	4588.50	187.4	55.3
1463	254.4	6053.13	4300.86	215.2	63.5
2546	254.4	6367.19	5077.05	241.5	71.2

Cului y St TC. Ituli I

Half-Life = 893 min

Time (min)	Standard (umol)	Standard Area	Product Area	Product (umol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	10788.78	814.29	22.9	6.7
61	254.4	7527.68	843.86	33.9	10.0
120	254.4	7031.33	1206.67	52.0	15.3
180	254.4	8256.95	1782.66	65.4	19.3
240	254.4	7013.87	1877.42	81.1	23.9
300	254.4	8866.15	2744.85	93.8	27.7
360	254.4	7546.60	2610.97	104.8	30.9
420	254.4	7389.24	2834.78	116.2	34.3
480	254.4	7238.21	2989.89	125.1	36.9
540	254.4	7519.02	3385.00	136.3	40.2
600	254.4	8010.17	3787.29	143.2	42.2
1320	254.4	7710.55	5073.11	199.3	58.8
1860	254.4	7707.93	5663.60	222.5	65.6
2760	254.4	7732.30	6165.50	241.5	71.2

Catalyst 4c: Run 2

Half-Life = 809 min Average Half-Life = 851 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6368.39	629.97	29.9	8.8
120	254.0	8045.95	1132.05	42.5	12.5
180	254.0	8135.70	1627.98	60.5	17.8
240	254.0	7363.66	2208.14	90.7	26.7
300	254.0	8024.54	3125.56	117.8	34.7
360	254.0	7958.76	3637.38	138.2	40.8
420	254.0	7431.97	3903.86	158.8	46.9
480	254.0	7875.20	4543.85	174.5	51.5

5868.77

4992.20

218.6

206.2

8115.78

7319.30

Catalyst 5c: Run 1

1260

4320

254.0

254.0

Half-Life = 552 min

64.5

60.8

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	7941.61	824.43	31.4	9.3
60	254.4	7515.06	1058.79	42.7	12.6
90	254.4	7593.52	1051.55	41.9	12.4
120	254.4	7550.88	1271.89	51.0	15.0
180	254.4	7588.20	1711.40	68.3	20.1
240	254.4	7637.43	2287.61	90.7	26.8
300	254.4	7619.27	2586.18	102.8	30.3
360	254.4	8407.72	3149.90	113.5	33.5
420	254.4	7873.94	3838.21	147.6	43.5
480	254.4	8463.36	4825.66	172.7	50.9
1153	254.4	8061.29	5340.12	200.6	59.2
1478	254.4	7598.65	5239.92	208.8	61.6

Catalyst 5c: Run 2

Half-Life = 636 min Average Half-Life = 594 min

Catalyst 1d: Run 1

Kinetic Analyses of Catalysts in Series D

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
30	254.0	5406.24	1359.20	76.0	22.4
60	254.0	5597.67	2322.44	125.4	37.0
90	254.0	6022.80	3061.08	153.7	45.3
120	254.0	5849.00	3388.52	175.2	51.7
150	254.0	6356.35	4236.60	201.5	59.4
180	254.0	6318.85	4449.16	212.9	62.8
210	254.0	7329.06	5406.82	223.1	65.8
240	254.0	7373.65	5588.14	229.1	67.6
270	254.0	6735.73	5379.98	241.5	71.2
300	254.0	7544.71	6096.67	244.3	72.1

Half-Life = 151 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	7510.25	152.92	6.2	1.8
9	254.0	7171.84	633.84	26.7	7.9
18	254.0	6894.65	1217.50	53.4	15.8
30	254.0	7108.05	1922.28	81.8	24.1
45	254.0	6914.86	2451.89	107.2	31.6
63	254.0	6219.46	2806.25	136.4	40.2
84	254.0	7238.37	3738.36	156.2	46.1
108	254.0	7818.04	4546.39	175.8	51.9
135	254.0	7537.11	4559.36	182.9	54.0
165	254.0	6789 20	4447 95	198 1	58.4

Catalyst 1d: Run 2

Half-Life = 101 min Average Half-Life = 126 min

					0 (D])
Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.00	0.00
3	254.0	7452.19	1874.83	76.07	22.44
6	254.0	6532.27	2598.15	120.26	35.48
9	254.0	7411.18	3663.17	149.45	44.09
12	254.0	6859.63	4003.37	176.46	52.05
15	254.0	7120.64	4338.85	184.24	54.35
18	254.0	7146.26	4860.47	205.65	60.66
21	254.0	6564.03	4590.67	211.46	62.38
24	254.0	6910.47	5137.96	224.81	66.31
27	254.0	6548.18	5147.46	237.68	70.11
30	254.0	6246.98	5100.82	246.89	72.83
60	254.0	6088.17	5485.47	272.43	80.36
90	254.0	6532.30	5906.09	273.38	80.64

Catalyst 2d: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
2	254.0	6657.24	1299.59	59.0	14.8
4	254.0	6625.67	1886.22	86.1	21.6
6	254.0	6654.65	2261.85	102.8	25.8
8	254.0	5937.63	2420.91	123.3	30.9
10	254.0	5945.19	2667.42	135.7	34.0
15	254.0	7215.81	4097.74	171.7	43.0
30	254.0	6335.24	4894.49	233.6	58.5
45	254.0	6563.80	5590.47	257.5	64.5
60	254.0	6914.90	6391.83	279.5	70.0
90	254.0	6598 44	6016 79	2757	69.1

Catalyst 2d: Run 2

Half-Life = 19 min Average Half-Life = 15 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
6	254.0	6734.66	2362.89	106.1	31.3
12	254.0	6056.31	2956.87	147.6	43.5
18	254.0	6426.49	4178.60	196.6	58.0
24	254.0	6750.96	4853.43	217.4	64.1
30	254.0	6287.08	5133.21	246.9	72.8
36	254.0	6644.98	5394.88	245.5	72.4
42	254.0	7858.06	6203.65	238.7	70.4
48	254.0	6605.05	5815.88	266.2	78.5
54	254.0	6342.74	5657.64	269.7	79.6
60	254.0	6043.27	5389.82	269.7	79.5

Catalyst 3d: Run 1

Half-Life = 14 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	6489.00	1653.27	77.0	22.7
9	254.0	5305.57	3070.89	175.0	51.6
18	254.0	6664.46	5076.20	230.3	67.9
30	254.0	6245.48	4917.91	238.1	70.2
45	254.0	6719.35	5513.31	248.1	73.2
63	254.0	6735.43	5660.49	254.1	75.0
84	254.0	7491.39	5979.50	241.3	71.2
108	254.0	6943.75	5782.35	251.8	74.3
135	254.0	7099.50	5840.60	248.7	73.4
165	254.0	7991 96	6587 32	249.2	73 5

Catalyst 3d: Run 2

Time (min)

Half-Life = 9 min Average Half-Life = 11 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6546.90	774.40	35.8	10.6
120	254.0	7212.06	1150.39	48.2	14.2
180	254.0	7857.01	1744.91	67.1	19.8
240	254.0	7190.91	2047.66	86.1	25.4
300	254.0	8232.91	2921.40	107.3	31.6
360	254.0	7411.91	3252.86	132.7	39.1
420	254.0	7772.49	3857.10	150.0	44.3
480	254.0	7283.47	4225.35	175.4	51.7
540	254.0	7539.71	4745.14	190.3	56.1
600	254.0	7667.28	5138.08	202.6	59.8
1440	254.0	6692.90	5291.19	239.0	70.5

Half-Life = $12 \min$

300

480

1153

1478

254.4

254.4

254.4

254.4

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	7838.54	638.49	24.7	7.3
60	254.4	7546.78	975.79	39.2	11.6
90	254.4	7084.29	1143.68	48.9	14.4
120	254.4	7580.74	1380.32	55.1	16.3
180	254.4	7560.03	1557.28	62.4	18.4
240	254.4	8045.52	2350.86	88.5	26.1

2371.19

4650.85

4010.78

6064.77

7200.37

8617.36

5196.10

7756.88

Half-Life = 11 minAverage Half-Life = 11 min

29.4

48.2

69.0

69.8

99.7

163.4

233.8

236.8

Catalyst 5d: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6546.90	774.40	35.8	10.6
120	254.0	7212.06	1150.39	48.2	14.2
180	254.0	7857.01	1744.91	67.1	19.8
240	254.0	7190.91	2047.66	86.1	25.4
300	254.0	8232.91	2921.40	107.3	31.6
360	254.0	7411.91	3252.86	132.7	39.1
420	254.0	7772.49	3857.10	150.0	44.3
480	254.0	7283.47	4225.35	175.4	51.7
540	254.0	7539.71	4745.14	190.3	56.1
600	254.0	7667.28	5138.08	202.6	59.8
1440	254.0	6692.90	5291.19	239.0	70.5

Half-Life = 503 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	7838.54	638.49	24.7	7.3
60	254.4	7546.78	975.79	39.2	11.6
90	254.4	7084.29	1143.68	48.9	14.4
120	254.4	7580.74	1380.32	55.1	16.3
180	254.4	7560.03	1557.28	62.4	18.4
240	254.4	8045.52	2350.86	88.5	26.1
300	254.4	7200.37	2371.19	99.7	29.4

4650.85

4010.78

6064.77

163.4

233.8

236.8

8617.36

5196.10

7756.88

Catalyst **5d**: Run 2

480

1153

1478

254.4

254.4

254.4

Half-Life = 588 min Average Half-Life = 546 min

48.2

69.0

69.8

Catalyst 1e: Run 1

Kinetic Analyses of Catalysts in Series E

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	6882.99	828.49	36.4	10.7
9	254.0	8570.29	2953.49	104.2	30.7
18	254.0	5777.19	2847.38	149.0	44.0
30	254.0	7714.14	4008.40	157.1	46.3
45	254.0	6368.22	4712.73	223.8	66.0
63	254.0	6953.42	5236.57	227.7	67.2
84	254.0	7315.55	6023.74	249.0	73.4
108	254.0	6751.74	5595.77	250.6	73.9
135	254.0	6672.18	5583.20	253.0	74.6
165	254.0	6291.08	5132.58	246.7	72.8

Time (min)

Half-Life = $25 \min$

Catalyst 1e: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	7234.79	1084.52	45.3	13.4
9	254.0	6823.99	3065.34	135.8	40.1
18	254.0	6804.85	4217.07	187.4	55.3
30	254.0	6794.97	5397.66	240.2	70.9
45	254.0	7175.81	5900.93	248.6	73.3
63	254.0	7830.53	6754.11	260.8	76.9
84	254.0	7106.46	5837.28	248.4	73.3
108	254.0	7390.44	6250.08	255.7	75.4
135	254.0	7153.57	5922.00	250.3	73.8
165	254.0	7339.00	6055.46	249.5	73.6

Half-Life = 14 min Average Half-Life = 19 min

Catalyst 2e: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	6239.34	1004.37	48.7	14.4
9	254.0	5956.21	1963.61	99.7	29.4
18	254.0	6389.58	3242.29	153.4	45.3
30	254.0	6714.18	4574.33	206.0	60.8
45	254.0	6706.44	5554.85	250.4	73.9
63	254.0	7280.79	6275.59	260.6	76.9
84	254.0	6529.20	5428.99	251.4	74.2
108	254.0	7678.27	6514.85	256.5	75.7
135	254.0	7619.53	6361.20	252.4	74.5
165	254.0	7499.82	6115.74	246.6	72.7

Half-Life = $19 \min$

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	7412.62	1650.78	67.3	19.9
9	254.0	6779.88	2923.76	130.4	38.5
18	254.0	7300.21	4759.80	197.1	58.2
30	254.0	7593.24	5761.56	229.4	67.7
45	254.0	7793.95	6227.00	241.6	71.3
63	254.0	8408.63	6764.48	243.2	71.8
84	254.0	8153.02	6578.51	244.0	72.0
108	254.0	7526.92	6135.04	246.4	72.7
135	254.0	7776.50	6397.54	248.7	73.4
165	254.0	8493.77	6966.35	248.0	73.2

Catalyst 2e: Run 2

Half-Life = 13 min Average Half-Life = 16 min

Catalyst 3e: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	6120.53	404.98	20.0	5.9
9	254.0	6216.99	1002.48	48.8	14.4
18	254.0	6722.38	1963.40	88.3	26.1
30	254.0	6362.14	2626.00	124.8	36.8
45	254.0	6585.24	3349.33	153.8	45.4
63	254.0	6746.52	4015.37	180.0	53.1
84	254.0	6693.50	4643.27	209.7	61.9
108	254.0	6446.70	4914.72	230.5	68.0
135	254.0	6889.46	5521.58	242.3	71.5
165	254.0	7153 04	5708 73	245 1	72 3

Time (min)

Half-Life = 52 min
Catalyst 3e: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	6604.29	547.47	25.1	7.4
9	254.0	6912.08	1403.08	61.4	18.1
18	254.0	6703.31	2373.20	107.0	31.6
30	254.0	7172.43	3515.76	148.2	43.7
45	254.0	6816.97	4103.24	182.0	53.7
63	254.0	6987.07	4896.22	211.9	62.5
84	254.0	7132.50	5304.48	224.9	66.3
108	254.0	7104.38	5790.27	246.4	72.7
135	254.0	7345.73	5933.77	244.2	72.0
165	254.0	8554 62	6688.04	236.4	69.7

% conversion to pdt. ExpDec1 of % conversion to pdt. 80 7060 50% conversion to pdt. 40 Equation $y = A1^* exp(-x/t1) + y0$ Reduced Chi-S 1.96057 30 ar Adj. R-Square 0.99731 20 Standard Error Value % conversion to y0 72.46091 0.90519 pdt. 10 -71.95873 % conversion to A1 1.1876 pdt. 0 % conversion to t1 32.32835 1.51907 pdt. -10 20 100Ó 40 60 80 120 140 180 -20 160 Time (min)

Half-Life = 38 min Average Half-Life = 45 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
3	254.0	6034.20	1681.63	84.3	24.9
9	254.0	5815.10	3265.33	169.8	50.1
18	254.0	7693.56	5776.40	227.0	67.0
30	254.0	7152.44	5979.27	252.8	74.6
45	254.0	7464.03	6305.21	255.4	75.3
63	254.0	6860.98	5798.58	255.5	75.4
84	254.0	6520.74	5640.82	261.6	77.2
108	254.0	6816.84	5923.90	262.8	77.5
135	254.0	7308.24	6179.92	255.7	75.4
165	254.0	6008.21	5063.76	254.8	75.2

Catalyst 4e: Run 1

Half-Life = $9 \min$

Catalyst 4e: Run 2

-					
Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
6	254.0	7408.90	3181.06	129.8	38.3
12	254.0	6486.04	4100.11	191.1	56.4
18	254.0	9219.50	6773.80	222.2	65.5
24	254.0	6842.62	5428.10	239.9	70.8
36	254.0	14846.30	13414.10	273.2	80.6
42	254.0	6787.48	5690.50	253.5	74.8
48	254.0	6829.84	5728.66	253.6	74.8
54	254.0	6693.96	5558.16	251.1	74.1
60	254.0	6649.07	5620.00	255.6	75.4

Half-Life = 9 min Average Half-Life = 9 min

Catalyst 5e: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	7802.71	1114.30	43.2	12.7
120	254.0	8225.37	1433.34	52.7	15.5
180	254.0	6856.91	1591.42	70.2	20.7
240	254.0	7626.93	2416.44	95.8	28.3
300	254.0	8083.26	3058.24	114.4	33.7
360	254.0	7515.24	3412.32	137.3	40.5
420	254.0	4895.07	2307.47	142.5	42.0
480	254.0	8446.94	4589.99	164.3	48.5
1440	254.0	8084.39	6235.59	233.2	68.8

Half-Life = 550 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	5736.16	776.53	40.9	12.1
120	254.0	2850.93	449.61	47.7	14.1
180	254.0	4661.94	1013.96	65.8	19.4
240	254.0	6389.07	1775.61	84.0	24.8
300	254.0	9501.85	3374.84	107.4	31.7
360	254.0	5738.45	2442.08	128.7	38.0
420	254.0	5254.53	2615.95	150.5	44.4
480	254.0	3907.70	2226.49	172.3	50.8
540	254.0	5259.69	3173.95	182.5	53.8
600	254.0	4111 57	2688 67	197 7	58.3

5156.23

231.1

6744.83

Catalyst 5e: Run 2

1440

254.0

Half-Life = 525 min Average Half-Life = 537 min

68.2

Catalyst 1f: Run 1

Kinetic Analyses of Catalysts in Series F

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
2	254.0	6746.20	689.73	30.9	9.1
6	254.0	6197.64	1415.62	69.1	20.4
12	254.0	6219.61	2211.64	107.5	31.7
20	254.0	6887.98	3290.58	144.4	42.6
30	254.0	6410.00	3887.26	183.4	54.1
42	254.0	6988.92	5046.74	218.3	64.4
56	254.0	7510.71	6032.30	242.8	71.6
72	254.0	7749.14	6671.50	260.3	76.8
90	254.0	6479.14	5612.92	261.9	77.3
110	254.0	7366.58	6070.10	249.1	73.5
300	254.0	7157.27	6408.50	270.7	79.9

Catalyst 1f: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
2	254.0	5080.48	644.75	38.4	11.3
6	254.0	5237.71	1632.97	94.3	27.8
12	254.0	6424.64	3309.58	155.8	45.9
20	254.0	6994.52	4578.36	197.9	58.4
30	254.0	7068.22	5386.00	230.4	68.0
42	254.0	6840.88	5606.84	247.8	73.1
56	254.0	6560.04	5537.58	255.2	75.3
72	254.0	6075.60	5238.96	260.7	76.9
90	254.0	7615.96	6618.52	262.8	77.5
110	254.0	6549.97	5671.33	261.8	77.2
300	254.0	7417.62	6411.60	261.4	77.1

Half-Life = 14 min Average Half-Life = 19 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
12	254.0	6324.66	1567.39	74.9	22.1
24	254.0	5366.03	2291.07	129.1	38.1
36	254.0	6418.06	3533.47	166.5	49.1
48	254.0	6675.58	4220.13	191.1	56.4
60	254.0	6671.54	4712.91	213.6	63.0
120	254.0	7093.22	6534.59	278.5	82.2
180	254.0	6775.49	6791.46	303.1	89.4
240	254.0	6865.26	7235.56	318.7	94.0
300	254.0	6482.36	6879.45	320.9	94.7
360	254.0	7270.22	7736.72	321.8	94.9

Half-Life = $39 \min$

Catalyst 2f: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
12	254.0	6927.88	1612.46	70.4	20.8
24	254.0	7272.62	2798.99	116.4	34.3
36	254.0	6758.99	3329.83	149.0	43.9
48	254.0	6662.96	3724.54	169.0	49.9
60	254.0	7018.41	4168.07	179.6	53.0
120	254.0	7401.03	5717.94	233.6	68.9
180	254.0	7034.90	6083.71	261.5	77.1
240	254.0	6652.70	5988.91	272.2	80.3
300	254.0	7370.92	6729.16	276.0	81.4
360	254.0	7207.37	6541.66	274.4	81.0

Half-Life = 49 min Average Half-Life = 44 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
12	254.0	6696.54	1815.67	82.0	24.2
24	254.0	5904.32	2640.73	135.2	39.9
36	254.0	6676.11	3768.43	170.7	50.3
48	254.0	6494.00	4199.48	195.5	57.7
60	254.0	6996.87	4941.47	213.5	63.0
120	254.0	6669.55	6049.20	274.2	80.9
180	254.0	6278.46	6013.98	289.6	85.4
240	254.0	6974.64	6792.46	294.5	86.9
300	254.0	6438.08	6240.71	293.1	86.5
360	254.0	7661.69	7422.68	292.9	86.4

Catalyst **3f**: Run 1

Half-Life = $36 \min$

Catalyst **3f**: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
12	254.0	7204.22	2552.93	107.1	31.6
24	254.0	5943.56	3083.08	156.8	46.3
36	254.0	6007.45	3816.28	192.1	56.7
48	254.0	6786.74	4810.62	214.3	63.2
60	254.0	7396.10	5661.89	231.5	68.3
120	254.0	6214.94	5820.62	283.2	83.5
180	254.0	6575.49	6480.29	298.0	87.9
240	254.0	6611.76	6435.94	294.3	86.8
300	254.0	6406.46	6114.86	288.6	85.1
360	254.0	6888.95	6344.32	278.5	82.1

Half-Life = 29 min Average Half-Life = 32 min

Catalyst 4f: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
2	254.0	8302.52	505.63	18.4	5.4
6	254.0	8506.73	1537.43	54.6	16.1
12	254.0	7923.75	2583.53	98.6	29.1
20	254.0	7614.71	3222.40	128.0	37.7
30	254.0	8226.42	4489.79	165.0	48.7
42	254.0	8094.67	5048.39	188.6	55.6
56	254.0	8570.60	6196.11	218.6	64.5
72	254.0	8062.57	6122.82	229.6	67.7
90	254.0	8202.17	6581.54	242.6	71.6
110	254.0	9014.30	7392.26	248.0	73.1
450	254.0	8553.64	7156.44	253.0	74.6

Half-Life = 31 min

Catalyst 4f: Run 2

450

254.0

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
2	254.0	8189.52	514.56	19.0	5.6
6	254.0	6596.58	1266.05	58.0	17.1
12	254.0	6805.55	2231.29	99.1	29.2
20	254.0	8318.14	3846.29	139.8	41.2
30	254.0	6211.89	3626.47	176.5	52.1
42	254.0	7508.75	4711.72	189.7	56.0
56	254.0	6662.03	4899.97	222.4	65.6
72	254.0	6309.02	4707.80	225.6	66.6
90	254.0	6673.20	5217.23	236.4	69.7
110	254.0	7273.48	5498.61	228.6	67.4

4932.82

238.0

6265.72

Half-Life = 28 min Average Half-Life = 30 min

70.2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6608.52	893.80	40.9	12.1
120	254.0	6852.95	1218.56	53.8	15.9
180	254.0	7020.18	1806.02	77.8	22.9
240	254.0	6545.57	2252.42	104.0	30.7
300	254.0	6793.92	2850.32	126.9	37.4
360	254.0	6628.84	3477.13	158.6	46.8
1011	254.0	7481.96	6413.33	259.2	76.5
1440	254.0	7024.42	6051.69	260.5	76.8

Catalyst 5f: Run 1

Half-Life = 444 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6451.04	808.15	37.9	11.2
120	254.0	6972.20	1199.07	52.0	15.3
180	254.0	6673.80	1702.65	77.1	22.8
240	254.0	7158.30	2469.27	104.3	30.8
300	254.0	6765.32	2842.87	127.1	37.5
360	254.0	6806.36	3370.52	149.7	44.2
1011	254.0	7313.61	6734.09	278.4	82.1
1440	254.0	6722.68	6236.44	280.5	82.7

Catalyst 5f: Run 2

Half-Life = 439 min Average Half-Life = 442 min

Catalyst 1g: Run 1

Kinetic Analyses of Catalysts in Series G

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	4785.40	0.00	0.0	0.0
10	254.0	6481.61	0.00	0.0	0.0
15	254.0	6278.11	0.00	0.0	0.0
30	254.0	6196.21	0.00	0.0	0.0
45	254.0	7055.98	29.33	1.3	0.4
60	254.0	7036.21	43.22	1.9	0.5
90	254.0	7040.81	70.43	3.0	0.9
120	254.0	6788.59	99.73	4.4	1.3
180	254.0	6166.88	155.59	7.6	2.3
240	254.0	7618.04	281.53	11.2	3.3
1407	254.0	3124.85	977.35	94.6	27.9
1705	254.0	7065.51	2760.89	118.1	34.9
2544	254.0	5809.74	3190.58	166.1	49.0
3993	254.0	6635.87	4481.06	204.2	60.2
5460	254.0	8019.76	5833.45	219.9	64.9

Half-Life = 2894 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6226.14	44.30	2.2	0.6
120	254.0	6555.16	96.03	4.4	1.3
180	254.0	6917.37	158.11	6.9	2.0
240	254.0	6946.54	225.34	9.8	2.9
300	254.0	7093.78	286.27	12.2	3.6
360	254.0	7195.26	351.78	14.8	4.4
1224	254.0	6945.15	1515.48	66.0	19.5
1620	254.0	7602.57	2194.78	87.3	25.7
2640	254.0	6005.86	2518.23	126.8	37.4
4026	254.0	7049.26	3888.84	166.8	49.2
5673	254.0	7061.82	4263.06	182.5	53.8

Catalyst 1g: Run 2

Half-Life = 4489 min Average Half-Life = 3692 min

Catalyst 2g: Run 1

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	6787.93	609.88	27.2	8.0
60	254.4	7257.10	1481.89	61.8	18.2
120	254.4	7551.69	3204.37	128.5	37.9
187	254.4	7887.53	4220.36	162.0	47.8
240	254.4	7380.23	4514.83	185.3	54.6
300	254.4	8035.92	5323.30	200.6	59.2
360	254.4	8171.71	5955.57	220.7	65.1
420	254.4	7824.91	5666.78	219.3	64.7
1147	254.4	8168.60	7071.88	262.2	77.3
1560	254.4	7224.20	6097.69	255.6	75.4

Half-Life = 206 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
30	254.4	7879.70	974.28	37.4	11.0
60	254.4	7632.34	2021.67	80.2	23.7
120	254.4	7338.45	3373.79	139.2	41.1
187	254.4	7725.06	4531.65	177.6	52.4
240	254.4	7509.69	4875.33	196.6	58.0
300	254.4	7493.59	5189.88	209.7	61.9
360	254.4	8120.01	5647.67	210.6	62.1
420	254.4	7942.36	5629.66	214.7	63.3
1147	254.4	8318.25	7305.35	266.0	78.5
1560	254.4	7807.39	6619.81	256.8	75.7

Catalyst 2g: Run 2

Half-Life = 185 min Average Half-Life = 196 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
5	254.4	7555.78	137.60	5.5	1.6
15	254.4	7675.03	269.49	10.6	3.1
30	254.4	7437.46	467.38	19.0	5.6
60	254.4	8236.57	1348.06	49.6	14.6
90	254.4	7395.39	2152.72	88.2	26.0
120	254.4	7192.46	2890.21	121.7	35.9
180	254.4	8134.50	4423.51	164.7	48.6
240	254.4	7371.72	4797.26	197.1	58.1
300	254.4	7601.25	5521.92	220.0	64.9
360	254.4	8066.03	6149.84	230.9	68.1
1145	254.4	7824.90	7006.29	271.2	80.0
1560	254.4	7618.68	6837.57	271.8	80.2

Catalyst 3g: Run 1

Half-Life = 195 minCatalyst **3g**: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
5	254.4	7015.07	161.58	7.0	2.1
15	254.4	8256.07	306.73	11.3	3.3
30	254.4	7499.40	535.31	21.6	6.4
60	254.4	7462.14	1404.07	57.0	16.8
90	254.4	7326.29	2214.59	91.5	27.0
120	254.4	7777.68	3203.36	124.7	36.8
180	254.4	8064.22	4403.38	165.4	48.8
240	254.4	7774.00	4752.02	185.1	54.6
300	254.4	7759.49	5227.26	204.0	60.2
1145	254.4	8132.78	6851.19	255.1	75.3
1560	254.4	7680.57	6628.07	261.3	77.1

Half-Life = 204 min Average Half-Life = 200 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
5	254.0	6852.17	110.72	4.9	1.4
10	254.0	6817.03	158.95	7.0	2.1
15	254.0	7699.92	215.54	8.5	2.5
30	254.0	6630.67	281.05	12.8	3.8
45	254.0	7347.50	441.68	18.2	5.4
60	254.0	7795.26	662.70	25.7	7.6
90	254.0	6685.08	986.00	44.6	13.2
120	254.0	3378.30	604.63	54.1	16.0
180	254.0	7588.50	2102.34	83.8	24.7
240	254.0	7529.30	2813.65	113.0	33.3
420	254.0	8020.55	3789.02	142.8	42.1
1402	254.0	7165.58	4748.75	200.4	59.1
1700	254.0	7360.62	4932.70	202.6	59.8
2540	254.0	7336.59	5072.65	209.1	61.7
3988	254.0	7775.68	5465.47	212.5	62.7
5455	254.0	7686.08	5322.10	209.4	61.8

Catalyst 4g: Run 1

Half-Life = 591 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6065.59	515.52	25.7	7.6
120	254.0	6510.57	1245.10	57.8	17.1
180	254.0	6607.95	1771.45	81.1	23.9
240	254.0	6189.82	2115.38	103.3	30.5
300	254.0	6698.55	2625.93	118.5	35.0
360	254.0	7265.78	3099.91	129.0	38.1
420	254.0	7283.71	3425.02	142.2	41.9
595	254.0	8157.31	4603.36	170.6	50.3
1224	254.0	7028.87	5247.63	225.7	66.6
1620	254.0	7270.08	5561.25	231.3	68.2
2640	254.0	5815.63	4528.96	235.5	69.5
4026	254.0	6589.75	5139.52	235.8	69.6
5673	254.0	7112.28	5681.54	241.5	71.2

Catalyst 4g: Run 2

Half-Life = 558 min Average Half-Life = 575 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
20	254.0	6704.03	24.82	1.1	0.3
40	254.0	7061.44	29.39	1.3	0.4
60	254.0	6941.09	29.71	1.3	0.4
120	254.0	6517.55	37.89	1.8	0.5
180	254.0	7593.26	58.47	2.3	0.7
240	254.0	7134.07	73.46	3.1	0.9
1397	254.0	7796.78	1482.19	57.5	17.0
1695	254.0	7398.42	1949.06	79.7	23.5
2535	254.0	7565.42	3368.12	134.6	39.7
3983	254.0	7863.07	5236.10	201.3	59.4
5450	254.0	7261.97	5102.63	212.5	62.7
5982	254.0	6722.67	4899.27	220.4	65.0

Catalyst 5g: Run 1

Time (min)

Half-Life = 3160 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
20	254.0	6810.74	22.83	1.0	0.3
40	254.0	7555.66	31.60	1.3	0.4
60	254.0	7428.10	26.43	1.1	0.3
120	254.0	6894.61	34.74	1.5	0.4
180	254.0	7584.21	47.24	1.9	0.6
240	254.0	6978.06	54.40	2.4	0.7
420	254.0	7301.12	127.65	5.3	1.6
1397	254.0	7504.53	1322.42	53.3	15.7
1695	254.0	7643.58	1916.64	75.8	22.4
2535	254.0	7144.83	3052.49	129.2	38.1
3983	254.0	7119.85	4665.06	198.1	58.4
5450	254.0	7699.37	5449.40	214.0	63.1
5982	254.0	6928.39	5159.28	225.2	66.4

Catalyst 5g: Run 2

Half-Life = 3273 min Average Half-Life = 3216 min

Kinetic Analyses of Catalysts in Series H

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
1276	254.0	5044.18	1520.27	91.1	26.9
2888	254.0	6706.97	3865.74	174.3	51.4
3852	254.0	5659.38	3583.60	191.5	56.5
4543	254.0	7840.04	5115.84	197.3	58.2
5702	254.0	6757.42	4455.41	199.4	58.8

page S134

Half-Life = 3021 min

Catalyst 1h: Run 2

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
1276	254.0	5857.86	2095.20	108.1	31.9
2888	254.0	6751.11	3896.04	174.5	51.5
3852	254.0	7596.78	5098.87	202.9	59.9
4543	254.0	7845.55	5377.01	207.2	61.1
5702	254.0	7161.18	5379.07	227.1	67.0

Half-Life = 2657 min Average Half-Life = 2839 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
1276	254.0	6692.21	2912.20	131.6	38.8
2888	254.0	6891.21	4552.77	199.8	58.9
3852	254.0	6510.76	4440.45	206.2	60.8
4543	254.0	6905.02	4875.40	213.5	63.0
5702	254.0	6350.41	4321.55	205.8	60.7

Catalyst 2h: Run 1

Half-Life = 1969 min

-					
Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
60	254.4	7952.52	47.53	1.8	0.5
423	254.4	7724.03	510.09	20.0	5.9
1102	254.4	7640.90	2267.59	89.9	26.5
1468	254.4	7368.77	2733.70	112.3	33.1
2550	254.4	7712.36	3827.83	150.3	44.3

5588.37

4951.41

178.6

190.8

9474.91

7859.00

Catalyst 2h: Run 2

4042

5620

254.4

254.4

Half-Life = 3434 min Average Half-Life = 2702 min

52.7

56.3

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	5737.46	26.01	1.4	0.4
414	254.0	6992.29	711.57	30.8	9.1
1187	254.0	6390.86	2281.63	107.9	32.1
1649	254.0	7496.73	3125.42	126.1	37.5
3188	254.0	5325.90	2687.77	152.6	45.4
4516	254.0	7979.26	4269.13	161.8	48.1
5912	254.0	7060.27	3903.97	167.2	49.7

Catalyst 3h: Run 1

Half-Life = 5912 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6080.03	35.79	1.8	0.5
414	254.0	6877.12	590.05	25.9	7.7
1187	254.0	6898.09	2455.45	107.6	32.0
1649	254.0	6284.74	2781.60	133.8	39.8
3188	254.0	6769.44	3985.13	178.0	52.9
4516	254.0	6445.00	4194.09	196.8	58.5
5912	254.0	6846.86	4804.95	212.2	63.1

Catalyst 3h: Run 2

Half-Life = 2691 min Average Half-Life = 4301

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.0	1.00	0.00	0.0	0.0
60	254.0	6670.25	59.28	2.7	0.8
414	254.0	7258.66	790.51	32.9	9.7
1187	254.0	7639.41	2535.21	100.3	29.6
1649	254.0	6456.36	2853.02	133.6	39.4
3188	254.0	7128.59	4175.76	177.1	52.2
4516	254.0	6641.67	4380.18	199.4	58.8
5912	254.0	6893.22	4624.21	202.8	59.8

Half-Life = 2823 min

Time (min)	Standard (µmol)	Standard Area	Product Area	Product (µmol)	% Product
0	254.4	1.00	0.00	0.0	0.0
60	254.4	7350.67	32.88	1.4	0.4
423	254.4	7464.41	725.62	29.4	8.7
1102	254.4	7208.55	2300.29	96.6	28.5
1468	254.4	7326.11	2862.31	118.3	34.9
2550	254.4	7321.29	3977.12	164.5	48.5
4042	254.4	9678.18	6186.04	193.6	57.1
5620	254.4	7968.50	5485.01	208.5	61.5

Half-Life = 2803 min Average Half-Life = 2813 min

Tabular Summary of Kinetics Data

Catalyst	Dun #	Fit Faustion	A 1	A.2	vû	n	D ²	+	mean
Catalyst	Kull #	Fit Equation	AI	AL.	AU	h	N	L 1/2	L 1/2
1a	1	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.3875	71.5254	16.1312	3.7217	0.9968	20	21
1 a	2	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.2735	76.7689	18.7873	3.4760	0.9966	22	21
2a	1	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	1.1706	76.6484	273.9390	2.1601	0.9992	363	351
3 a	1	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.3986	88.1119	74.5264	2.0139	0.9981	85	2 2
3 a	2	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	1.3015	84.9240	66.1219	1.9978	0.9982	78	82
4a	1	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	1.2301	91.6541	40.5945	1.8218	0.9967	44	4.4
4a	2	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	1.4027	85.6183	37.4651	1.9753	0.9955	44	44
3b	1	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.3867	76.6582	81.8218	2.4361	0.9938	106	05
3b	2	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.5777	80.0775	71.7171	2.8616	0.9941	85	95
5g	1	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.4305	70.0148	2226.7442	2.5905	0.9988	3160	2216
5g	2	$y = A2 + (A1-A2)/(1+(x/x0)^p)$	0.3700	72.7524	2388.6307	2.4770	0.9991	3273	3210

Catalyst	Run #	Fit Equation	y0	A1	t1	\mathbf{R}^2	t _{1/2}	mean t _{1/2}
2a	2	$y = A1 \exp(-x/t1) + y0$	75.24479	-79.422	296.747	0.9862	340	351
5a	1	$y = A1 \exp(-x/t1) + y0$	71.18727	-74.391	272.916	0.9920	343	310
5a	2	$y = A1 \exp(-x/t1) + y0$	83.14673	-85.271	292.987	0.9964	277	510
1b	1	$y = A1 \exp(-x/t1) + y0$	88.03818	-94.221	22.814	0.9711	21	21
1b	2	$y = A1 \exp(-x/t1) + y0$	82.6915	-87.724	21.243	0.9868	21	21
2b	1	$y = A1 \exp(-x/t1) + y0$	79.59908	-86.498	230.774	0.9748	247	246
2b	2	$y = A1 \exp(-x/t1) + y0$	75.8665	-79.473	217.282	0.9808	244	240
4b	1	$y = A1 \exp(-x/t1) + y0$	76.50725	-79.456	24.419	0.9835	27	29
4b	2	$y = A1 \exp(-x/t1) + y0$	75.42997	-77.794	27.032	0.9850	30	2)
5b	1	$y = A1 \exp(-x/t1) + y0$	79.5476	-83.213	300.471	0.9911	311	312
5b	2	$y = A1 \exp(-x/t1) + y0$	74.4181	-78.133	268.977	0.9910	313	512
1c	1	$y = A1 \exp(-x/t1) + y0$	80.07375	-80.413	126.654	0.9968	125	87
1c	2	$y = A1 \exp(-x/t1) + y0$	78.68537	-80.469	47.630	0.9838	49	07
2c	1	$y = A1 \exp(-x/t1) + y0$	71.04348	-67.956	16.652	0.9823	20	10
2c	2	$y = A1 \exp(-x/t1) + y0$	72.02988	-69.997	15.622	0.9921	18	1)
3c	1	$y = A1 \exp(-x/t1) + y0$	77.25537	-78.110	10.146	0.9928	11	9
3c	2	$y = A1 \exp(-x/t1) + y0$	78.46948	-78.940	8.026	0.9967	8)
4c	1	$y = A1 \exp(-x/t1) + y0$	75.31615	-72.481	849.155	0.9954	893	851
4c	2	$y = A1 \exp(-x/t1) + y0$	70.65912	-67.409	684.260	0.9958	809	001
5c	1	$y = A1 \exp(-x/t1) + y0$	64.56136	-67.939	358.377	0.9685	552	594
5c	2	$y = A1 \exp(-x/t1) + y0$	64.49535	-62.989	432.714	0.9697	636	574
1d	1	$y = A1 \exp(-x/t1) + y0$	59.83595	-60.380	83.405	0.9984	151	126
1d	2	$y = A1 \exp(-x/t1) + y0$	61.87681	-62.416	60.653	0.9991	101	120
2d	1	$y = A1 \exp(-x/t1) + y0$	79.38606	-75.780	12.491	0.9898	12	15
2d	2	$y = A1 \exp(-x/t1) + y0$	69.29378	-65.166	15.559	0.9903	19	15
3d	1	$y = A1 \exp(-x/t1) + y0$	79.71041	-78.566	14.264	0.9882	14	11
3d	2	$y = A1 \exp(-x/t1) + y0$	73.33839	-73.891	7.475	0.9971	9	11
4d	1	$y = A1 \exp(-x/t1) + y0$	78.9461	-77.168	11.855	0.9910	12	11
4d	2	$y = A1 \exp(-x/t1) + y0$	72.45223	-72.272	9.375	0.9968	11	11
5d	1	$y = A1 \exp(-x/t1) + y0$	77.29513	-79.438	471.051	0.9728	503	516
5d	2	$y = A1 \exp(-x/t1) + y0$	77.74945	-75.886	584.374	0.9872	588	540
1e	1	$y = A1 \exp(-x/t1) + y0$	73.75451	-71.259	23.046	0.9792	25	19
1e	2	$y = A1 \exp(-x/t1) + y0$	74.9476	-76.094	12.218	0.9949	14	17
2e	1	$y = A1 \exp(-x/t1) + y0$	75.72533	-75.076	18.011	0.9910	19	16
2e	2	y = A1 * exp(-x/t1) + y0	72.67163	-71.591	11.436	0.9980	13	16

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3e2 $y = A1^{*} \exp(-x/t1) + y0$ 72.46091-71.95932.3280.997338404e1 $y = A1^{*} \exp(-x/t1) + y0$ 76.05616-75.4328.2610.9985995e1 $y = A1^{*} \exp(-x/t1) + y0$ 76.13371-76.0678.7520.990895e1 $y = A1^{*} \exp(-x/t1) + y0$ 72.77079-72.061477.7220.98925505375e2 $y = A1^{*} \exp(-x/t1) + y0$ 74.53471-76.064463.9800.97035255171f1 $y = A1^{*} \exp(-x/t1) + y0$ 70.5268-76.45613.7750.999614192f1 $y = A1^{*} \exp(-x/t1) + y0$ 70.5268-76.45613.7750.999614492f1 $y = A1^{*} \exp(-x/t1) + y0$ 93.94348-91.72552.7640.996739442f2 $y = A1^{*} \exp(-x/t1) + y0$ 80.08334-77.15351.4990.9914493f1 $y = A1^{*} \exp(-x/t1) + y0$ 85.20084-82.58433.6330.9897293f2 $y = A1^{*} \exp(-x/t1) + y0$ 83.76239-84.362448.8740.98874444f2 $y = A1^{*} \exp(-x/t1) + y0$ 83.76239-84.362448.8740.98874445f1 $y = A1^{*} \exp(-x/t1) + y0$ 93.37255-94.144566.9350.99094394221g1 $y = A1^{*} \exp(-x/t1) + y0$ 76.72075-78.4892686.1330.99582894 <th></th>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
3g2 $y = A1 \exp(-x/t1) + y0$ 76.47531-78.528187.5720.99502044g1 $y = A1 \exp(-x/t1) + y0$ 61.39411-61.994349.1770.99725915754g2 $y = A1 \exp(-x/t1) + y0$ 70.21176-70.161448.7210.99855585751h1 $y = A1 \exp(-x/t1) + y0$ 65.01268-65.8352043.9540.987330212839	
4g1 $y = A1^*exp(-x/t1) + y0$ 61.39411-61.994349.1770.99725915754g2 $y = A1^*exp(-x/t1) + y0$ 70.21176-70.161448.7210.99855581h1 $y = A1^*exp(-x/t1) + y0$ 65.01268-65.8352043.9540.987330212839	
4g2 $y = A1^*exp(-x/t1) + y0$ 70.21176-70.161448.7210.99855581h1 $y = A1^*exp(-x/t1) + y0$ 65.01268-65.8352043.9540.987330212839	
1h 1 $y = A1*exp(-x/t1) + y0$ 65.01268 -65.835 2043.954 0.9873 3021 2839	
2037	
1h 2 $y = A1^* \exp(-x/t1) + y0$ 71.82203 -71.654 2234.771 0.9980 2657	
2h 1 $y = A1^* \exp(-x/t1) + y0$ 63.67911 -63.950 1276.679 0.9935 1969 2702	
2h 2 $y = A1^* exp(-x/t1) + y0$ 59.73834 -61.725 1859.697 0.9890 3434	2102
3h 1 $y = A1^* \exp(-x/t1) + y0$ 49.91274 -51.812 1228.678 0.9897 5912 4301	
3h 2 $y = A1^* \exp(-x/t1) + y0$ 64.83985 -66.724 1790.079 0.9919 2691	
4h 1 $y = A1^* \exp(-x/t1) + y0$ 62.97648 -64.395 1761.994 0.9962 2823 2813	
4h 2 $y = A1^* \exp(-x/t1) + y0$ 65.23792 -66.919 1894.262 0.9957 2803	

References:

page S144