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Abstract: An approach to the synthesis of anti-b2,3-amino acids is
reported. The key steps involve stereoselective lactone alkylation
followed by ring opening with iodotrimethylsilane/ethanol to give
iodo esters. Formation of the organozinc reagents from these iodo
esters, followed by either Pd- or Cu-catalysed reaction with electro-
philes gives protected b2,3-amino acids. The trans stereochemistry
in the enolate alkylation is confirmed for the allylated anti-lactone
by X-ray crystallography.
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Although less abundant in nature than a-amino acids, b-
amino acids are an important class of compound found in
various biologically important molecules.1–4 The synthe-
sis of enantiomerically pure b-amino acids therefore con-
tinues to receive considerable interest. In addition to their
presence in natural products, b-amino acids are also uti-
lised as precursors to b-lactams. b-Amino acids found in
free form exhibit interesting pharmacological properties
and possess the ability to form stable secondary struc-
tures, which are more resistant to enzymatic degradation
than their a-amino acid counterparts.5–7 b-Amino acids
can be classified according to the position of their substi-
tution, as summarised by Seebach as b2-, b3- and b2,3-ami-
no acids (Figure 1).1,2

Figure 1 b2-, b3-, and b2,3-homo amino acids

Synthetic methods for the synthesis of b-amino acids have
been extensively reviewed.1–4,8 In the context of b3-amino
acid synthesis we have previously reported that alkyl io-
dides obtained from a selectively reduced N-Boc-protect-
ed L-aspartic acid derivative underwent Pd-catalysed
cross-couplings with aryl iodides and acid chlorides to
give b3-substituted amino acid derivatives.9,10 Interesting-
ly, the corresponding N-TFA-protected alkyl iodide gave
comparable yields to the Boc derivative.11,12 Recently, we

have applied this general approach to the synthesis of ra-
cemic b2-amino acids.13 We now report the extension of
organozinc chemistry14 to the synthesis of enantiomerical-
ly pure anti-b2,3-amino acids.

We envisaged that the desired anti-b2,3-amino acids 1
could be derived from the alkyl iodides 2 via formation of
the corresponding organozinc reagent and subsequent
reaction with a suitable electrophile (Scheme 1). The re-
quired iodide 2 may be obtained by iodotrimethylsilane-
mediated ring opening of the lactone 3 and quenching of
the resultant silyl ester with an alcohol.15,16 Alkylation of
the lactone 4 (itself derived from manipulation of L-aspar-
tic acid) would give the precursor to the ring-opening
reaction 3. The appropriate choice of nitrogen protecting
group is important since it must tolerate the conditions
used for the iodotrimethylsilane ring opening in addition
to being compatible with organozinc chemistry. It may
also play a role in the facial selectivity of the reactions of
the enolate derived from lactone 4.17,18

Initially we explored the use of a carboxybenzyl (CBZ)
protecting group, but this was not unsurprisingly incom-
patible with the key ring-opening step (3 → 2) using
iodotrimethylsilane. A sulfonamide protecting group was
then considered as it is known to tolerate these condi-
tions.15,16 Although we were able to synthesise the re-
quired alkyl iodide 2 (R = H, PG = Ts), reaction of this
iodide with zinc resulted in recovery of large amounts of
4-methylphenylsulfonamide, arising from decomposition
of the presumed organozinc reagent by b-elimination. Al-
though we had previously shown that use of the strongly
electron-withdrawing TFA group resulted in stabilisation
of b-amino organozinc reagents (by suppressing internal
coordination of the carbonyl group to zinc, and thereby
changing the mechanism of the elimination),12 use of the
even more electron-withdrawing tosyl group presumably
allows a faster elimination process. This observation is
significant in defining the limits of introducing a more
electron-withdrawing nitrogen protecting group to stabi-
lise b-amino organozinc reagents. Ultimately, therefore,
we turned to the TFA protecting group, in view of the fact
that it promised to be compatible with enolate alkyla-
tion,19 lactone ring opening using iodotrimethylsilane, and
with organozinc reagent formation.12

Concurrent N-protection and cyclisation of L-aspartic acid
to give cyclic anhydride 5 was achieved according to the
literature procedure20 by reaction with trifluoroacetic an-
hydride (TFAA, Scheme 2). Selective reduction of the
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carbonyl group adjacent to the N atom using NaBH4 pro-
ceeded smoothly,21 but required an additional recyclisa-
tion–N-protection step using TFAA to give lactone 6. In
addition, a small amount of compound resulting from
reduction of the remote carbonyl group was isolated as a
minor byproduct.

Alkylation of lactone 6 by treatment with LDA at –78 °C,
followed by addition of an excess of methyl iodide, benzyl
bromide, or allyl bromide at the same temperature, al-
lowed introduction of the b2 substituent (Me, Bn, allyl).22

Under these conditions, a diastereoisomeric ratio of 11:1
(tentatively assigned as trans/cis by analogy with the lit-
erature) was observed for the methyl derivative 7, and al-
though crude 1H NMR analysis of the allyl and benzyl
derivatives 8 and 9 showed the presence of trace amounts
of the minor cis-isomer, only the major trans-isomer was
isolated. The yields quoted in each case are for the puri-
fied trans-isomer. A crystal structure of the allylated lac-
tone 9 was obtained (Figure 2), confirming the trans
relationship between the trifluoroacetamido group and the
newly introduced allyl side chain.23 It is interesting that

successful benzylation of lactone 6 could be achieved in
the absence of HMPA, which had been employed for ben-
zylation of the corresponding Boc-24 and CBZ-protected25

lactones (4, PG = Boc or CBZ).

Pleasingly, ring opening of the methylated 7 and benzylat-
ed 8 lactones using iodotrimethylsilane and EtOH15,16 was
tolerated by the TFA protecting group and furnished the
corresponding ethyl ester iodides 10 and 11 in fair
yields.26 Attempts to increase the modest yield obtained
for the allyl derivative 12 resulted in unwanted side reac-
tions involving the allyl group. However, under the condi-
tions reported, the unreacted allylated lactone 9 could be
recovered and recycled.

Conversion of the iodides 10 and 11 into the correspond-
ing organozinc reagents proceeded smoothly using zinc
activated with catalytic iodine in DMF.27 Subsequent Pd-
catalysed cross-coupling of each of the zinc reagents with
aromatic iodides using Pd2(dba)3/P(o-tol)3 gave the de-
sired anti-b2,3-amino acid derivatives in moderate to good
yields over two steps from the starting alkyl iodides
(Scheme 3, Table 1).28 The mass balance arose from a

Scheme 1 Proposed route to protected anti-b2,3-amino acids
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Scheme 2 Synthesis of b2,3-substituted alkyl iodides
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competing reaction pathway involving protonation of the
organozinc reagents.

Figure 2 Crystal structure of allylated lactone 9

Scheme 3 Organozinc reagent formation from alkyl iodides 10 and
11 and subsequent Negishi cross-coupling

Interestingly, the reaction of the organozinc reagent de-
rived from the benzyl derivative 11 with 4-iodophenol
gave a low yield of the desired product, in addition to iso-
lation of a large amount of protonated organozoinc re-
agent. Although b3-organozinc reagents have been shown
to tolerate phenolic protons in Negishi reactions;29 this re-
sult suggests that this particular organozinc reagent is

more prone to protonation.30,31 Cu-catalysed allylation re-
actions of the organozinc reagents derived from the io-
dides 10 and 11 gave the protected b2,3-amino acids 15 and
16 in good yield (Scheme 4).32

Scheme 4 Organozinc reagent formation from alkyl iodides 10 and
11 and subsequent Cu-catalysed allylation

Attempted formation of the organozinc reagent derived
from the allyl iodide derivative 12 over the usual time pe-
riod led to recovery of large amounts of starting material
in addition to only a small amount of the desired protonat-
ed compound 18. Substantial amounts of a cyclic byprod-
uct 17 were also observed. Extending organozinc reagent
formation time to 18 hours led to complete conversion of
the iodide 12, but again only a small amount of the desired
protonated product 18 was isolated. The cyclic byproduct
17 was now the major product, isolated as an approxi-
mately 2:1 mixture of diastereoisomers (Scheme 5). Re-
lated cyclisations are known.33,34

In conclusion, the TFA-protected, b2,3-substituted iodides
were prepared in four steps from L-aspartic acid. Forma-
tion of the organozinc reagent from the iodides 10 and 11
and subsequent Negishi reaction or Cu-catalysed allyla-
tion furnished the corresponding protected anti-b2,3-ami-
no acids in reasonable yield. The choice of protecting
group was found to be crucial to the viability of this route,
and indeed only the TFA group met the necessary require-
ments, tolerating both the iodotrimethylsilane ring-open-
ing conditions and organozinc reagent formation. This
result testifies to the usefulness of the TFA protecting
group in the formation and reaction of b-amino organo-
zinc iodides.12
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