C–H Functionalization

A Practical Strategy for the Structural Diversification of Aliphatic Scaffolds through the Palladium-Catalyzed Picolinamide-Directed Remote Functionalization of Unactivated C(sp³)–H Bonds**

Gang He and Gong Chen*

Powerful synthetic methods based on the regioselective functionalization of C(sp²)-H bonds of arenes and heteroarenes are becoming readily available.^[1] In keeping with this trend, the selective functionalization of C(sp³)-H bonds to construct stereogenic centers and create complex structures would be an important and useful advance.^[2] As well as providing straightforward and operationally economical solutions for target-oriented synthesis, C(sp³)-H functionalization could also significantly expand current strategies for diversity-oriented synthesis in medicinal-chemistry research.^[3] Readily accessible aliphatic substrates could be tailored by the selective replacement of C(sp³)-H bonds with other structural motifs. Such a method would offer advantages over conventional de novo synthesis.^[4]

Catalytic processes for the functionalization of nonactivated C(sp³)–H bonds are less developed than reactions which involve aryl or vinyl C-H bonds. In comparison with A) radical-, carbene-, and nitrene-mediated processes,^[5,6] the palladium-catalyzed functionalization of C(sp3)-H bonds through an innersphere mechanism offers the advantage of more versatile bond transformations via palladacycle intermediates.^[7] Although a number of ligand directing strategies have been successfully developed for such transformations, truly practical methods are still lacking.^[8] Interestingly, the research groups of Daugulis^[9] and Yu^[10] have demonstrated that amide groups possess a superior ability to direct palladium-catalyzed regioselective functionalizations of C-(sp³)–H bonds. If generally applicable, we envisioned that this amide directing strategy might find great utility in the synthesis of many nitrogen-containing pharmaceutical agents and natural products. Herein, we report a practical synthetic strategy based on the picolinamide-directed palladium-catalyzed arylation and alkenylation of the remote $C(sp^3)$ -H bonds of a variety of aliphatic substrates under mild conditions and the application of this transformation to the formal synthesis of (+)-obafluorin.

We envisioned a general three-step sequence to introduce different R groups at remote C-H bonds through the

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201100984. direction of an amide-linked auxiliary (Scheme 1 A).^[11] For this strategy to be synthetically useful, the auxiliary should be easy to introduce and should promote the highly regio- and even stereoselective functionalization of a specific $C(sp^3)$ –H bond. Furthermore, the C–H functionalization must be sufficiently mild to be compatible with sensitive functional groups and stereogenic centers in complex substrates. Finally, the removal of the auxiliary to reveal the amine should be facile. The discovery of a picolinamide-directed C–H arylation by Daugulis and co-workers provided a key blueprint for our initial study.^[9a] The original study demonstrated that a picolinamide (PA) moiety facilitates the palladium-catalyzed arylation of the $\gamma C(sp^3)$ –H bonds of aliphatic substrates with aryl iodides as the arene source. However, rather forcing

Scheme 1. Initial screening of picolinamide auxiliaries and aryl iodide substrates in the proposed reaction. Air and moisture were not strictly excluded. The yield of the isolated product is given in all cases. TIPS = triisopropylsilyl, Ts = p-toluenesulfonyl.

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 ^[*] Dr. G. He, Prof. Dr. G. Chen Department of Chemistry, The Pennsylvania State University 104 Chemistry Building, University Park, PA 16802 (USA) Fax: (+1) 814-863-5319 E-mail: guc11@psu.edu
 [**] We thank the Pennsylvania State University for support of this research

reaction conditions (Pd(OAc)₂ (0.05 equiv), AgOAc (1.0 equiv), ArI (4 equiv), 130-150 °C, no solvent) were required for this transformation.^[12] Nonetheless, intrigued by the unique remote directing ability of the PA moiety, we screened various PA-based auxiliaries systematically in an attempt to develop milder reaction conditions (Scheme 1B). Thus, we carried out the arylation of the cyclohexylamino acid substrates 1 and 1a-e with 4-iodoanisole (2; 1.5 equiv) at 80 °C with different combinations of Pd^{II} and Ag^I salts. Initial screening revealed the optimal reaction conditions: the use of Pd(OAc)₂ (0.1 equiv) and Ag₂CO₃ (1.0 equiv) with tBuOH or trifluoroethanol as the solvent. Stereoselectively monoarylated cyclohexane derivatives were obtained as the major product in all cases. Interestingly, no products bisarylated at both the γ and γ' positions were observed. The structure of 3-**1b** (*p*-NO₂-PA) was confirmed by X-ray crystallography.^[13] The electronic properties of the substituents on the pyridine ring of the PA had a clear effect on the arylation reaction: the presence of electron-withdrawing substituents, as in 1b, 1c, and 1d, led to a decrease in the arylation yield, whereas the presence of an electron-donating substituent, as in substrate 1a, led to an increase in the yield. Owing to the advantages of low cost and high performance, the unmodified PA was employed for further exploratory studies.

A broad range of aryl iodides were used successfully in the arylation of substrate **1** (Scheme 1B). *O*-TIPS, NO₂, tosyl amide, and CO₂Me groups were tolerated well under the reaction conditions. Even a free phenol, **2e**, was incorporated in moderate yield. However, the pyridine substrate **2f** failed to give any arylated product. Although the arylation of **1** with iodides **2** was complete within 24 h at 80°C, the reaction also proceeded smoothly at 60°C in 48 h. Some **3-1** (ca. 15%) was generated even at 40°C with extended reaction times (5 days).

Encouraged by the excellent performance of substrate 1 in this C-H arylation system, we examined a variety of other aliphatic amine scaffolds. Gratifyingly, excellent yields and selectivities were observed for most substrates under mild conditions (Scheme 2). For example, the exo-2-aminonorbornane 4 gave the product 5 of arylation exclusively at the C7- $H_{\rm b}$ position, whereas the *endo*-2-aminonorbornane **6** gave the product 7 of anylation exclusively at the C2-H_a position. The endo bornylamine substrate 8 was selectively arylated at the C6-H_a position: the 1-CH₃ group remained untouched. To our surprise, acyclic substrates also reacted well under the same arylation conditions. Threoninol 10 was arylated cleanly. The threonine methyl ester 12 even underwent arylation with ortho-substituted methyl 2-iodobenzoate at the y-CH₃ position to give 13 in moderate yield with complete chiral integrity. Upon the heating of 13 with p-TsOH in toluene, benzolactone 14 was obtained in excellent yield. The cis-2methylcyclohexylamine-derived substrate 15 was arylated preferentially at the CH₃ group to provide the monoarylated product 16 along with bisarylated 17 as a minor product at 60°C. The isoleucine-derived substrate 18 was arylated preferentially at the γ -CH₃ position to give the monoarylated product 19 (33%) and the bisarylated diastereomers 20 and 21 (17% combined yield) at 60°C. No significant amount of gem-diarylated products (< 3%) was observed in any of these

Scheme 2. Substrate scope of the palladium-catalyzed picolinamidedirected C(sp³)-H arylation. Reaction conditions: a) amide substrate (1.0 equiv), Arl (1.5 equiv), Pd(OAc)₂ (0.1 equiv), Ag₂CO₃ (1.0 equiv), tBuOH or trifluoroethanol, 0.2 m (air and moisture were not strictly excluded; yields refer to the isolated product); b) *p*-TsOH·H₂O (1.0 equiv), toluene, 82%. TBS = *tert*-butyldimethylsilyl, TsOH = *p*-toluenesulfonic acid.

reactions, presumably because of steric factors. Whereas the γ regioselectivity was controlled by the five-membered palladacycle intermediate, the relative conformation of the C–H bond and the Pd center had a strong influence on the regio-and stereoselectivity of the arylation reaction.

At the outset of our studies, the mechanism of this pallladium-catalyzed PA-directed C–H arylation was not well understood. The original report suggested that the process proceeded through a Pd^{II}/Pd^{IV} pathway.^[9a,14] However, the order of the C–H activation and ArI-coupling steps remained elusive. To address this question, we conducted some preliminary mechanistic studies with substrate **4** (Scheme 3 A). The dimeric Pd complex **22** was formed cleanly within 30 min upon the mixing of **4** with Pd(OAc)₂ (1.0 equiv) in *t*BuOH at 80 °C (as confirmed by X-ray crystallography: see the Supporting Information). Complex **22** reacted with **2** to give the arylated product **5** in excellent yield in the absence of Ag₂CO₃. Furthermore, **22** acted as a competent catalyst for the arylation of **4** with **2**. Isolation of the speculative

Communications

Scheme 3. Preliminary mechanistic studies. Reaction conditions: a) Pd-(OAc)₂ (1.0 equiv), tBuOH, 80°C, 30 min, quantitative; b) **2** (1.1 equiv), tBuOH, 80°C, 24 h, without Ag⁺, 81%; c) **22** (0.1 equiv), **2** (1.5 equiv), Ag₂CO₃ (1.0 equiv), tBuOH, 80°C, 24 h, 90%; d) Pd(OAc)₂ (0.1 equiv), CH₃CO₂D (10 equiv), tBuOD (solvent), 80°C, 48 h, 76%; e) **23** (or **4**) (1.0 equiv), Pd(OAc)₂ (0.1 equiv), **2** (1.5 equiv), Ag₂CO₃ (1.0 equiv), 80°C, 1–7 h, primary $k_{H/D} \approx 4$ (**4**/**23**); f) **25** (1.0 equiv), **2** (1.1 equiv), tBuOH, 80°C, 24 h.

palladacycle intermediate has not been successful so far. However, the C-H bond at the 7b-position of 4 was completely deuterated to give 23 under the catalysis of Pd(OAc)₂ (0.1 equiv) and AcOD (10 equiv) in tBuOD at 80 °C. This experiment indicates that C-H activation can take place under the reaction conditions without the involvement of the ArI substrate and that the palladation process is reversible. A primary kinetic isotope effect was observed on the basis of the arylation of substrates 4 and 23 with 2 (see the Supporting Information). Finally, ethyl picolinamide 25, which lacks a y C-H bond, was prepared as a control substrate and examined under the arylation conditions used for 22 (Scheme 3B). According to the alternative ArI oxidative addition/C-H activation pathway, either 27^[15] or 28^[16] could be formed through reductive elimination from the hypothetical Pd^{IV} complex 26. However, treatment of the palladium complex 25 with 2 in tBuOH at 80°C provided neither 27 nor 28; only a trace amount of the biphenyl side product 29 (ca. 5%) was obtained. Although not conclusive, our experiments strongly favor a sequential C-H activation/ ArI-coupling pathway for this C-H arylation reaction.

Encouraged by the success of the PA-directed C–H arylation with aryl iodides, we decided to test the feasibility of the direct functionalization of $C(sp^3)$ –H bonds with alkenyl iodides (Scheme 4). Precedent for the catalytic alkenylation of $C(sp^3)$ –H bonds is scarce; in most examples, simple acrylate or monosubstituted vinyl halides have been used.^[17] We were pleased to find that the alkenylation of **1** with various disubstituted cyclic vinyl iodides provided the desired

Scheme 4. Picolinamide-directed $C(sp^3)$ -H alkenylation with cyclic vinyl iodides. Reagents and conditions: a) NH₄HCO₂, Pd/C, MeOH, reflux, 73 %; b) 1. O₃, CH₂Cl₂; 2. PPh₃, -78 °C \rightarrow RT, 55 %; c) mCPBA, CH₂Cl₂, 0 °C, 76%. mCPBA=3-chloroperoxybenzoic acid.

alkenylated product in moderate to good yields at slightly elevated temperatures (vinyl iodide (1.5 equiv), Pd(OAc)₂ (0.1 equiv), and AgOAc (1.5 equiv) in *t*BuOH at 110 °C). Interestingly, the ring size of the cyclic vinyl iodide had a strong influence on the reaction yield; the seven-membered iodide gave the highest yield (69% yield of the isolated product **34**). Furthermore, the addition of benzoquinone (0.1 equiv) led to a slight increase in the reaction yield.^[18] The mechanism of the alkenylation process remains elusive. Although a Pd^{II}/Pd^{IV} pathway similar to the C–H arylation process is possible, insertion of the vinyl iodide into the Pd–C bond to form the intermediate **32**, followed by a *trans* β halogen elimination, could also lead to formation of the alkenylated product (Scheme 4 A).^[19]

Multisubstituted alkenes are valuable precursors for many synthetic operations (Scheme 4B). For example, **31** was reduced by Pd/C-catalyzed transfer hydrogenation to provide a formally alkylated product **37**. The double bond of **31** was cleaved selectively by ozonolysis to provide a formally acylated product **38**. Expoxide **39** was also obtained in good yield upon the treatment of **31** with *m*CPBA.

For this PA-directed C–H functionalization method to be synthetically useful, the PA auxiliary must be readily removable under mild conditions. However, cleavage of the picolinamide linkage turned out to be a challenging problem. A variety of conventional methods, including activation of the amide with a *tert*-butoxycarbonyl (Boc) group or by nitrosation, failed to provide satisfactory results. Taking a lesson from peptide chemistry, we hoped that a methylene hydroxy group installed at the *ortho* position of PA might facilitate amide cleavage through intramolecular acyl transfer under acidic conditions (Scheme 5B).^[20] Accordingly, a modified

Scheme 5. Removable picolinic acid auxiliary (PAr) for $C(sp^3)$ -H arylation. Reagents and conditions: a) 1. MeOH, 90°C, 84%; 2. CDI, THF, room temperature, then NaBH₄ in MeOH/H₂O, room temperature, 65% (2 steps); b) 1. NaOH, THF/H₂O, room temperature; 2. benzyl bromide, DMF, 34% (2 steps); 3. TBSCl, imidazole, DMF, room temperature, 92%; 4. Pd/C, H₂, EtOAc, room temperature, quantitative; c) HATU, DIPEA, DMF, room temperature, 89%; d) Pd-(OAc)₂ (0.1 equiv), Ag₂CO₃ (1.0 equiv), tBuOH, 80°C, 69%; e) aqueous HCl (1 м, 10 equiv), MeOH, 80°C, 4 h, 47 (70%), 41 (60% recovery). CDI = 1,1'-carbonyldiimidazole, DIPEA = *N*,*N*-diisopropylethylamine, DMF = dimethylformamide, HATU = 2-(7-aza-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate.

picolinic acid (PAr) was prepared from the commercially available anhydride **40** in a short reaction sequence (Scheme 5 A).^[21] PAr **42** can be installed on the amino substrate by standard amide coupling. PAr functioned well as a directing group for the palladium-catalyzed C–H arylation of **44** under our typical reaction conditions. Finally, upon treatment of the arylated product **45** with aqueous HCl (1M, 10 equiv) in MeOH at 80 °C, the desired amine product **47** was generated cleanly. The auxiliary precursor **41** could also be recovered in good yield.

To further demonstrate the synthetic utility of this new, readily removable auxiliary, we carried out a formal synthesis of the natural product (+)-obafluorin 53. Whereas the original synthesis of (+)-obafluorin was based on an aldol route with a chiral glycine synthon,^[22] our topologically straightforward synthetic strategy was based on a γ C-H arylation of a threonine-derived substrate (Scheme 6). Compound 49 was easily prepared from the readily accessible threonine derivative 48. The arylation of 49 with p-nitrophenyl iodide under our optimized conditions (Pd(OAc)₂: 0.15 equiv) gave the desired product 50 in 60 % yield. The PAr group of 50 was readily removed upon treatment with acid, and Boc protection then provided 51 in 81% yield over two steps. The saponification and lactonization of 51 gave compound 52, which successfully intercepts the Vederas synthesis.^[22]

Scheme 6. Formal synthesis of (+)-obafluorin by PAr-directed $C(sp^3)$ -H arylation. Reagents and conditions: a) **42**, HATU, DIPEA, DMF, room temperature, 80%; b) 4-iodonitrobenzene (1.5 equiv), Pd(OAc)₂ (0.15 equiv), Ag₂CO₃ (1.0 equiv), tBuOH, 70°C, 40 h, 60%; c) 1. aqueous HCl (1 M, 10 equiv), MeOH, 80°C, 2 h; 2. Boc₂O, TEA, < CH₂Cl₂, room temperature, 81% (2 steps); d) 1. LiOH, MeOH, H₂O, room temperature; 2. BOP, DIPEA, CH₂Cl₂, room temperature, 12 h, 55%. BOP=benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, TEA = triethylamine.

In summary, we have developed a highly effective protocol for the structural diversification of aliphatic scaffolds through a palladium-catalyzed picolinamide-directed functionalization of unactivated $C(sp^3)$ —H bonds under mild reaction conditions. High levels of regio- and stereoselectivity have been demonstrated with a broad range of amine substrates and both aryl and vinyl iodide coupling partners. A new removable auxiliary has been developed and applied in a concise formal synthesis of the natural product (+)-obafluorin.

Received: February 8, 2011 Published online: April 27, 2011

Keywords: alkenylation \cdot arylation \cdot C-H activation \cdot directing groups \cdot palladium

- a) Handbook of C-H Transformation, Vols. 1–3 (Ed.: G. Dyker), Wiley-VCH, Weinheim, 2005; b) K. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 1359–1469; c) L.-C. Campeau, K. Fagnou, Chem. Commun. 2006, 1253–1264; d) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. 2009, 121, 5196–5217; Angew. Chem. Int. Ed. 2009, 48, 5094–5115; e) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169.
- [2] a) H. Y. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, Science 2000, 287, 1995–1997; b) L. V. Desai, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 9542–9543; c) R. Giri, J. Liang, J.-G. Lei, J.-J. Li, D.-H. Wang, X. Chen, I. C. Naggar, C. Guo, B. M. Foxman, J.-Q. Yu, Angew. Chem. 2005, 117, 7586–7590; Angew. Chem. Int. Ed. 2005, 44, 7420–7424; d) M. S. Chen, M. C. White, Science 2007, 318, 783–787; e) M. Lafrance, S. I. K. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2007, 129, 14570–14571; f) J. J. Neumann, S. Rakshit, T. Dröge, F. Glorius, Angew. Chem. 2009, 121, 7024–7027; Angew. Chem. Int. Ed. 2009, 48, 6892–6905; g) Y. Feng, Y. Wang, B. Landgraf, S. Liu, G. Chen, Org. Lett. 2010, 12, 3414–3417.
- [3] a) A. Hinman, J. Du Bois, J. Am. Chem. Soc. 2003, 125, 11510–11511; b) S. J. O'Malley, K. L. Tan, A. Watzke, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2005, 127, 13496–13497; c) H. M. Davies, J. R. Manning, Nature 2008, 451, 417–424; d) E. M. Beck, R. Hatley, M. J. Gaunt, Angew. Chem. 2008, 120,

Communications

3046–3049; Angew. Chem. Int. Ed. 2008, 47, 3004–3007; e) K. Chen, P. S. Baran, *Nature* 2009, 459, 824–828; f) M. Chaumontet, R. Piccardi, O. Baudoin, Angew. Chem. 2009, 121, 185–188; Angew. Chem. Int. Ed. 2009, 48, 179–182.

- [4] a) K. Godula, D. Sames, *Science* 2006, *312*, 67–72; b) M. S. Chen, M. C. White, *Science* 2010, *327*, 566–571.
- [5] a) E. J. Corey, W. R. Hertler, J. Am. Chem. Soc. 1960, 82, 1657–1668; b) M. E. Wolff, Chem. Rev. 1963, 63, 55–64; c) K. Chen, J. M. Richter, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 7247–7249.
- [6] a) C. G. Espino, P. M. Wehn, J. Chow, J. Du Bois, J. Am. Chem. Soc. 2001, 123, 6935-6936; b) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861-2903.
- [7] Y. Boutadla, D. L. Davies, S. A. Macgregor, A. I. Poblador-Bahamonde, *Dalton Trans.* 2009, 5820–5831.
- [8] R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, *Chem. Eur. J.* 2010, 16, 2654–2672.
- [9] a) V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc.
 2005, 127, 13154–13155; b) D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2010, 132, 3965–3972.
- [10] a) D.-H. Wang, M. Wasa, R. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 7190-7191; b) M. Wasa, K. M. Engle, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 9886-9887; c) E. J. Yoo, M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 17378-17380.
- [11] Y. Q. Feng, G. Chen, Angew. Chem. 2010, 122, 970–973; Angew. Chem. Int. Ed. 2010, 49, 958–961.
- [12] F. R. Gou, X. C. Wang, P. F. Huo, H. P. Bi, Z. H. Guan, Y. M. Liang, Org. Lett. 2009, 11, 5726-5729.
- [13] The aryl substituent would flip to the equatorial position once installed.

- [14] a) P. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, *Chem. Rev.* 2010, *110*, 824–889; b) L. Xu, B. Li, Z. Yang, Z. Shi, *Chem. Soc. Rev.* 2010, *39*, 712–733.
- [15] J. M. Racowski, A. R. Dick, M. S. Sanford, J. Am. Chem. Soc. 2009, 131, 10974–10983.
- [16] a) M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058-14059;
 b) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck,
 M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 16184-16186.
- [17] For aromatic substrates, see: a) M. D. K. Boele, G. P. F. van Leeuwen, A. H. M. de Vries, P. C. J. Kamer, J. G. de Vries, P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2002, 124, 1586–1587; b) G. Cai, Y. Fu, Y. Li, X. Wan, Z. Shi, J. Am. Chem. Soc. 2007, 129, 7666–7673; c) T. Nishikata, B. H. Lipshutz, Org. Lett. 2010, 12, 1972–1975; d) D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, Science 2010, 327, 315–319; for aliphatic substrates, see: e) M. Wasa, K. M. Engle, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 3680–3681.
- [18] The role of benzoquinone (as either a ligand or an oxidant) was unclear.
- [19] a) M. Tobisu, Y. Ano, N. Chatani, Org. Lett. 2009, 11, 3250– 3252; b) V. G. Zaitsev, O. Daugulis, J. Am. Chem. Soc. 2005, 127, 4156–4157.
- [20] R. J. Linderman, S. Binet, S. R. Petrich, J. Org. Chem. 1999, 64, 336–337.
- [21] P. L. Ornstein, J. M. Schaus, J. W. Chambers, D. L. Huser, J. D. Leander, D. T. Wong, J. W. Paschal, N. D. Jones, J. B. Deeter, *J. Med. Chem.* **1989**, *32*, 827–833.
- [22] a) C. Lowe, Y. Pu, J. C. Vederas, J. Org. Chem. 1992, 57, 10–11;
 b) Y. Pu, C. Lowe, M. Sailer, J. C. Vederas, J. Org. Chem. 1994, 59, 3642–3655.