DOI: 10.1002/ardp.201800355

FULL PAPER

DPhG ARCH PHARM Archiv der Pharmazie

Design, synthesis, and docking study of new quinoline derivatives as antitumor agents

Eman E. Nasr¹ | Amany S. Mostafa¹ | Magda A. A. El-Sayed^{1,2} | Mohammed A. M. Massoud¹

¹Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt

²Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt

Correspondence

Mohammed A. M. Massoud, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt. Email: massoudmam@yahoo.fr

Abstract

New quinolines substituted with various heterocycles and chalcone moieties were synthesized and evaluated as antitumor agents. All the synthesized compounds were in vitro screened against 60 human cancer cell lines. Compound **13** showed the highest cytotoxicity toward 58 cell lines, exhibiting distinct growth inhibition values (GI₅₀) against the majority of them, including SR, HL-60 (TB) strains (leukemia), and MDA-MB-435 strains (melanoma), with GI₅₀ values of 0.232, 0.260, and 0.300 μ M, respectively. It exhibited great selectivity toward cancer cell lines, with less toxic effect against normal cells represented by skin fibroblast (BJ) and breast epithelial cell lines (MCF-10F). The enzyme inhibitory activity of compound **13** was evaluated against topoisomerase 1 (Topo 1), epidermal growth factor receptor and vascular endothelial growth factor receptor 2, where it displayed worthy Topo 1 inhibition activity with an IC₅₀ value of 0.278 μ M compared with camptothecin as a reference drug (IC₅₀ 0.224 μ M). Docking studies were performed to investigate the recognition profile of compound **13** with the Topo 1 enzyme binding site.

KEYWORDS

antitumor activity, chalcones, docking, EGFR, quinolone, Topo 1, VEGFR2

1 | INTRODUCTION

Quinoline is an important ring system, found in many natural and synthetic products that have diversity of applications.^[1-3] Many derivatives have various pharmacological activities, the majority of which having antimalarial,^[4] antibacterial,^[5] antifungal,^[6] anti-inflammatory,^[7] and anticancer activities.^[8]

The quinoline scaffold has a significant contribution in anticancer drug development; since many derivatives had shown magnificent results throughout different mechanisms of action varying between inhibition of angiogenesis, apoptosis, disruption of cell migration, growth inhibition (GI) by cell cycle arrest, or modulation of nuclear receptor responsiveness.^[8,9]

Literature surveys have revealed the importance of quinoline derivatives as potent anticancer agents, either from natural source like camptothecin (A) (MCF7: $IC_{50} = 0.23 \,\mu$ M),^[10] or synthetic

compounds as bosutinib (**B**) (MDA-MB-231: $IC_{50} = 0.25 \,\mu$ M),^[11] lenvatinib,^[12,13] cabozantinib,^[14] topotecan,^[15] and irinotecan.^[16]

In addition, many heterocycle-containing compounds proved to have considerable anticancer activity. They may contain tetrazoloquinoline (C) (HL-60: 70% inhibition at 100 μ M),^[17] tetrazole (D) (Hep-G2: IC₅₀ = 2.07 μ M) and (E) (Hep-G2: IC₅₀ = 1.65 μ M),^[18] pyrazoloquinoline (F) (HCT-116: IC₅₀ = 2.3 μ M),^[19] or naphthopyran nucleus in their structure (G) (PC-3: IC₅₀ = 43.6 μ M),^[20] and (H) (BT-20: 34% inhibition at 50 μ M).^[21] Besides, several chalcone derivatives were well established to show antiproliferative activities (I) (MDA-MB-468: IC₅₀ = 0.12 μ M)^[22] (Figure 1).

Guided by these findings, and in a trial to develop new anticancer therapeutic agents, we were encouraged to incorporate quinoline moiety as a main scaffold with various heterocycles and chalcone moieties to form new hybrid molecules.

FIGURE 1 Quinoline (a,b), tetrazoloquinolines (c), tetrazole (d,e), pyrazoloquinoline (f), naphthopyrane (g,h), and chalcone (i) containing compounds with reported anticancer activity

1.1 | Rationale of the molecular design

Our rationale depended mainly on molecular hybridization approach that involved the combination of two or more pharmacophoric moieties with relevant biological properties to obtain a new hybrid compound with enhanced potency, efficacy, and safety.^[23] This approach allowed us to construct new quinoline-hybrids which could serve as effective anticancer agents, since quinoline nucleus was hybridized with four heterocyclic moieties in addition to a chalcone moiety. Embodying tetrazole moiety at N₁ and C₂ of quinoline ring gave rise to the fused tetrazolo[1,5-*a*]quinoline scaffold which in turn was hybridized with pyrane, naphthopyrane, and chalcone moieties at C_3 of quinoline ring to afford the target hybrids. Furthermore, quinoline nucleus at C_2 and C_3 was hybridized with pyrazole ring to afford fused 1*H*-pyrazolo[3,4-*b*]quinoline nucleus substituted with amino group which is easily converted into cyclic imides (Figure 2).

2 | RESULTS AND DISCUSSION

2.1 | Chemistry

Our target compounds were obtained throughout three Schemes 1 to 3. Scheme 1 illustrates the synthetic pathways embraced for the

FIGURE 2 Rationale of molecular design of the target compounds

6a-c

f

⊫^N

SCHEME 1 Reagents and conditions: (a) CH₃COONa, NH₂OH, EtOH/H₂O, stirring, rt, 2 hr, then reflux, 3 hr; (b) SOCl₂, DMF, stirring, rt, 24 hr; (c) N₂H₄.H₂O, abs. EtOH, reflux, 24 hr; (d) appropriate acid anhydride, glacial acetic acid, reflux, 3 hr; (e) appropriate phenol or thiophenol, DMF, K₂CO₃, 85°C, 24 hr; (f) malononitrile, abs. EtOH, reflux 20 hr. DMF: dimethylformamide; rt: room temperature

SCHEME 2 Reagents and conditions: (a) NaN₃, H₂O, acetic acid, dimethyl sulfoxide, 40°C, 3 hr; (b) malononitrile, abs. EtOH, reflux, 12 hr; (c) TBAB, abs. EtOH, reflux 12 hr; (d) N₂H₄.H₂O or PhNHNH₂, abs. EtOH, reflux, 20 hr. TBAB: tetrabutylammonium bromide

SCHEME 3 Reagents and conditions: (a,b) Appropriate aromatic ketone, DMF, alcoholic KOH 2%, stirring, rt, 24 hr; (c) N₂H₄.H₂O, abs. EtOH, reflux, 5 hr; (d) appropriate iso(thio)cyanate, THF, stirring, rt, 24 hr. DMF: dimethylformamide; rt: room temperature; THF: tetrahydrofuran

preparation of compounds **5a-c**, **6a-c** and **7a-c**. The starting compound **1** was obtained using the method described by Meth-Cohn^[24,25] via the treatment of acetanilide with the Vilsmeier-Haack reagent. Condensation of **1** with hydroxylamine hydrochloride gave rise to oxime **2**.^[2] Dehydration of **2** using thionyl chloride in the presence of dimethylformamide (DMF) yielded nitrile **3** which was refluxed with hydrazine hydrate in ethanol to give **4**.^[26] The reaction of amino group in compound **4** with different acids anhydride (succinic anhydride, maleic anhydride, and phthalic anhydride, respectively) in the presence of glacial acetic acid yielded the cyclic imide derivatives **5a-c**. The reaction of **1** with appropriate phenol or thiophenol in the presence of potassium carbonate and DMF yielded **6a-c** which were refluxed with malononitrile in ethanol to give **7a-c** (Scheme 1).

Compound **8** was prepared through the reaction of **1** with sodium azide according to the reported method.^[27] Under Knoevenagel condensation reaction compound **8** was reacted with malononitrile to yield 2-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)malononitrile (**9**) which was reacted via Michael cycloaddition reaction with the appropriate β -diketone (dimedone and acetylacetone), β -ketoester (ethyl acetoacetate) or the appropriate phenol in the presence of tetrabutylammonium bromide (TBAB) as phase transfer catalyst to give **10**, **11a**,**b**, **12a**,**b**, and **13**, respectively. The reaction of **9** with hydrazine or phenylhydrazine afforded **14** and **15**, respectively (Scheme 2).

 α , β -Unsaturated carbonyl derivatives **16a**,**b** and **17a**,**b** were synthesized via condensation of **8** with the appropriate aryl or heteroaryl ketone. Hydrazone **18** was prepared by the reported method^[28] from **8**. It was then reacted with the appropriate iso(thio)-cyanate to yield **19a**-f, respectively (Scheme 3).

2.2 | Biological evaluation

2.2.1 | In vitro one-dose anticancer screening

Out of the 27 synthesized compounds, 25 compounds were selected by the National Cancer Institute (NCI) under the Developmental Therapeutic Program (DTP) for evaluation of their anticancer activity against 60 human tumor cell lines at a single dose of 10 μ M. The 60-cell panel is derived from nine different cancer types: leukemia, lung, colon, melanoma, central nervous system, ovary, renal, breast, and prostate cancers. The yield from single dose screening was reported as a mean graph that was analyzed by the COMPARE program.^[29] Results for the most cytotoxic compounds **6b**, **7a–c**, **13** and **19f** are listed in Table 1, expressed as Gl% of cancer cells.

Analysis of data resulted from the primary assay proved that compounds 13 and 19f displayed considerable antiproliferative activity. Compounds 6b and 7a-c showed moderate to good activity against leukemia cancer cell lines. Compound 13 exhibited high selectivity and potency against CCRF-CEM, HL-60(TB) and RPMI-8226 (leukemia cancer cell lines), HCT-116 (colon cancer cell line), SF-539 (CNS cancer cell line), MDA-MB-435 (melanoma cancer cell line), OVCAR-3 (ovarian cancer cell line), A498 (renal cancer cell line), MDA-MB-468 (breast cancer cell line) that impressively reached to 100% inhibition of tumor cell growth. It showed excellent activity against other leukemia cell lines (K-562, MOLT-4, and SR) with GI% values of 95.87, 89.37, and 96.12, respectively. Moreover, compound 13 exhibited GI% of lung cancer cell lines with values ranging from 46.36% to 88.68% with the best activity showed against the NCI-H460 cell line. It also showed good activity against prostate cancer cell lines, in addition to the rest of cancer cell lines. The rest of our synthesized compounds gave average % GI <12%.

19 19 19 19 19 19 19 19	24. 17. 21. 22. 34. 34.
13 140 15,87 15,89,37 100 100 95,87 89,37 100 100 1100 1127 81,63 87,72 87,54 81,180	87.34 100 80.67 92.03 52.61 74.64
7c 71.95 35.19 35.19 35.19 35.19 35.19 35.19 11.16 0 11.16 14.95 14.95 14.95 0 0 14.95 14.95 0 14.95 14.95 0 0 0 12.33 14.95 12.33 12.53 0 0 0 12.53 13.54 12.53 13.55 1	11.37 0.71 0.8 0 33.47
- c, 13 , and 19f) 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 15b 8b 22 22 35 15 86 31 55 133 51 33 51 33 51 33 51 33 51 33 51 33 51 33 51 33 51 33 15 8b 22 25 45 22 28 15 22 28 22 28 22 28 22 28 22 28 22 22 22 23 22 25 23 22 25 25 49 27 27 29 21 29 21 25 25 49 27 25 49 27 25 49 27 25 49 27 25 49 27 25 49 27 25 49 27 25 25 49 27 25 25 49 27 25 25 25 25 25 25 25 25 25 25 27 25 27 25 27 25 27 25 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27	7.17 2.96 0 5.29 0 21.65
ells by compounds (6b , 7a 7a 7a 8 9.88 89.88 32.17 50.64 38.94 86.25 50.67 1.19 66.67 1.19 66.67 1.19 66.67 1.19 86.25 86.44 55.08 3.33 1.44 1.162 81.11 15.58 8.11 15.58 11.49 0 0 1.1.51 11	4.98 0 1.75 24.32
ressed as Gl% of cancer of	0.21 0 5.52 0 27.51
TABLE 1 Single dose screening exp Panel/cell line Leukemia Leukemia Leukemia RPMI-8226 SR 23.64 Non-small cell lung cancer A549/ATCC AFVX HOP-92 Non-small cell lung cancer A549/ATCC EKVX HOP-92 NOCI-H226 NOCI-H226 NOCI-H226 NOCI-H226 NOCI-H228 NOCI-H228 NOCI-H228 NOCI-H228 NOCI-H228 NOCI-H228 NOCI-H228 NOCI-H228 NCI-H228 NOCI-H228 NCI-H229 NOCI-H228 NCI-H229 SSE-295 SSE	M14 99.79 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62

NASR ET AL.

(Continued)
-
щ
-
m
<
F

<u>6 of 16</u>	GI %	6b 7a 7b 7c 13 19f		21/1 20140 20108 28.39 00.07 45.12 20.09 28.19 20.10 2017 11 2017 2017 2017 2017 2017 2017		0 0.34 0 0.34 0 0 0.34 0 0 0.34 96 36.23 14.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8.96 6.09 7.51 8.49 7.34 28.84	7.06 3.59 7.46 10.93 99.07 48.27 H8.27	18.48 4 11.35 7.32 87.51 26.31 iver	e	0 0 1.17 0 86.6 38.44 C	L - 100 - 1	12.29 4.41 77.28 70.12 1	36.55 22.76 32.32 22.5 68.42 74.57	8.12 5.04 7.65 9.16 88.59 69.86 L	29.51 21.66 8.09 25.35 72.72 41.46 1	1.96 0 0 0 62.66 43.17	64.92 48.51 56.19 46.23 74.08 100		32.2 34.55 48.54 23.79 89.9 65.47	1.61 0 0.85 0 80.53 35.95		51.89 30.58 43.08 48.57 90.19 86.22	24.27 14.31 15.53 38.91 67.13 38.78	10.31 6.19 3.14 8.95 82.27 33.04 A	0.3 3.66 3.81 3.87 83.83 19.6	16.3 0 9.4 11.37 75.02 53.48 V	9.26 7.18 13.86 14.12 100 38.3
	GI %	6b	71 70	3.1./ L	5.04	1.41	0.84	8.96	7.06	18.48		0	I	12.29	36.55	8.12	29.51	1.96	64.92		32.2	1.61		51.89	24.27	10.31	0.3	16.3	9.26
ABLE 1 (Continued)		Panel/cell line	Ovarian cancer		OVCAR-3	OVCAR-4	OVCAR-5	OVCAR-8	NCI/ADR-RES	SK-OV-3	Renal cancer	786-0	A498	ACHN	CAKI-1	RXF 393	SN12C	TK-10	UO-31	Prostate cancer	PC-3	DU-145	Breast cancer	MCF7	MDA-MB-231/ATCC	HS 578T	BT-549	T-47D	MDA-MB-468

GI: growth innibition. ۰, Ñ

TABLE 2 Five dose screening results of compound 13

Panel/cell line	GI ₅₀ (μM)	TGI (µM)	LC ₅₀ (μΜ)
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.739 0.260 0.365 0.557 0.927 0.232	>100 16.7 >100 >100 >100 >100	>100 >100 >100 >100 >100 >100
Non-small cell lung cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H460 NCI-H522	3.02 5.80 0.812 0.490 3.08 3.45 2.15 0.496 0.407	>100 >100 >100 >100 >100 >100 >100 >100	>100 >100 >100 >100 >100 >100 >100 >100
Colon cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	2.69 2.36 0. 685 0.524 3.00 0.628 0.467	7.32 >1.00 >100 >100 >100 >100 >100	>100 >1.00 >100 >100 >100 >100 >100 >100
CNS cancer SF-268 SF-295 SF-539 SNB-19 U251	3.23 0.832 0.483 0.702 0.748	>100 >100 2.48 >100 >100	>100 >100 >100 >100 >100
Melanoma LOX MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.966 0.852 0.948 0.300 0.616 4.04 0.610 9.09 0.451	>100 >100 1.01 6.84 >100 >100 >100 >100	>100 >100 >100 7.83 >100 >100 >100 >100 >100
Ovarian cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.820 0.440 18.7 2.76 2.85 0.534 2.05	>100 3.36 >100 >100 >100 46.6 >100	>100 >100 >100 >100 >100 >100 >100
Renal cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	1.28 0.783 1.71 5.74 1.40 0.990 4.80 0.725	>100 >100 >100 >100 6.59 >100 >100 >100	>100 >100 >100 >100 >100 >100 >100 >100
Prostate cancer PC-3 DU-145	0.545 2.77	>100 >100	>100 >100
Breast cancer MCF7 MDA-MB-231/ATCC HS 578T	0.471 0.976 1.51	>100 >100 49.3	>100 >100 >100 (Continues)

-DPhG-Arch Pharma 7 of 16

TABLE 2 (Continued)

Panel/cell line	GI ₅₀ (μΜ)	TGI (µM)	LC ₅₀ (µM)
BT-549	1.61	>100	>100
T-47D	1.83	>100	>100
MDA-MB-468	0.466		>100

Note. GI_{50} : molar concentration of the compound that inhibits 50% net cell growth; LC_{50} : molar concentration of the compound leading to 50% net cell death; TGI: molar concentration of the compound resulting in total growth inhibition.

2.2.2 | In vitro five-dose anticancer screening

Based on the promising results obtained from single dose testing, compound **13** was selected for further assay against the full 60-cell panel at five different concentrations (100, 10, 1.0, 0.1, and 0.001 μ M). The anticancer activity was expressed according to three dose-response parameters namely, GI₅₀, TGI, and LC₅₀. Furthermore, a mean graph midpoint (MG_MID) was calculated for each of the aforementioned parameters, giving an averaged activity parameter over all cell lines. The five-dose assay results are shown in Table 2, and graphically represented in Figure 1, as dose-response curves against nine different cancer panels.

Compound **13** showed significant anticancer activity against most of the tested cancer cell lines with GI_{50} values in the range of 0.232– 18.7 µM. It was found to be highly sensitive against the leukemia SR cell line ($GI_{50} = 0.232 \mu$ M), HL-60(TB) ($GI_{50} = 0.260 \mu$ M), K-562 ($GI_{50} = 0.365 \mu$ M), non-small cell lung cancer NCI-H522 cell line ($GI_{50} = 0.407 \mu$ M), colon cancer SW-620 cell line ($GI_{50} = 0.467 \mu$ M), CNS cancer SF-539 cell line ($GI_{50} = 0.483 \mu$ M), melanoma MDA-MB-435 cell line ($GI_{50} = 0.300 \mu$ M), ovarian cancer OVCAR-3 cell line ($GI_{50} = 0.440 \mu$ M), prostate cancer PC-3 cell line ($GI_{50} = 0.545 \mu$ M) and breast cancer MDA-MB-468 cell line ($GI_{50} = 0.466 \mu$ M). Furthermore, it showed very good activity against other human cancer cell lines.

2.2.3 | In vitro cytotoxicity against human normal cells

Cytotoxic selectivity of compound **13** toward cancer cell lines was evaluated throughout screening against human normal cell lines, represented by skin fibroblast cell line (BJ) and breast epithelial cell line (MCF 10F), using staurosporine as a standard drug. The compound showed increased IC_{50} in both cell lines, compared to the reference drug, indicating higher selectivity toward cancer cell lines over normal cells (Table 3).

2.2.4 | Epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor 2 (VEGFR2), and topoisomerase 1 (Topo 1) enzyme inhibition assay

EGFR, VEGFR2, and Topo 1 were selected as specific targets to examine the in vitro inhibitory activity of compound **13** against them; to inspect the possible mechanism of action by which this compound may exert its

FIGURE 3 Five dose assay graph of compound 13 against the nine panel cancer cell lines at NCI

antitumor activity. Selection of such targets was based on the reported inhibitory activity of many quinoline-derived anticancer agents toward one or more of these enzymes, such as camptothecin,^[30] topotecan^[15] and irinotecan,^[16] which exert their anticancer activity throughout inhibition of Topo I. Besides, lenvatinib,^[12,13] tivozanib^[31] and cabozantinib^[14] are quinoline derivatives that proved to have considerable inhibitory activity against VEGFR. Furthermore, many other quinolinebased derivatives^[32] and guinoline isosteres^[33] are well known to exhibit anticancer activity via inhibition of EGFR. The tested compound showed significant inhibition against Topo 1 with IC₅₀ value of 0.278 µg/ml which is comparable to that of the reference drug camptothecin (IC $_{50}$ 0.224 μ g/ ml). On the other hand it displayed merely 60% of sorafenib activity

8 of 16

TABLE 3 Cytotoxic activity (IC₅₀) of compound 13 against human normal cell lines

	In vitro cytotoxicity I	In vitro cytotoxicity IC_{50} (µg/ml)						
Compounds	BJ	MCF-10F						
13	79.91 ± 2.14	32.92 ± 0.73						
Staurosporine	25.88 ± 0.61	27.95 ± 0.75						

against VEGFR2 and about 30% of erlotinib activity against EGFR (Table 4). The results supported that Topo 1 could be a possible target for compound 13 rather than VEGFR2 or EGFR kinases.

2.3 **Docking study**

Molecular docking study of compound 13 was performed to rationalize the promising Topo 1 inhibitory activity through inspection of the potential binding affinity and binding mode with the active site. The crystalline structure needed for determination of absolute configuration of chiral C₄ of pyran ring by X-ray crystallography was not satisfying.

T/	A	BI	LΕ	4		n	vitro	enzy	yme	inl	hib	itior	ו of	com	pou	nd	1	3	
----	---	----	----	---	--	---	-------	------	-----	-----	-----	-------	------	-----	-----	----	---	---	--

Compounds	EGFR IC₅o (µg/ml)	VEGFR2 IC ₅₀ (µg/ml)	Topo 1 IC ₅₀ (μg/ml)
13	0.721	0.412	0.278
Erlotinib	0.218	-	-
Sorafenib	-	0.243	-
Camptothecin	-	-	0.224

(a) 2D binding of camptothecin with Topo 1 active site

DPhG_Arch Pharm

(b) 3D docked conformation of camptothecin inside the pocket of Topo 1 active site

FIGURE 4 Binding of camptothecin with Topo 1 active site (PDB code 1T8I). Topo 1: topoisomerase 1

Therefore, we proposed both R and S enantiomers to perform docking study.

Docking was carried out using the X-ray crystal structure of Topo 1 with camptothecin, PDB entry 1T8I.^[34] Binding of camptothecin to the target pocket involved both the hydrogen bond formed between the guinoline-N atom with the conserved amino acid Arg364, and the arene-arene interaction between guinoline ring with TGP, DC, and deoxy adenine (DA; Figure 2). Docking of (R)-enantiomer of compound 13 demonstrated interesting binding modes similar to that of camptothecin; with dockig score value of -5.9 kcal/mol; through a hydrogen bond interaction that occurred between the nitrogen atom of ligand-CN group and the amino group hydrogen of Arg364. Besides, a π - π stacking interaction was found to be formed between the tetrazole ring and DA. Furthermore, an additional interaction occurred with Lys425 residue in the enzyme pocket, hence maintaining an improved binding pattern, comparable to that of camptothecin. (S)-Enantiomer of compound 13 shows weaker binding affinity with Topo 1 active site in comparison to (R)enantiomer, with dockig score value of -3.9 kcal/mol (Figure 3).

3 | CONCLUSION

Molecular hybrids of quinoline were designed, synthesized and biologically evaluated for their anticancer activity via NCI protocol. Compound **13** was proved to have the most potent anticancer activity; with growth inhibition (GI₅₀) values <1.0 μ M, exhibiting the highest selectivity toward leukemia, breast cancer, and CNS cancer cell lines, while proved to be less toxic against human normal cell lines. Furthermore, it showed significant Topo 1 enzyme inhibitory activity, comparable to the standard drug camptothecin. Docking study supported that Topo 1 could be a possible target for the designed compound for its antitumor activity owing to its unique binding pattern to the active site.

4 | EXPERIMENTAL

4.1 | Chemistry

4.1.1 | General

Melting points (°C) are uncorrected and were recorded using Fisher–John melting point apparatus. Microanalyses were performed at the microanalytical unit, Cairo University. IR spectra were recorded on a Mattson 5000 FT-IR spectrometer (υ in cm⁻¹) in KBr disks at the Faculty of Pharmacy, Mansoura University. The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on Jeol ECA-500 II NMR spectrometer in dimethyl sulfoxide (DMSO)-*d6* at the Faculty of Science, Mansoura University. Chemical shifts in ppm are expressed in δ units using tetramethylsilane (TMS) as internal standard. TLC technique was used for determination of reaction times using silica gel plates 60 F245E (Merck Merck KGaA, Darmstadt, Germany), the spots were visualized by UV (366 nm). All reagents were purchased from the Sigma-Aldrich Co. (St. Louis, MO). Compounds **1–4** were synthesized in accordance with method described in the literature.^[24–26]

The InChI codes of the investigated compounds are provided as Supporting Information.

4.1.2 | General procedure for synthesis of compounds 5a-c

Mixture of 1*H*-pyrazolo[3,4-*b*]quinolin-3-amine (4) (1.84 g, 0.01 mol) and the appropriate acid anhydride (0.01 mol) in glacial acetic acid

ARCH PHARM – DPhG

(a) 2D binding of compound 13 (*R*)-enantiomer with Topo 1 active site

(b) 3D docked conformation of compound **13** (*R*)enantiomer inside the pocket of Topo 1 active site

- (c) 2D binding of compound 13 (S)-enantiomer with Topo 1 active site
- (d) 3D docked conformation of compound **13** (*S*)enantiomer inside the pocket of Topo 1 active site

FIGURE 5 Binding mode of (*R*)- and (*S*)-enantiomers of compound 13 in Topo 1 active site (PDB code 1T8I)

(30 ml) was refluxed for 3 hr. The reaction mixture was cooled to 0°C and the solid product was filtered, washed with water, dried, and crystallized from ethanol.

1-(1H-Pyrazolo[3,4-b]quinolin-3-yl)pyrrolidine-2,5-dione (5a) Compound **5a** was prepared by using succinic anhydride, yield (39%); mp > 300°C; IR (cm⁻¹): 3427 (NH), 1707 (C=O); ¹H NMR: δ 2.61 (t, *J* = 6.0 Hz, 2H, CH₂ pyrrolidine), 2.71 (t, *J* = 6.2 Hz, 2H, CH₂ pyrrolidine), 7.45 (dd, *J* = 7.3, 7.4 Hz, 1H, Ar-H), 7.77 (dd, *J* = 7.2, 7.7 Hz, 1H, Ar-H), 7.94 (d, J = 8.6 Hz, 1H, Ar–H), 8.12 (d, J = 8.2 Hz, 1H, Ar–H), 9.05 (s, 1H, Ar–H), 10.92 (s, 1H, NH); Anal. calcd. for $C_{14}H_{10}N_4O_2$ (266): C, 63.15; H, 3.79; N, 21.04%. Found: C, 63.25; H, 3.67; N, 21.23%.

1-(1H-Pyrazolo[3,4-b]quinolin-3-yl)–1H-pyrrole-2,5-dione (5b) Compound **5b** was prepared by using maleic anhydride, yield (45%); mp > 300°C; IR (cm⁻¹): 3422 (NH), 1702 (C=O); ¹H NMR: δ 6.42 (d, J = 12.0 Hz, 1H, CH pyrrole), 6.62 (d, J = 12.0 Hz, 1H, CH pyrrole), 7.47 (dd, J = 7.3, 7.4 Hz, 1H, Ar-H), 7.79 (dd, J = 8.1, 8.4 Hz, 1H, Ar-H), 7.96 (d, J = 8.7 Hz, 1H, Ar–H), 8.11 (d, J = 8.1 Hz, 1H, Ar–H), 9.09 (s, 1H, Ar–H); Anal. calcd. for $C_{14}H_8N_4O_2$ (264): C, 63.64; H, 3.05; N, 21.20%. Found: C, 63.48; H, 3.11; N, 21.13%.

2-(1H-Pyrazolo[3,4-b]quinolin-3-yl)isoindoline-1,3-dione (5c) Compound **5c** was prepared by using phthalic anhydride, yield (33%); mp > 300°C; IR (cm⁻¹): 3425 (NH), 1722 (C=O); ¹H NMR: δ 7.53 (dd, *J* = 7.3, 7.4 Hz, 1H, Ar-H), 7.85 (dd, *J* = 7.3, 7.7 Hz, 1H, Ar-H), 7.95-8.14 (m, 6H, Ar-H), 9.02 (s, 1H, Ar-H); ¹³C NMR: 111.68, 123.89, 124.11, 127.87, 129.58, 130.84, 131.12, 131.60, 132.84, 135.13, 148.11, 151.37, 151.55, 166.47; Anal. calcd. for C₁₈H₁₀N₄O₂ (314): C, 68.79; H, 3.21; N, 17.83%. Found: C, 68.66; H, 3.12; N, 17.95%.

4.1.3 | General procedure for synthesis of compounds 6a-c

2-Chloroquinoline-3-carbaldehyde (1) (1.91 g, 0.01 mol) was dissolved in DMF (25 ml), to which 4-substituted phenol or thiophenol (0.01 mol) and potassium carbonate (2.76 g, 0.02 mol) were added. The reaction mixture was heated at 75°C overnight, then allowed to cool, and poured on iced water. The precipitated solid was filtered and washed with water, dried and recrystallized from methanol.

2-(4-Chlorophenoxy)quinoline-3-carbaldehyde (6a)

Yield (58%); mp 141–142°C; IR (cm⁻¹): 2860, 2730 (C–H, aldehyde), 1691 (C=O), 1590 (C=N); ¹H NMR: δ 7.40 (d, *J* = 8.9 Hz, 2H, Ar–H), 7.53– 7.60 (m, 3H, Ar–H), 7.66 (d, *J* = 8.4 Hz, 1H, Ar–H), 7.80 (dd, *J* = 8.4, 8.5 Hz, 1H, Ar–H), 8.18 (d, *J* = 8.1 Hz, 1H, Ar–H), 8.95 (s, 1H, Ar–H), 10.49 (s, 1H, CHO); ¹³C NMR: 120.07, 124.02, 124.98, 125.98, 126.90, 129.27, 129.56, 130.13, 133.17, 141.50, 147.41, 151.74, 159.90, 188.85; Anal. calcd. for C₁₆H₁₀ClNO₂ (283.71): C, 67.74; H, 3.55; N, 4.94%. Found: C, 67.66; H, 3.75; N, 4.74%.

2-(4-(Trifluoromethyl)phenoxy)quinoline-3-carbaldehyde (6b) Yield (53%); mp 124–125°C; IR (cm⁻¹): 2853, 2728 (C–H, aldehyde), 1695 (C=O), 1595 (C=N); ¹H NMR: δ 7.58–7.63 (m, 3H, Ar–H), 7.69 (d, *J* = 8.4 Hz, 1H, Ar–H), 7.82 (dd, *J* = 7.4, 7.9 Hz, 1H, Ar–H), 7.89 (d, *J* = 8.5 Hz, 2H, Ar–H), 8.21 (d, *J* = 8.0 Hz, 1H, Ar–H), 8.99 (s, 1H, Ar–H), 10.50 (s, 1H, CHO); ¹³C NMR: 120.64, 120.64, 123.26, 125.62, 125.97, 126.03, 126.29, 126.66, 127.43, 127.51, 127.55, 130.62, 133.74, 142.23, 147.79, 156.59, 159.99, 189.25; Anal. calcd. for C₁₇H₁₀F₃NO₂ (317): C, 64.36; H, 3.18; N, 4.41%. Found: C, 64.24; H, 3.29; N, 4.74%.

2-((4-Bromophenyl)thio)quinoline-3-carbaldehyde (6c)^[35] Yield (43%), mp 84-85°C as recorded, 83.4-84.3°C as reported.

4.1.4 | General procedure for the synthesis of compounds 7a-c

To a mixture of compound 6a-c (0.01 mol) in absolute ethanol (30 ml), malononitrile (2.64 g, 0.04 mol) was added. The reaction mixture was refluxed for 20 hr, and then allowed to cool. The precipitated solid was filtered, dried and recrystallized from ethanol.

2-((2-(4-Chlorophenoxy)quinolin-3-yl)methylene)malononitrile (7a)

DPhG_Arch Ph

Yield (44%); mp 219–220°C; IR (cm⁻¹): 2227 (CN), 1618 (C=C), 1579 (C=N); ¹H NMR: δ 7.39 (d, *J* = 8.9 Hz, 2H, Ar–H, phenyl), 7.57 (d, *J* = 8.7 Hz, 2H, Ar–H, phenyl), 7.60 (dd, *J* = 7.9, 7.9 Hz, 1H, Ar–H), 7.67 (d, *J* = 8.4 Hz, 1H, Ar–H), 7.82 (dd, *J* = 8.2, 8.5 Hz, 1H, Ar–H), 8.11 (d, *J* = 8.2 Hz, 1H, Ar–H), 8.87 (s, 1 H, CH=C(CN)₂), 9.06 (s, 1H, Ar–H); ¹³C NMR: 85.80, 112.71, 113.72, 116.69, 124.07, 124.53, 126.35, 127.00, 129.43, 129.56, 133.39, 141.31, 146.96, 151.38, 155.87, 157.66; Anal. calcd. for C₁₉H₁₀ClN₃O (331.7): C, 68.79; H, 3.04; N, 12.67%. Found: C, 68.66; H, 3.26; N, 12.54%.

2-((2-(4-(Trifluoromethyl)phenoxy)quinolin-3-yl)methylene)malononitrile (7b)

Yield (56%); mp 194–195°C; IR (cm⁻¹): 2228 (CN), 1617 (C=C), 1585 (C=N); ¹H NMR: δ 7.53–7.65 (m, 3H, Ar–H), 7.68 (d, *J* = 8.3 Hz, 1H, Ar–H), 7.83 (dd, *J* = 7.3, 7.5 Hz, 1H, Ar–H), 7.89 (d, *J* = 8.1 Hz, 2H, Ar–H, phenyl), 8.12 (d, *J* = 7.9 Hz, 1H, Ar–H), 8.88 (s, 1H, CH=C(CN)₂), 9.09 (s, 1H, Ar–H); ¹³C NMR: 86.34, 113.16, 114.17, 117.21, 123.39, 125.13, 125.99, 126.20, 126.52, 127.00, 127.49, 127.51, 129.92, 133.92, 141.90, 147.31, 156.13, 157.78; Anal. calcd. for C₂₀H₁₀F₃N₃O (365): C, 65.76; H, 2.76; N, 11.50%. Found: C, 65.55; H, 2.89; N, 11.62%.

2-((2-((4-Bromophenyl)thio)quinolin-3-yl)methylene)-

malononitrile (7c)

Yield (66%); mp 190–191°C; IR (cm⁻¹): 2230 (CN), 1615 (C=C), 1572 (C=N); ¹H NMR: δ 7.55 (d, *J* = 8.4 Hz, 2H, Ar–H), 7.66 (dd, *J* = 7.8, 7.9 Hz, 1H, Ar–H), 7.70 (d, *J* = 8.4 Hz, 2H, Ar–H), 7.76 (d, *J* = 8.3 Hz, 1H, Ar–H), 7.85 (dd, *J* = 8.2, 8.3 Hz, 1H, Ar–H), 8.08 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.84 (s, 1H, CH=C(CN)₂), 8.85 (s, 1H, Ar–H); ¹³C NMR: 87.64, 112.17, 113.11, 122.88, 124.80, 125.13, 127.59, 127.85, 129.04, 129.15, 132.45, 133.07, 136.18, 138.31, 148.12, 157.55; Anal. calcd. for C₁₉H₁₀BrN₃S (392): C, 58.17; H, 2.57; N, 10.71%. Found: C, 58.34; H, 2.41; N, 10.64%.

2-(Tetrazolo[1,5-*a***]quinolin-4-yImethylene)malononitrile (9)** To a mixture of compound **8** (1.98 g, 0.01 mol) in absolute ethanol (30 ml) malononitrile (2.64 g, 0.04 mol) was added. The reaction mixture was refluxed for 20 h, allowed to cool. The precipitated solid was filtered, washed with ethanol and dried to obtain the titled compound as light green solid. Yield (80%); mp 200-201°C; IR (cm⁻¹): 2236 (CN); ¹H NMR: δ 7.84 (dd, *J* = 7.5, 7.7 Hz, 1H, Ar-H), 8.07 (dd, *J* = 7.6, 7.8 Hz, 1H, Ar-H), 8.18 (d, *J* = 8.0 Hz, 1H, Ar-H), 8.69 (s, 1H, CH=CC(CN)₂), 8.74 (d, *J* = 8.4 Hz, 1H, Ar-H), 9.03 (s, 1H, Ar-H); ¹³C NMR: 87.15, 112.38, 113.40, 116.53, 117.20, 122.97, 128.93, 131.12, 131.31, 134.44, 136.07, 145.70, 153.12; Anal. calcd. for C₁₃H₆N₆ (246): C, 63.41; H, 2.46; N, 34.13%. Found: C, 63.38; H, 2.49; N, 34.11%.

4.1.5 | General procedure for the synthesis of compounds 10, 11a,b, 12a,b and 13

A mixture of compound **9** (2.46 g, 0.01 mol) with either dimedone, the appropriate 2,4-dicarbonyl compound, the appropriate

RCH PHARM – DPhG

3-substituted phenol or α -naphthol (0.01 mol) and TBAB (0.8 g, 0.0025 mol) in absolute ethanol (30 ml) was heated under reflux for 12 hr. The reaction mixture was allowed to cool to room temperature where the precipitated solid was filtered, dried and crystallized from ethanol to give the target compounds.

2-Amino-7,7-dimethyl-5-oxo-4-(tetrazolo[1,5-*a*]quinolin-4-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (10)

Yield (75%); mp 265–266°C; IR (cm⁻¹): 3414, 3327 (NH₂), 2189 (CN), 1666 (C=O); ¹H NMR: δ 0.83 (s, 3H, CH₃), 1.04 (s, 3H, CH₃), 2.00 (d, *J* = 16.1 Hz, 1H, CH₂ cyclohex-2-enone), 2.28 (d, *J* = 16.2 Hz, 1H, CH₂ cyclohex-2-enone), 2.48 (d, *J* = 15.1 Hz, 1H, CH₂ cyclohex-2-enone), 2.63 (d, *J* = 17.7 Hz, 1H, CH₂ cyclohex-2-enone), 4.79 (s, 1H, CH pyran), 7.24 (s, 2H, NH₂), 7.81 (dd, *J* = 7.2, 7.6 Hz, 1H, Ar–H), 7.94 (dd, *J* = 8.0, 8.3 Hz, 1H, Ar–H), 8.22 (s, 1H, Ar–H), 8.27 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.58 (d, *J* = 8.3 Hz, 1H, Ar–H); ¹³C NMR: 26.49, 28.67, 31.81, 33.97, 49.92, 54.57, 109.59, 116.20, 119.53, 123.72, 127.88, 128.50, 129.24, 129.42, 130.89, 131.16, 146.17, 159.63, 164.27, 196.11; Anal. calcd. for C₂₁H₁₈N₆O₂ (386): C, 65.27; H, 4.70; N, 21.75%. Found: C, 65.44; H, 4.59; N, 21.37%.

5-Acetyl-2-amino-6-methyl-4-(tetrazolo[1,5-a]quinolin-4-yl)-4H-pyran-3-carbonitrile (11a)

Compound **11a** was prepared by using acetylacetone, yield (65%); mp 240–241°C; IR (cm⁻¹): 3414, 3327 (NH₂), 2189 (CN), 1669 (C=O); ¹H NMR: δ 2.19 (s, 3H, CH₃), 2.33 (s, 3H, COCH₃), 5.08 (s, 1H, CH pyran), 7.09 (s, 2H, NH₂), 7.81 (dd, *J* = 7.6, 7.9 Hz, 1H, Ar–H), 7.95 (dd, *J* = 8.1, 8.3 Hz, 1H, Ar–H), 8.15 (s, 1H, Ar–H), 8.25 (d, *J* = 7.7 Hz, 1H, Ar–H), 8.59 (d, *J* = 8.3 Hz, 1H, Ar–H); ¹³C NMR: 19.18, 30.30, 36.32, 54.35, 112.57, 116.14, 119.54, 123.78, 128.31, 128.54, 129.36, 129.45, 130.57, 131.15, 146.38, 157.31, 159.57, 197.69; Anal. calcd. for C₁₈H₁₄N₆O₂ (346): C, 62.42; H, 4.07; N, 24.27%. Found: C, 62.29; H, 4.13; N, 24.47%.

Ethyl 6-amino-5-cyano-2-methyl-4-(tetrazolo[1,5-*a*]quinolin-4yl)-4H-pyran-3-carboxylate (11b)

Compound **11b** was prepared by using ethylacetoacetate, yield (73%); mp 222–223°C; IR (cm⁻¹): 3417, 3325 (NH₂), 2187 (CN), 1663 (C=O); ¹H NMR: δ 0.90 (t, *J* = 7.1 Hz, 3H, CH₃CH₂COO), 2.38 (s, 3H, CH₃), 3.89 (m, 2H, CH₂COO), 4.95 (s, 1H, CH pyran), 7.14 (s, 2H, NH₂), 7.81 (dd, *J* = 7.6, 7.8 Hz, 1H, Ar-H), 7.94 (dd, *J* = 7.9, 8.3 Hz, 1H, Ar-H), 8.15 (s, 1H, Ar-H), 8.26 (d, *J* = 7.9 Hz, 1H, Ar-H), 8.59 (d, *J* = 8.3 Hz, 1H, Ar-H); ¹³C NMR: 13.60, 18.55, 36.35, 53.96, 60.16, 103.78, 116.15, 119.49, 123.75, 128.38, 128.87, 129.24, 129.37, 130.88, 131.12, 146.42, 159.10, 159.49, 165.16; Anal. calcd. for C₁₉H₁₆N₆O₃ (376): C, 60.63; H, 4.28; N, 22.33%. Found: C, 60.44; H, 4.35; N, 22.57%.

2-Amino-7-hydroxy-4-(tetrazolo[1,5-a]quinolin-4-yl)-4H-chromene-3-carbonitrile (12a)

Compound **12a** was prepared by using resorcinol, yield (60%); mp 285–286°C; IR (cm⁻¹): 3522 (OH), 3461, 3339 (NH₂), 2186 (CN); ¹H NMR: δ 5.26 (s, 1H, CH pyran), 6.40 (dd, *J* = 2.3, 8.5 Hz, 1H, Ar–H),

6.46 (d, J = 2.3 Hz, 1H, Ar–H), 6.96 (d, J = 8.5 Hz, 1H, Ar–H), 7.08 (s, 2H, NH₂), 7.82 (dd, J = 7.1, 7.5 Hz, 1H, Ar–H), 7.95 (dd, J = 8.4, 8.5 Hz, 1H, Ar–H), 8.23 (s, 1H, Ar–H), 8.27 (d, J = 7.7 Hz, 1H, Ar–H), 8.59 (d, J = 8.2 Hz, 1H, Ar–H), 9.76 (s, 1H, OH); ¹³C NMR: 37.61, 52.78, 102.44, 110.66, 112.13, 116.22, 120.55, 123.75, 128.48, 129.42, 129.52, 129.57, 130.16, 131.18, 146.39, 149.44, 157.66, 161.23; Anal. calcd. for C₁₉H₁₂N₆O₂ (356.34): C, 64.04; H, 3.39; N, 23.58%. Found: C, 64.23; H, 3.78; N, 23.34%.

2,7-Diamino-4-(tetrazolo[1,5-*a*]quinolin-4-yl)-4H-chromene-3carbonitrile (12b)

Compound **12b** was prepared by using 3-aminophenol, yield (69%); mp 262–263°C; IR (cm⁻¹): 3403, 3353 (NH₂), 2182 (CN); ¹H NMR: δ 5.17 (s, 1H, CH pyran), 5.29 (s, 2H, NH₂), 6.18 (dd, *J* = 2.1, 8.3 Hz, 1H, Ar–H), 6.25 (d, *J* = 2.1 Hz, 1H, Ar–H), 6.78 (d, *J* = 8.3 Hz, 1H, Ar–H), 7.00 (s, 2H, NH₂), 7.81 (dd, *J* = 7.5, 7.9 Hz, 1H, Ar–H), 7.94 (dd, *J* = 7.9, 8.3 Hz, 1H, Ar–H), 8.18 (s, 1H, Ar–H), 8.25 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.59 (d, *J* = 8.3 Hz, 1H, Ar–H); ¹³C NMR: 37.58, 52.86, 100.13, 106.90, 110.74, 116.16, 120.74, 123.78, 128.40, 128.92, 129.32, 129.41, 129.82, 130.08, 131.03, 146.46, 149.37, 149.41, 161.42; Anal. calcd. for C₁₉H₁₃N₇O (355): C, 64.22; H, 3.69; N, 27.59%. Found: C, 64.12; H, 3.88; N, 27.45%.

2-Amino-4-(tetrazolo[1,5-*a*]quinolin-4-yl)-4H-benzo[h]chromene-3-carbonitrile (13)

Compound **13** was prepared by using α-naphthol, yield (57%); mp 288–289°C; IR (cm⁻¹): 3475, 3377 (NH₂), 2187 (CN); ¹H NMR: δ 5.56 (s, 1H, CH pyran), 7.26 (d, J = 8.6 Hz, 1H, Ar–H), 7.36 (s, 2H, NH₂), 7.55 (d, J = 8.6 Hz, 1H, Ar–H), 7.58 (dd, J = 7.3, 7.5 Hz, 1H, Ar–H), 7.67 (dd, J = 7.2, 7.6 Hz, 1H, Ar–H), 7.83 (dd, J = 7.7, 7.8 Hz, 1H, Ar–H), 7.87 (d, J = 8.1 Hz, 1H, Ar–H), 7.96 (dd, J = 7.6, 8.4 Hz, 1H, Ar–H), 8.29 (d, J = 7.9 Hz, 1H, Ar–H), 8.33 (d, J = 8.4 Hz, 1H, Ar–H), 8.36 (s, 1H, Ar–H), 8.59 (d, J = 8.3 Hz, 1H, Ar–H); ¹³C NMR: 38.51, 52.94, 114.79, 116.20, 120.34, 120.90, 122.73, 123.70, 123.75, 125.61, 126.67, 126.95, 127.67, 128.45, 128.83, 129.50, 129.59, 130.92, 131.29, 133.08, 143.52, 146.42, 161.07; Anal. calcd. for C₂₃H₁₄N₆O (390): C, 70.76; H, 3.61; N, 21.53%. Found: C, 70.56; H, 3.45; N, 21.33%.

4-(Tetrazolo[1,5-*a*]quinolin-4-ylmethylene)-4*H*-pyrazole-3,5diamine (14)

A mixture of compound **9** (2.46 g, 0.01 mol) and hydrazine hydrate (99%, 1 g, 0.02 mol) in absolute ethanol (30 ml) was heated under reflux for 20 hr. The reaction mixture was cooled to room temperature. The titled compound precipitated as green crystalline solid which was filtered and washed with ethanol. Yield (43%); mp 271–272°C; IR (cm⁻¹): 3307, 3385 (NH₂), 1566 (C=N); ¹H NMR: δ 7.49 (dd, *J* = 7.7, 7.9 Hz, 1H, Ar–H), 7.78 (dd, *J* = 8.2, 8.3 Hz, 1H, Ar–H), 7.99 (d, *J* = 8.7 Hz, 1H, Ar–H), 8.14 (d, *J* = 8.2 Hz, 1H, Ar–H), 8.44 (s, 1H, CH=C), 8.95 (s, 1H, Ar–H); ¹³C NMR: 116.06, 121.72, 123.79, 123.83, 124.43, 128.17, 128.67, 128.74, 128.87, 129.34, 130.21, 146.26; Anal. calcd. for C₁₃H₁₀N₈ (278): C, 56.11; H, 3.62; N, 40.27%. Found: C, 56.23; H, 3.44; N, 40.12%.

13 of 16

(E)-5-Imino-1-phenyl-4-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)-4,5-dihydro-1*H*-pyrazol-3-amine (15)

To a mixture of compound **9** (2.46 g, 0.01 mol) in absolute ethanol (30 ml), phenylhydrazine (1.47 g, 0.015 mol) was added and the mixture was heated under reflux for 20 hr. The formed precipitate was filtered and dried to give the titled compound as a yellow solid. Yield (66%); mp 210–211°C; IR (cm⁻¹): 3260 (NH), 1556 (C=N); ¹H NMR: δ 6.86 (dd, *J* = 7.1, 7.3 Hz, 1H, Ar–H), 7.24 (d, *J* = 7.5 Hz, 2H, Ar–H), 7.3 (dd, *J* = 7.3, 8.4 Hz, 2H, Ar–H), 7.80 (dd, *J* = 8.1, 8.2 Hz, 1H, Ar–H), 7.91 (dd, *J* = 8.4, 8.5 Hz, 1H, Ar–H), 8.30 (d, *J* = 7.6 Hz, 1H, Ar–H), 8.41 (s, 1H, Ar–H), 8.57 (s, 1H, CH=C), 8.59 (d, *J* = 8.3 Hz, 1H), 11.10 (s, 1H, NH); ¹³C NMR: 112.60, 116.15, 119.99, 121.10, 124.42, 125.28, 128.32, 128.58, 129.11, 129.27, 129.53, 130.58, 144.43, 146.25; Anal. calcd. for C₁₉H₁₄N₈ (354): C, 64.40; H, 3.98; N, 31.62%. Found: C, 64.69; H, 3.87; N, 31.33%.

4.1.6 | General procedure for synthesis of compounds 16a,b and 17a,b

A solution of tetrazolo[1,5-a]quinoline-4-carbaldehyde **(8)** (1.98 g, 0.01 mol) in DMF (10 ml) was added gradually to a solution of 4-substituted acetophenone or 1-(1-(4-substituted phenyl)-5-methyl-1*H*-1,2,3-triazol-4-yl)ethanone (0.01 mol) in alcoholic KOH (2%, 25 ml). The mixture was stirred for 24 hr, then filtered, dried and crystallized from DMF.

3-(Tetrazolo[1,5-a]quinolin-4-yl)-1-(p-tolyl)prop-2-en-1-one (16a)

Yield (23%); mp > 300°C; IR (cm⁻¹): 1656 (C=O), 1586 (C=N); ¹H NMR: δ 2.41 (s, 3H, CH₃), 7.44 (d, *J* = 8.0 Hz, 2H, Ar–H), 7.85 (dd, *J* = 7.6, 7.6 Hz, 1H, Ar–H), 8.01–8.04 (m, 4H), 8.22 (d, *J* = 7.9 Hz, 1H, Ar–H), 8.65 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.78 (d, *J* = 16.5 Hz, 1H, CH=CH), 8.8 (s, 1H, Ar–H); Anal. calcd. for C₁₉H₁₄N₄O (314): C, 72.60; H, 4.49; N, 17.82%. Found: C, 72.55; H, 4.57; N, 17.63%.

1-(4-Methoxyphenyl)-3-(tetrazolo[1,5-*a*]quinolin-4-yl)prop-2en-1-one (16b)

Yield (19%); mp > 300°C; IR (cm⁻¹): 1659 (C=O), 1583 (C=N); ¹H NMR: δ 3.90 (s, 3H, OCH₃), 7.19 (d, *J* = 8.8 Hz, 2H, Ar–H), 7.87 (dd, *J* = 7.4, 7.9 Hz, 1H, Ar–H), 8.01–8.07 (m, 2H), 8.14 (d, *J* = 8.8 Hz, 2H, Ar–H), 8.25 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.67 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.81 (s, 1H, Ar–H), 8.82 (d, *J* = 15.5 Hz, 1H, CH=CH); ¹³C NMR: 55.67, 114.44, 116.39, 120.76, 123.87, 127.42, 128.64, 130.03, 130.07, 130.14, 130.80, 132.57, 136.30, 136.42, 146.26, 163.57, 187.20; Anal. calcd. for C₁₉H₁₄N₄O₂ (330): C, 69.08; H, 4.27; N, 16.96%. Found: C, 69.23; H, 4.15; N, 16.88%.

(E)-1-(1-(4-Chlorophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-3-

(tetrazolo[1,5-*a*]quinolin-4-yl)prop-2-en-1-one (17a) Yield (25%); mp 290–291°C; IR (cm⁻¹): 1661 (C=O), 1593 (C=N); ¹H NMR: δ 2.65 (s, 3H, CH₃), 7.77 (s, 4H, Ar–H), 7.87 (dd, *J* = 7.6, 7.7 Hz, 1H, Ar–H), 8.05 (dd, *J* = 7.6, 7.9 Hz, 1H, Ar–H), 8.11 (d, *J* = 15.9 Hz, 1H, CH=CH), 8.27 (d, *J* = 8.0 Hz, 1H, Ar–H), 8.67 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.82 (s, 1H, Ar–H), 9.10 (d, J = 15.9 Hz, 1H, CH=CH); Anal. calcd. for C₂₁H₁₄ClN₇O (415.8): C, 60.65; H, 3.39; N, 23.58%. Found: C, 60.48; H, 3.55; N, 23.42%.

DPhG_Arch Ph

(E)-1-(5-Methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)-3-(tetrazolo[1,5-*a*]quinolin-4-yl)prop-2-en-1-one (17b)

Yield (20%); mp > 300°C; IR (cm⁻¹): 1663 (C=O), 1592 (C=N); ¹H NMR: δ 2.75 (s, 3H, CH₃), 7.91 (dd, *J* = 7.1, 7.6 Hz, 1H, Ar-H), 8.05–8.11 (m, 3H, Ar-H), 8.17 (d, *J* = 15.9 Hz, 1H, CH=CH), 8.31 (d, *J* = 7.5 Hz, 1H, Ar-H), 8.55 (d, *J* = 9.0 Hz, 2H, Ar-H), 8.71 (d, *J* = 8.3 Hz, 1H, Ar-H), 8.87 (s, 1H, Ar-H), 9.16 (d, *J* = 15.9 Hz, 1H, CH=CH); Anal. calcd. for C₂₁H₁₄N₈O₃ (426): C, 59.15; H, 3.31; N, 26.28%. Found: C, 59.25; H, 3.41; N, 26.35%.

4.1.7 | General procedure for synthesis of compounds 19a-f

To a solution of compound $18^{[28]}$ (2.12 g, 0.01 mol) in tetrahydrofuran (THF) (50 ml), the appropriate iso(thio)cyanate (0.012 mol) was added. The mixture was allowed to stir overnight. The formed precipitate was filtered and washed with THF, dried and crystallized from ethanol.

N-Phenyl-2-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)hydrazinecarboxamide (19a)

Yield (40%); mp 246–247°C; IR (cm⁻¹): 3370 (NH), 1691 (C=O), 1570 (C=N); ¹H NMR: δ 7.07 (dd, *J* = 7.3, 7.3 Hz, 1H, Ar–H), 7.37 (dd, *J* = 7.6, 7.9 Hz, 2H, Ar–H), 7.70 (d, *J* = 7.7 Hz, 2H, Ar–H), 7.86 (dd, *J* = 7.4, 7.5 Hz, 1H, Ar–H), 8.00 (dd, *J* = 7.5, 7.5 Hz, 1H, Ar–H), 8.25 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.51 (s, 1H, CH=N), 8.66 (d, *J* = 8.2 Hz, 1H, Ar–H), 8.92 (s, 1H, Ar–H), 9.27 (s, 1H, NH), 11.38 (s, 1H, NH); ¹³C NMR: 116.38, 119.60, 120.07, 122.81, 123.98, 128.55, 128.64, 129.31, 129.78, 131.65, 133.04, 138.79, 146.16, 152.76; Anal. calcd. for C₁₇H₁₃N₇O (331): C, 61.62; H, 3.95; N, 29.59%. Found: C, 61.53; H, 3.88; N, 29.78%.

N-(3-Chlorophenyl)-2-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)hydrazinecarboxamide (19b)

Yield (45%); mp 252–253°C; IR (cm⁻¹): 3271 (NH), 1709 (C=O), 1587 (C=N); ¹H NMR: δ 7.12 (d, *J* = 9.1 Hz, 1H, Ar–H), 7.39 (dd, *J* = 8.1, 8.1 Hz, 1H, Ar–H), 7.66 (d, *J* = 8.1 Hz, 1H, Ar–H), 7.86 (dd, *J* = 7.4, 7.5 Hz, 1H, Ar–H), 7.90 (s, 1H), 8.00 (dd, *J* = 8.0, 8.1 Hz, 1H, Ar–H), 8.25 (d, *J* = 7.9 Hz, 1H, Ar–H), 8.52 (s, 1H, CH=N), 8.65 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.94 (s, 1H, Ar–H), 9.41 (s, 1H, NH), 11.48 (s, 1H, NH); ¹³C NMR: 116.37, 117.91, 118.84, 119.85, 122.37, 123.93, 128.56, 129.13, 129.82, 130.34, 131.69, 133.05, 133.39, 140.44, 146.22, 152.65; Anal. calcd. for C₁₇H₁₂ClN₇O (365.7): C, 55.82; H, 3.31; N, 26.81%. Found: C, 55.77; H, 3.54; N, 26.92%.

N-(4-Chlorophenyl)–2-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)hydrazinecarboxamide (19c)

Yield (33%); mp 268–269°C; IR (cm⁻¹): 3298 (NH), 1704 (C=O), 1591 (C=N); ¹H NMR: δ 7.38 (d, *J* = 9.0 Hz, 2H, Ar–H), 7.71 (d, *J* = 8.9 Hz,

Arch Pharm – DPhG

2H, Ar–H), 7.82 (dd, J = 7.8, 8.0 Hz, 1H, Ar–H), 7.96 (dd, J = 8.4, 8.5 Hz, 1H, Ar–H), 8.21 (d, J = 7.5 Hz, 1H, Ar–H), 8.48 (s, 1H, CH=N), 8.62 (d, J = 8.2 Hz, 1H, Ar–H), 8.89 (s, 1H, Ar–H), 9.33 (s, 1H, NH), 11.40 (s, 1H, NH); 13 C NMR: 116.46, 119.95, 121.22, 124.01, 126.49, 128.51, 128.65, 129.22, 129.34, 129.87, 131.80, 133.43, 137.91, 146.26, 152.81; Anal. calcd. for C₁₇H₁₂ClN₇O (365.7): C, 55.82; H, 3.31; N, 26.81%. Found: C, 55.74; H, 3.54; N, 26.77%.

2-(Tetrazolo[1,5-*a*]quinolin-4-ylmethylene)-*N*-(*p*-tolyl)hydrazinecarboxamide (19d)

Yield (55%); mp 252–253°C; IR (cm⁻¹): 3264 (NH), 1689 (C=O), 1578 (C=N); ¹H NMR: δ 2.28 (s, 3H, CH3), 7.16 (d, *J* = 8.2 Hz, 2H, Ar–H), 7.57 (d, *J* = 8.3 Hz, 2H, Ar–H), 7.85 (dd, *J* = 7.2, 7.6 Hz, 1H, Ar–H), 7.99 (dd, *J* = 8.1, 8.2 Hz, 1H, Ar–H), 8.24 (d, *J* = 7.8 Hz, 1H, Ar–H), 8.49 (s, 1H, CH=N), 8.64 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.91 (s, 1H, Ar–H), 9.16 (s, 1H, NH), 11.32 (s, 1H, NH); ¹³C NMR: 20.40, 116.35, 119.65, 120.07, 123.97, 128.52, 129.09, 129.19, 129.74, 131.60, 131.68, 132.83, 136.23, 146.14, 152.77; Anal. calcd. for C₁₈H₁₅N₇O (345): C, 62.60; H, 4.38; N, 28.39%. Found: C, 62.51; H, 4.44; N, 28.24%.

N-(Naphthalen-2-yl)-2-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)hydrazinecarboxamide (19e)

Yield (40%); mp 271–272°C; IR (cm⁻¹): 3301 (NH), 1691 (C=O), 1,573 (C=N); 1H NMR: δ 7.46–7.61 (m, 2H, Ar–H), 7.71 (dd, J = 7.7, 7.9 Hz, 1H, Ar–H), 7.76 (d, J = 8.2 Hz, 1H, Ar–H), 7.85 (dd, J = 7.7, 7.8 Hz, 1H, Ar–H), 7.95–8.10 (m, 3H, Ar–H), 8.22 (d, J = 7.8 Hz, 1H, Ar–H), 8.48 (s, 1H, Ar–H), 8.61 (d, J = 8.5 Hz, 1H, Ar–H), 8.67 (d, J = 8.3 Hz, 1H, Ar–H), 8.81 (s, 1H, CH=N), 9.70 (s, 1H, Ar–H), 11.53 (s, 1H, NH);^{13C} NMR: 116.38, 117.42, 118.60, 120.39, 121.94, 123.94, 124.10, 125.74, 125.92, 126.13, 126.25, 128.33, 128.52, 129.70, 131.22, 131.76, 133.58, 133.71, 134.11, 145.66, 153.31; Anal. calcd. for C₂₁H₁₅N₇O (381): C, 66.13; H, 3.96; N, 25.71%. Found: C, 66.27; H, 3.87; N, 25.54%.

N-(4-Nitrophenyl)-2-(tetrazolo[1,5-*a*]quinolin-4-ylmethylene)hydrazinecarbothioamide (19f)

Yield (44%); mp 269–260°C; IR (cm⁻¹): 3238 (NH), 1599 (C=C), 1556 (C=N); ¹H NMR: δ 7.85 (dd, *J* = 7.6, 7.8 Hz, 1H, Ar–H), 8.00 (dd, *J* = 7.6, 7.8 Hz, 1H, Ar–H), 8.17 (d, *J* = 9.1 Hz, 2H, Ar–H), 8.23 (d, *J* = 7.9 Hz, 1H, Ar–H), 8.31 (d, *J* = 9.1 Hz, 2H, Ar–H), 8.64 (d, *J* = 8.3 Hz, 1H, Ar–H), 8.71 (s, 1H, CH=N), 8.98 (s, 1H, Ar–H), 10.78 (s, 1H, NH); ¹³C NMR: 116.45, 119.53, 123.80, 124.13, 128.66, 129.99, 130.07, 130.63, 132.14, 135.96, 143.66, 145.04, 146.20, 175.61; Anal. calcd. for C₁₇H₁₂N₈O₂S (392): C, 52.03; H, 3.08; N, 28.56%. Found: C, 52.20; H, 3.19; N, 28.47%.

4.2 | Biology

4.2.1 | Preliminary in vitro cytotoxic screening

The human tumor cell lines of the cancer screening panel were grown in supplemented RPMI 1640 medium which contains 2 mM L-glutamine and 5% fetal bovine serum. For a typical screening test, cells were inoculated into 96-well microtiter plates in 100 µl. The

plating densities ranging from 5000 to 40,000 cells/well depending on the replication time of individual cell lines. After cell inoculation, the microtiter plates were incubated at 37°C, 95% air, 5% CO₂, and 100% relative humidity for 24 hr before addition of experimental compound. Two plates of each cell line were fixed in situ with trichloroacetic acid, to signify a measurement of the cell population for each cell line at the time of compound addition (Tz).

The experimental compounds were dissolved in DMSO at 400fold the desired final maximum test concentration and put away frozen before utilization. At the time of compound addition, an aliquot of frozen concentrate was defrosted and diluted to double the wanted final maximum test concentration with total medium containing 50 mg/ml gentamicin extra four, 10-fold, or 1/2log serial dilutions were made to afford a total of five drug concentrations in addition to control. Aliquots of 100 μ l of these distinctive compound dilutions were added to the proper microtiter wells already containing 100 μ l of medium, bringing about the required final drug concentrations. More details of this evaluation technique and the integral data which is encoded by the activity pattern for all cell lines were reported elsewhere.^[36]

4.2.2 | In vitro cytotoxic screening against normal cell lines (MTT [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide] assay)^[37]

Cell lines and reagents: The skin fibroblast cell line (BJ) and the breast epithelial cell line (MCF-10F) were obtained from The American Type Culture Collection. RPMI-1640 medium, staurosporine, MTT, and DMSO (Sigma-Aldrich, St. Louis, MO), fetal bovine serum (Gibco, UK).

The assay depends on the ability of mitochondrial dehydrogenases in viable cell to cleave the tetrazolium ring of MTT (yellow color) yielding purple formazan crystals which are dissolved in acidified isopropanol where the resulting purple solution is spectrophotometrically measured. An increase or decrease in cell number results in a simultaneous change in the amount of formazan created, demonstrating the degree of cytotoxicity caused by the test compound. Cells were cultured in fresh growth medium and incubated at 37°C for 24 hr. After that, cells were treated with (0.39, 1.56, 6.25, 25, and 100 µg/ml) concentrations of the tested compound and incubated for 24 hr. MTT solution was then added in an amount equivalent to 10% of the culture medium volume and incubated for further 4 hr; after which the resulting formazan crystals were dissolved by adding an amount of acidified isopropanol equal to the original culture medium volume. The absorbance was measured spectrophotometrically at a wavelength of 570 nm using ROBONIK TM P2000 Eliza plate reader, Robonik India Pvt. Ltd, Maharashtra.

4.2.3 | Enzyme inhibition assay

Topo 1 in vitro enzyme assay

The inhibitory activities of compounds **13** and camptothecin toward Topo 1 enzyme were evaluated using enzyme-linked immunosorbent assay (ELISA) technique with purified human DNA Topo 1 ELISA kit.

DPhG-Arch Pharm

 TABLE 5
 In silico physicochemical properties of compound 13 in comparison to camptothecin

Compounds	Log P	MW	n-HBA	n-HBD	n-RB	TPSA	Log S	Lipiniski's violation
13	3.65	390.41	7	1	1	170.15	-3.79	0
Camptothecin	2.08	348.36	6	1	1	148.23	-3.01	0

Note. Log *P*: Compound's hydrophobicity; MW: molecular weight; n-HBA: number of hydrogen bond acceptors; n-HBD: number of hydrogen bond donors; n-RB: number of rotatable bonds; TPSA: topological polar surface area; Log S: solubility parameter.

Ninety-six-well plates were precoated by antibody specific to Topo 1 enzyme. One hundred microliter of standards or test sample were added to the appropriate wells and incubated for 2 hr at 37°C. One hundred microlite of biotin-conjugated antibody was added to each well and incubated for 1 hr at 37°C. Avidin conjugated to horseradish peroxidase (HRP-avidin) (100 μ l) was added and the wells were incubated for 1 hr at 37°C. 3,3',5,5'-Tetramethylbenzidine (TMB) substrate solution (90 μ l) was added to the wells and they were incubated for 15–30 minutes at 37°C. Enzyme-substrate reaction was terminated by addition of stop solution (50 μ l) to each well and the color change was measured by the determination the optical density of each well using a microplate reader set to wavelength 450 nm. The concentration of Topo 1 was then determined by using standard curve.

EGFR-TK and VEGFR2 in vitro enzyme assay

Ninety-six-well plates were precoated with substrate peptide (poly (Glu:Tyr 4:1) solution in case of EGFR-TK inhibition assay and biotingastrin precursor (Tyr87) peptide for VEGFR2 inhibition assay). The enzyme was transferred from -80°C and allowed to thaw on ice. The enzyme reaction was conducted in kinase assay buffer (240 mM 4-(2hydroxyethyl)-1-piperazineethanesulfonic acid pH 7.5, 20 mM MgCl₂, 20 mM MnCl₂, 12 µM Na₃VO₄). The prediluted test sample (10 µl) and diluted solution of purified enzyme (20 µl) were added to each reaction well. Adenosine-5'-triphosphate disodium salt solution (50 µl, 5 mmol/l) was added to initiate the reaction, incubated at 37°C for 1 hr. and then the plates were washed with phosphatebuffered saline (PBS) three times. Prediluted monoclonal phosphotyrosine antibody in PBS (100 µl) were added to each well. After incubation for another 1 hr at 37°C, the wells were washed with PBS three times. The reaction was visualized by the addition of TMB. After incubation at room temperature for 15 minutes, the reaction was terminated by adding the stop solution and read spectrophotometrically at 450 nm. The enzyme concentration was then determined by using standard curve.

4.3 | Docking study

Molecular docking study of compound **13** was performed using the docking suite of MOE (Molecular Operating Environment, version 2014.09, Chemical Computing Group Inc., St. W. Montreal, Canada). Compound **13** was docked into the crystallographic structure of Topo 1 in complex with camptothecin obtained from the Protein Data Bank (PDB ID: 1T8I).^[34] The new compound **13** was built and optimized at the ChemDraw professional 2016 then docked and analyzed by MOE

software to identify ligand-receptor interactions and to predict its binding affinity and binding mode with the active site.

4.4 | In silico prediction of physicochemical properties

Theoretical prediction of physicochemical properties for both compound **13** and the reference drug camptothecin was performed, using pkCSM online software.^[38] Results in Table 5 revealed that compound **13** complies with Lipinski's rule of five with no violations, suggesting that it has drug-likeness compared with camptothecin, and hence it would be a promising candidate as a lead structure for future design of new anticancer agents.

ACKNOWLEDGMENTS

The authors wish to credit the support of National Cancer Institute (NCI), developmental therapeutics program (DTP) of the United States for performing the screening of compounds.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

ORCID

Amany S. Mostafa b http://orcid.org/0000-0003-1909-1072 Magda A. A. El-Sayed b http://orcid.org/0000-0001-9599-9248 Mohammed A. M. Massoud b http://orcid.org/0000-0002-3347-3483

REFERENCES

- [1] S. Kumar, S. Bawa, H. Gupta, Mini-Rev. Med. Chem. 2009, 9, 1648.
- [2] B. F. Abdel-Wahab, R. E. Khidre, J. Chem. 2013, 2013, 1.
- [3] M. A. M. Massoud, W. A. Bayoumi, A. A. Farahat, M. A. El-Sayed, B. Mansour, ARKIVOC 2018, 2018, 244.
- [4] M. Henry, S. Alibert, C. Rogier, J. Barbe, B. Pradines, Curr. Top. Med. Chem. 2008, 8, 563.
- [5] X. Wang, X. Xie, Y. Cai et al., Molecules 2016, 21, 340.
- [6] R. Musiol, M. Serda, S. Hensel-Bielowka, J. Polanski, Curr. Med. Chem. 2010, 17, 1960.
- [7] A. Zarghi, R. Ghodsi, Bioorg. Med. Chem. 2010, 18, 5855.
- [8] O. Afzal, S. Kumar, M. R. Haider et al., Eur. J. Med. Chem. 2015, 97, 871.
- [9] V. R. Solomon, H. Lee, Curr. Med. Chem. 2011, 18, 1488.
- [10] C. Y. Acevedo-Morantes, M. T. Acevedo-Morantes, D. Suleiman-Rosado, J. E. Ramírez-Vick, *Drug Delivery* 2013, 20, 338.
- [11] A. Vultur, R. Buettner, C. Kowolik et al., Mol. Cancer Ther. 2008, 7, 1185.

ARCH PHARM – DPhG

- [12] K. Okamoto, K. Kodama, K. Takase et al., Cancer Lett. 2013, 340, 97.
- [13] L. J. Scott, Drugs 2015, 75, 553.
- [14] N. M. Tannir, G. Schwab, V. Grünwald, Curr. Oncol. Rep. 2017, 19, 14.
- [15] R. L. Coleman, Oncologist 2002, 7, 46.
- [16] K. Fujita, World J. Gastroenterol. 2015, 21, 12234.
- [17] A. A. Bekhit, O. A. El-Sayed, T. A. K. Al-Allaf et al., Eur. J. Med. Chem. 2004, 39, 499.
- [18] C. N. S. S. P. Kumar, D. K. Parida, A. Santhoshi, A. K. Kota, B. Sridhar, V. J. Rao, *Med. Chem. Commun.* **2011**, *2*, 486.
- [19] C. Karthikeyan, H. Amawi, A. G. Viana et al., *Bioorg. Med. Chem. Lett.* 2018, 28, 2244.
- [20] M. A. M. Massoud, M. A. El-Sayed, W. A. Bayoumi, B. Mansour, Lett. Drug Des. Discov. 2018, 16, 273.
- [21] A. Rafinejad, A. Fallah-Tafti, R. Tiwari et al., DARU J. Pharm. Sci. 2012, 20, 100.
- [22] I. K. Lindamulage, H.-Y. Vu, C. Karthikeyan et al., Sci. Rep. 2017, 7, 10298.
- [23] V. C. Viegas, Jr., B. E. J. Barreiro, B. C. A. Manssour Fraga, Curr. Med. Chem. 2007, 14, 1829.
- [24] O. Meth-Cohn, B. Narine, Tetrahedron Lett. 1978, 19, 2045.
- [25] O. Meth-Cohn, B. Narine, B. Tarnowski, J. Chem. Soc., Perkin. Trans. 1981, 1520.
- [26] M. R. Bell, J. H. Ackerman, 1990, US Patent, 4920128.
- [27] A. A. Bekhit, O. A. El-Sayed, E. Aboulmagd, J. Y. Park, Eur. J. Med. Chem. 2004, 39, 249.
- [28] N. M. Ibrahim, H. A. A. Yosef, M. R. H. Mahran, J. Chem. Res. 2009, 2009, 220.
- [29] For information about the COMPARE program, visit the web site: http://dtp.nci.nih.gov/compare/ (accessed August, 11, 2015).

- [30] Z. Wang, I. D'Annessa, C. Tesauro et al., Biochim. Biophys. Acta 2015, 1854, 860.
- [31] E. S. Kim, Drugs 2017, 77, 1917.
- [32] J. A. Makawana, C. B. Sangani, L. Lin, H.-L. Zhu, Bioorg. Med. Chem. Lett. 2014, 24, 1734.
- [33] Z. Yang, A. Hackshaw, Q. Feng et al., Int. J. Cancer 2017, 140, 2805.
- [34] B. L. Staker, M. D. Feese, M. Cushman et al., J. Med. Chem. 2005, 48, 2336.
- [35] W. Zhong, W. Ma, Y. Liu, Tetrahedron 2011, 67, 3509.
- [36] A. Monks, D. Scudiero, P. Skehan et al., J. Natl. Cancer Inst. 1991, 83, 757.
- [37] T. Mosmann, J. Immunol. Methods **1983**, 65, 55.
- [38] D. E. V. Pires, T. L. Blundell, D. B. Ascher, J. Med. Chem. 2015, 58, 4066.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Nasr EE, Mostafa AS, El-Sayed MAA, Massoud MAM. Design, synthesis, and docking study of new quinoline derivatives as antitumor agents. *Arch Pharm Chem Life Sci.* 2019;e1800355.

https://doi.org/10.1002/ardp.201800355