AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by Gothenburg University Library

Bioactive Constituents, Metabolites, and Functions

Enantioselective Synthesis and Antifungal Activity of C18 Polyacetylenes

Jia Liu, Shichao Lu, Jiayang Feng, Changkai Li, wenliang wang, Yiming Pei, Shengli Ding, Meng Zhang, Honglian Li, Risong Na, and Qing X. Li

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.9b07967 • Publication Date (Web): 27 Jan 2020

Downloaded from pubs.acs.org on January 29, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	
2	Enantioselective Synthesis and Antifungal Activity of C18 Polyacetylenes
3	
4	Jia Liu, ¹ Shichao Lu, ¹ Jiayang Feng, ¹ Changkai Li, ¹ Wenliang Wang, ¹ Yiming Pei, ¹ Shengli
5	Ding, ¹ Meng Zhang, ¹ Honglian Li, ^{1,*} Risong Na, ^{1,*} and Qing X. Li ²
6	^{1,} College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou,
7	450002, China
8	² , Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa,
9	1955 East-West Road, Honolulu, HI 96822, USA
10	
11	* Corresponding Author
12	Email address: nrs@henau.edu.cn

13 honglianli@sina.com

14 Abstract

15	Fungal pathogens cause serious crop diseases and decrease crop yields and quality.
16	Polyacetylene alcohols are plant secondary metabolites and bioactive against various pathogenic
17	fungi. They are, however, difficult to synthesize. In the present study, an efficient and highly
18	enantioselective method (> 98% ee) was established and employed to achieve the synthesis of
19	the natural C18 polyacetylenes (S, E)-octadeca-1,9-dien-4,6-diyn-3-ol 1, (3R, 10R, E)-octadeca-
20	1,8-dien-4,6-diyne-3,10-diol 2 and their analogs. The title compounds were structurally
21	characterized and biologically evaluated for fungicidal activities. The compounds exhibited high
22	potencies against eight pathogenic fungal species tested, such as Colletotrichum gloeosporioiles,
23	Bipolaris sorokiniana, Fusarium graminearum and Fusarium pseudograminearum, with half-
24	maximum effective concentrations ranging from 8 to 425 μ g/mL, being similar to those of the
25	fungicide thiophanate-methyl (3 - 408 μ g/mL). These compounds are potential natural fungicides
26	and fungicide lead candidates for further structural and property improvements.
27	
28	Key words: Antifungal, Asymmetric synthesis, Fungicide, Panax Stipuleanatus, Polyacetylene

29

30 INTRODUCTION

Fungal pathogens are widely distributed and cause serious damage to crops. Many plants secrete secondary metabolites to defend against pathogenic invasion. Those metabolites reveal antifungal effects,¹⁻⁵ which indicate a great potential for the development of fungicides. A classic example is the discovery of strobilurins from *Strobilurus tenacellus*, which opened the door for the development of one of the best salable fungicides – azoxystrobin.⁶⁻⁹ Pyrethroid and neonicotinoid insecticides are also good examples of pesticides developed from natural products.¹⁰⁻¹¹

Polyacetylene alcohols are widespread defensive secondary metabolites in plants such as 38 Umbelliferae and Araliaceae. In an early report in 1978, falcarindiol, a C17 polyacetylene 39 alcohol, was discovered to exhibit antifungal activity to Uromyces fabae and Colletotrichum 40 lagenarium.¹² In 2012, Kim's group found two new C18 polyacetylenes from Panax 41 stipuleanatus,¹³⁻¹⁴ which showed biological activities against HCT-116 cancer cell better than 42 43 mitoxantrone. Further studies have shown that polyacetylene alcohols have beneficial effects on acute alcohol-induced oxidative stress and liver damage as well as antioxidant activity, intensive 44 cell differentiation activity and exhibited dose-dependent inhibitory effects on the cancer cell 45 proliferation.¹⁵⁻²⁰ The diverse biological activities indicate that polyacetylene alcohols have the 46 potential to be developed as natural product drugs and fungicides, especially as natural 47 fungicides from plant origin.¹⁹ 48 49 However, the unique structures of chiral conjugated diynol make the compounds difficult to store and synthesize, which restrict the development and application of polyacetylene alcohols.²¹ 50

51 Those limitations prompted us to develop an efficient and highly enantioselective method and to

52 employ it for the synthesis of these natural products with a large structural diversity.

53	In 2016, our group achieved the C17 polyacetylenes virol A and C by using chiral alkynols,
54	which was proved to be a reasonable synthetic block for the preparation of polyacetylene
55	alcohols (Figure 1). ²² In the present study, a general method was established to synthesize the
56	natural C18 polyacetylenes (S, E)-octadeca-1,9-dien-4,6-diyn-3-ol 1 and (3R, 10R, E)-octadeca-
57	1,8-dien-4,6-diyne-3,10-diol 2 and their analogs with a large structural diversity. The synthetic
58	compounds inhibited eight pathogenic fungal species tested, such as Colletotrichum
59	gloeosporioiles, Bipolaris sorokiniana, Fusarium graminearum and Fusarium
60	<i>pseudograminearum</i> . The half-maximum effective concentrations (EC_{50}) of the synthetic
61	polyacetylene alcohols ranged from 8 to 425 μ g/mL, which are comparable to the potencies, but
62	differ in the anti-fungal spectrum of the commercial fungicide thiophanate-methyl. Those
63	polyacetylene alcohols can be fungicide lead candidates.

64

65 MATERIALS AND METHODS

General Information. All reactions were performed under argon atmosphere. Solvents were 66 dried according to standard procedures and distilled prior to use.²³ All reagents were purchased 67 commercially and used without further purification unless stated otherwise. ¹H, ¹³C and 2D 68 NMR data were recorded with a Bruker AvanceTM III 400MHz spectrometer (Billerica, MA). 69 High-resolution mass spectra were recorded on an Agilent 6224 TOF instrument (Santa Clara, 70 CA) by the TOF MS technique. The fused silica capillary column was a DB-5MS column 71 (Agilent Technologies). Electron impact (70 eV) mass spectra were recorded from m/z 50 to 550. 72 Enantiomeric excess (ee) was determined by chiral HPLC (Prominence LC-20A, Kyoto, Japan) 73 analyses using a chiral column (Chiralpak OD-H), and elution with isopropanol-hexane. 74

75	Chiralcel OD: 0.8 ml/min, Hexane/2-propanol (65/35), 220 nm. The optical rotations were
76	measured on a Perkin Elmer 341 Polarimeter (Waltham, MA).
77	Antifungal activity assay. All seven compounds were tested against eight food and cash
78	crop fungal pathogens, ²⁴⁻²⁵ according to published procedure. ²⁶ The compound (10 mg) was
79	dissolved in 0.5 mL of DMSO and then diluted with distilled water containing 0.1% Tween-80 to
80	a concentration of 200 μ g/mL. The solution was then diluted to 1.56, 3.12, 6.25, 12.5, 25, 50, and
81	100 μ g/mL. The fungicidal activity was determined as the rate of mycelial growth inhibition. ²⁶
82	Thiophanate-methyl is a broad-spectrum systemic commercial fungicide. It was used as a
83	positive control to compare the antifungal potencies of the newly synthesized compounds.
84	Statistics and EC ₅₀ calculations. Data were presented as the means \pm standard deviations
85	(SD) for at least three independent experiments. Statistical significance (*** p < 0.001, ** p <
86	0.01, * $p < 0.05$) was assessed using Student's <i>t</i> -test or one-way analysis of variance (ANOVA)
87	coupled with Dunnett's <i>t</i> -test.
88	General synthetic method of target compounds. To a blue solution of CuCl (2.9 mg, 0.03
89	mmol) in degassed 30% n-BuNH ₂ solution (2.2 mL) was added aqueous NH ₂ OH-HCl to
90	discharge the blue color at 0 °C. A solution of terminal alkyne (1.50 mmol) in methanol (MeOH)
91	(1.0 mL) was then added. After the resulting mixture was stirred for 1 min, bromohydrocarbon
92	(1.00 mmol) in MeOH (1.0 mL) was added slowly. The reaction mixture was stirred for 30 min
93	before it was quenched with water. The aqueous phase was extracted with dichloromethane. The
94	combined organic phases were washed with saturated brine solution, dried over anhydrous
95	Na ₂ SO ₄ , and concentrated under reduced pressure. The residue was purified by silica gel

96 chromatography.

97

RESULTS AND DISCUSSION 98

99	The retrosynthetic analysis of (S, E) -1 and $(3R, 10R, E)$ -2 (Figure 2) led to four different
100	fragments: the terminal alkyne 8 and chiral alkynols (S)-12, (R)-12, and 18. All the chiral
101	alkynols could be generated from a chiral alkynol ester, a classic product synthesized from the
102	asymmetric addition of methyl propiolate to aldehydes with the enantioselectivity up to 98%
103	purity. Terminal alkyne 8 could be synthesized by desiliconization of enyne 7, which could be
104	accomplished by the Cu-catalyzed cross-coupling reaction.
105	The synthesis of 8 started from the preparation of the long-chain propargyl alcohol 4
106	(Scheme 1). Under the effect of <i>n</i> -butyllithium, propargyl alcohol reacted with 1-bromooctane to
107	afford 4 with 95% yield. Then, 4 was treated with $LiAlH_4$ to generate enol 5 with 91% yield.
108	Bromohydrocarbon 6 was prepared in 99% yield by the substitution of enol 5 with carbon
109	tetrabromide and triphenylphosphine. The key intermediate 7 was achieved by the cross-coupling
110	of bromohydrocarbon 6 with trimethylsilyacetylene in 83% yield under room temperature. After
111	the desiliconization of enyne 7, the terminal alkyne 8 was synthesized in 90% yield.
112	Synthesis of the chiral alkynol (S)-12 was consisted of two parts (Scheme 2). Under the
113	effect of prophenol-triphenylphosphine oxide-zinc complex, the asymmetric addition of methyl
114	propiolate 10 to acrole in 9 was achieved to afford (S)-11 with 65% yield and 99% ee. ²⁷⁻²⁸ The
115	second part was the decarboxylation and substitution of (S) -11. (S) -11 was treated with LiOH,
116	CuCl, NBS and AgNO ₃ to afford chiral alkynol (S)-12 in 71% yield. The synthesis of the chiral
117	alkynol (R)-12 was similar to that of (S)-12 with the compound (S)-19 instead of (R)-19.
118	The synthesis of the chiral enol 18 started from the preparation of the chiral propargyl
119	alcohol (R)-15 (Scheme 3). Under the same condition of the synthesis of (R)-12, (R)-15 was

120	achieved in 73% yield. (<i>R</i>)-15 was then treated with $LiAlH_4$ and $AlCl_3$ to afford the bromoenol
121	16 in 91% yield. ²⁹ The key intermediate 17 was achieved by cross-coupling 16 with
122	trimethylsilyacetylene in 87% yield at room temperature. After the desiliconization of 17, the
123	terminal alkyne 18 was synthesized in 91% yield.
124	The natural product (S, E) -1 was synthesized by the Cadiot-Chodkiewicz cross-coupling of
125	the terminal alkyne 8 and the alkynol (S)-12 in 87% yield. ³⁰ The natural product (3R, 10R, E)-2
126	was achieved by the across-coupling of chiral enol 18 and (R) - 12 in 87% yield (Scheme 4). After
127	(S, E)-1 and $(3R, 10R, E)$ -2 were synthesized, we intended to test the antifungal activity of the
128	new C18 structures having different double bonds and chiral alkynol centers. A new Z-
129	configuration terminal alkyne 23 was then synthesized in order to achieve a series of (S, E) -1
130	analogs.
131	The synthesis of the terminal alkyne 23 started from 4 (Scheme 5). The propargyl alcohol 4
132	was treated with carbon tetrabromide and triphenylphosphine to generate the bromohydrocarbon
133	20 in 98% yield. The intermediate 21 was achieved by cross-coupling 20 with
134	trimethylsilyacetylene in 85% yield under nitrogen atmosphere. 22 was selectively reduced by
135	the Raney Nickel in 81% yield. After the desiliconization of the enyne 22, the terminal alkyne 23
136	was synthesized in 91% yield.
137	Five isomers of (S, E) -1 were achieved by the same synthetic strategy as (S, E) -1 (Scheme
138	6). (R , E)-1 was synthesized by the Cadiot-Chodkiewicz cross-coupling of 8 and (R)-12 in 85%
139	yield. <i>Rac-</i> (<i>E</i>)-1 was accomplished by the cross-coupling of 8 and <i>rac-</i> 12 in 83% yield. Cross-
140	coupling of 23 with (<i>R</i>)-12, <i>rac</i> -12 and (<i>S</i>)-12 afforded in (<i>R</i> , <i>Z</i>)-1, <i>Rac</i> -(<i>Z</i>)-1 and (<i>S</i> , <i>Z</i>)-1,
141	respectively, in 87%, 87% and 85% yields.
142	Structural characterization: Table 1 shows ¹ H NMR spectroscopic data ($\delta_{\rm H}$ in ppm, J in

143	Hz) of, (<i>S</i> , <i>E</i>)-1 (<i>R</i> , <i>Z</i>)-1 and (<i>3R</i> , 10 <i>R</i> , <i>E</i>)-2 (400 MHz, CDCl ₃). (<i>S</i> , <i>E</i>)-octadeca-1,9-dien-
144	4,6-diyn-3-ol, (S , E)-1, $[\alpha]_D^{20} = +11.2$ ($c = 0.10$, CHCl ₃), $lit^{13} [\alpha]_D^{20} = +11.2$ ($c = 0.10$, CHCl ₃).
145	The molecular formula is $C_{18}H_{26}O$. HRMS ESI [M-H] ⁻ calcd for $C_{18}H_{25}O$ ⁻ 257.1911, found
146	257.1913. The ¹ H-NMR spectrum contained alkenyl proton signals H-1 at δ 5.47 (dt, $J = 17.0$,
147	1.3 Hz, 1H) and 5.24 (dt, $J = 10.1$, 1.3 Hz, 1H). The HMBC and DEPT spectra showed an
148	oxygenated H-3 proton signal at δ 4.93 (d, J = 5.0 Hz, 1H), olefinic protons (H-2, H-9, H-10) at δ
149	5.94 (ddd, <i>J</i> = 17.0, 10.1, 5.3 Hz, 1H), 5.39 – 5.30 (m, 1H), 5.67 (dtt, <i>J</i> = 15.3, 6.8, 1.8 Hz, 1H),
150	and alkyl protons (H-17, H-16, H-15, H-14, H-13, H-12, H-11, and H-8) at δ 1.37 – 1.32 (m,
151	2H), 1.26 (s, 10H), 2.03 – 1.98 (m, 2H), 3.00 (dt, <i>J</i> = 5.7, 1.4 Hz, 2H), and a methyl proton (H-
152	12) at 0.88 (t, $J = 6.8$ Hz, 3H). The δ 2.10 (d, $J = 5.6$ Hz, 1H) showed no correlation with any
153	carbon in the HSQC spectrum; it was assigned to the hydroxy group (H-19). The ¹³ C-NMR
154	spectrum contained four olefinic carbon signals (C-2, C-10, C-9, and C-1) at δ 136.1, 133.6,
155	122.0, and 117.0, one oxygenated sp ³ carbon signal (C-3) at δ 63.5, four alkyne carbon signals
156	(C-4, C-5, C-6, and C-7) at δ 79.6, 65.7, 71.2, 74.5, seven alkyl carbon signals (C-8, C-17, C-16,
157	C-15, C-14, C-13, C-12, and C-11) at 22.4, 31.9, 29.4, 29.2, 29.2, 29.1, 22.6, and 32.3, and one
158	methyl carbon signal (C-18) at 14.1. The NOESY-NMR spectrum correlation between H-8 (δ
159	$3.00 (dt, J = 5.6, 1.4 Hz, 2H)$ and H-11 ($\delta 2.03 - 1.98 (m, 2H)$) revealed that C-9 and C-10 were
160	trans-configured.

161 (R, Z)-Octadeca-1,9-dien-4,6-diyn-3-ol, (R, Z)-1, $[\alpha]_D^{20} = -30.9$ (c = 0.10, CHCl₃). The 162 molecular formula is C₁₈H₂₆O. HRMS ESI [M-H]⁻ calcd for C₁₈H₂₅O⁻ 257.1911, found 257.1912. 163 The ¹H-NMR spectrum contained alkenyl proton signals (H-1) at δ 5.49 - 5.44 (m, 1H), 5.41 – 164 5.34 (m, 1H). The HMBC and DEPT spectra showed an oxygenated (H-3) proton signal at δ 4.91 165 (dt, J = 5.4, 1.3 Hz, 1H), olefinic proton signals (H-2, H-10, H-9) located separately at δ 5.94 166

(ddd, J = 17.1, 10.2, 5.4 Hz, 1H), 5.51 (dt, J = 9.0, 1.7 Hz, 1H), 5.24 (dt, J = 10.2, 1.2 Hz, 1H),

167	and alkyl proton signals (H-8, H-11, H-12, H-13, H-14, H-15, H-16, and H-17) at δ , 2.02 (qd, $J =$
168	7.3, 1.5 Hz, 2H), 3.03 (dt, <i>J</i> = 7.0, 1.1 Hz, 2H), 1.35 (q, <i>J</i> = 7.0 Hz, 2H), 1.27 (s, 10H), and a
169	methyl proton signal (H-18) at 0.87 (t, $J = 6.7$ Hz, 3H). The δ 2.02 signal (qd, $J = 7.3$, 1.5 Hz,
170	1H) showed no correlation with any carbon in the HSQC spectrum; it was assigned to the
171	hydroxy group (H-19). The ¹³ C-NMR spectrum contained four olefinic carbon signals (C-2, C-
172	10, C-9, and C-1) at δ 136.1, 133.1, 121.9, and 117.0, and one oxygenated sp3 carbon signal (C-
173	3) at δ 63.5, four alkyne carbon signals (C-4, C-5, C-6, and C-7) at δ 80.3, 64.0, 71.3, and 74.2,
174	seven alkyl carbon signals (C-8, C-11, C-12, C-13, C-14, C-15, C-16, and C-17) at δ 17.7, 27.2,
175	29.2, 29.2, 29.3, 29.4 22.7, and 31.8, and one methyl carbon signal (C-18) at 14.1. The NOESY-
176	NMR spectrum correlation between H-11 (δ 3.03 (dt, J = 7.0, 1.1 Hz, 2H)) and H-8 (2.02 (qd, J
177	= 7.3, 1.5 Hz, 3H)) revealed that C-9 and C-10 were cis-configured.
178	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, (3R, 10R, E)-2 was obtained as yellow
178 179	$(3R, 10R, E)$ -Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D{}^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D{}^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular
178 179 180	$(3R, 10R, E)$ -Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D{}^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D{}^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H-
178 179 180 181	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D{}^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D{}^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and
178 179 180 181 182	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and 5.25 (dd, $J = 10.1$, 1.4 Hz, 1H). The HMBC and DEPT spectra showed two oxygenated proton
178 179 180 181 182 183	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and 5.25 (dd, $J = 10.1$, 1.4 Hz, 1H). The HMBC and DEPT spectra showed two oxygenated proton signals (H-3 and H-10) located separately at δ 4.97 (d, $J = 5.0$ Hz, 1H), 4.18 (q, $J = 6.2$ Hz, 1H),
178 179 180 181 182 183 184	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and 5.25 (dd, $J = 10.1$, 1.4 Hz, 1H). The HMBC and DEPT spectra showed two oxygenated proton signals (H-3 and H-10) located separately at δ 4.97 (d, $J = 5.0$ Hz, 1H), 4.18 (q, $J = 6.2$ Hz, 1H), and three olefinic proton signals (H-9, H-2, H-8) located separately at δ 6.33 (ddd, $J = 15.9$, 5.7,
178 179 180 181 182 183 184 185	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and 5.25 (dd, $J = 10.1$, 1.4 Hz, 1H). The HMBC and DEPT spectra showed two oxygenated proton signals (H-3 and H-10) located separately at δ 4.97 (d, $J = 5.0$ Hz, 1H), 4.18 (q, $J = 6.2$ Hz, 1H), and three olefinic proton signals (H-9, H-2, H-8) located separately at δ 6.33 (ddd, $J = 15.9$, 5.7, 1.5 Hz, 1H), 5.99 – 5.89 (m, 1H), and 5.76 (d, $J = 15.9$ Hz, 1H), and alkyl proton signals (H-11,
178 179 180 181 182 183 184 185 186	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and 5.25 (dd, $J = 10.1$, 1.4 Hz, 1H). The HMBC and DEPT spectra showed two oxygenated proton signals (H-3 and H-10) located separately at δ 4.97 (d, $J = 5.0$ Hz, 1H), 4.18 (q, $J = 6.2$ Hz, 1H), and three olefinic proton signals (H-9, H-2, H-8) located separately at δ 6.33 (ddd, $J = 15.9$, 5.7, 1.5 Hz, 1H), 5.99 – 5.89 (m, 1H), and 5.76 (d, $J = 15.9$ Hz, 1H), and alkyl proton signals (H-11, H-12, H-13, H-14, H-15, H-16, and H-17) at δ 1.52 (t, $J = 6.7$ Hz, 2H) and δ 1.27 (q, $J = 5.4$, 4.5
178 179 180 181 182 183 184 185 186 187	(3R, 10R, E)-Octadeca-1,8-dien-4,6-diyne-3,10-diol, $(3R, 10R, E)$ -2 was obtained as yellow oil with $[\alpha]_D^{20} = -38.4$ ($c = 0.70$, CHCl ₃), lit ¹³ $[\alpha]_D^{20} = -38.5$ ($c = 0.70$, CHCl ₃). The molecular formula is C ₁₈ H ₂₆ O ₂ . HRMS ESI [M-H] ⁻ calcd for C ₁₈ H ₂₅ O ₂ ⁻ 273.1860, found 273.1863. The ¹ H- NMR spectrum contained alkenyl proton signals (H-1) at δ 5.47 (dd, $J = 17.1$, 1.4 Hz, 1H) and 5.25 (dd, $J = 10.1$, 1.4 Hz, 1H). The HMBC and DEPT spectra showed two oxygenated proton signals (H-3 and H-10) located separately at δ 4.97 (d, $J = 5.0$ Hz, 1H), 4.18 (q, $J = 6.2$ Hz, 1H), and three olefinic proton signals (H-9, H-2, H-8) located separately at δ 6.33 (ddd, $J = 15.9$, 5.7, 1.5 Hz, 1H), 5.99 – 5.89 (m, 1H), and 5.76 (d, $J = 15.9$ Hz, 1H), and alkyl proton signals (H-11, H-12, H-13, H-14, H-15, H-16, and H-17) at δ 1.52 (t, $J = 6.7$ Hz, 2H) and δ 1.27 (q, $J = 5.4$, 4.5 Hz, 12H), and one methyl proton signal (H-18) at 0.87 (t, $J = 6.8$ Hz, 3H). The signals at δ 2.52

spectrum; it was assigned to the hydroxy group (H-19 and H-20). The ¹³C-NMR spectrum 189 contained four olefinic carbon signals (C-9, C-2, C-1, and C-8) at δ 149.8, 135.9, 117.2, 108.1, 190 and two oxygenated sp³ carbon signals (C-3, C-10) at δ 63.5 and 72.0, four alkyne carbon signals 191 (C-4, C-5, C-6, and C-7) at 8 80.4, 70.9, 73.5, and 77.5, seven alkyl carbon signals (C-11, C-12, 192 C-13, C-14, C-15, C-16, and C-17) at 8 22.6, 31.8, 29.5, 29.4, 29.2, 25.2, and 36.8, and one 193 194 methyl carbon signal (C-18) at δ 14.1. The NOESY-NMR spectrum correlation between H-9 (δ 6.33 (ddd, J = 15.9, 5.7, 1.5 Hz, 1H)) and H-11 ($\delta 1.55 - 1.49$ (m, 2H)) revealed that H-9 and H-195 11 were trans-configured. 196

197 (S, E)-1 and (3R, 10R, E)-2 showed good antifungal activities (Table 2). The antifungal activities of (R, E)-1, rac-(E)-1, (S, Z)-1, (R, Z)-1 and rac-(Z)-1 were also shown in Table 2. It 198 is very interesting that the newly synthesized polyacetylene alcohols show half-maximum 199 effective concentrations (EC₅₀) between 8 and 425 μ g/mL. Such potencies are in a similar range 200 as those of thiophanate-methyl (EC₅₀, 3 and 408 μ g/mL), whereas the anti-fungal spectra of the 201 202 polyacetylene alcohols largely differ among themselves and from those of thiophanate-methyl. Thiophanate-methyl is the most potent (3 μ g/mL) against *M. fructigena* among the eight fungal 203 pathogens tested. Among the seven tested pure isomers or racemic mixtures and eight fungal 204 205 species, *rac*-(*E*)-1 was the most potent against *B. sorokiniana*.

The EC_{50} value of (S, E)-1 against *B. sorokiniana* was 36-, 3- and 8-times smaller (i.e.,

more potent) than that of (R, E)-1, (S, Z)-1 and (3R, 10R, E)-2, respectively. The EC₅₀ value of

208 (S, E)-1 against C. gloeosporioides was 7-, 2- and 2-times smaller than that of (R, E)-1, (S, Z)-1

and (3R, 10R, E)-2, respectively. The EC₅₀ value of (S, E)-1 against *Phytophthora capsici* was

210 2-, 5- and 4-times smaller than (*R*, *E*)-1, (*S*, *Z*)-1 and (*3R*, *10R*, *E*)-2, respectively. The EC₅₀ of

211 (S, E)-1 against F. graminearum was 3-times smaller than both rac-(E)-1, and (R, Z)-1,

212	respectively. The EC ₅₀ of (S, E) -1 against <i>A. kikuchiana</i> Tanaka was 3-, 2- and 3-times smaller
213	than $rac-(E)-1$, $rac-(Z)-1$, and $(3R, 10R, E)-2$, respectively. The EC ₅₀ of $(3R, 10R, E)-2$ against
214	<i>Rhizoctonia cerealis</i> was 8-, 4-, and 3-times smaller than (S, E) -1, (S, Z) -1, and <i>rac</i> - (E) -1,
215	respectively. The EC ₅₀ of (S, E) -1 against <i>F. pseudograminearum</i> was similar to that of $(3R, E)$ -1
216	10 <i>R</i> , <i>E</i>)-2, but 4-times smaller than <i>rac</i> -(<i>E</i>)-1 and (<i>R</i> , <i>Z</i>)-1. The EC ₅₀ of (<i>S</i> , <i>Z</i>)-1 against <i>M</i> .
217	<i>fructigena</i> was 7-, 6- and 3-times smaller than (<i>S</i> , <i>E</i>)-1, <i>rac</i> -(<i>Z</i>)-1 and (<i>3R</i> , <i>10R</i> , <i>E</i>)-2,
218	respectively.
219	The results may indicate that the fungicidal potency is related to the chiral center
220	configurations and geometric isomerism. The bioassay results of the eight fungal species suggest
221	that (S, E) -1 and (R, E) -1, (S, Z) -1 and (R, Z) -1 are mostly antagonistic. However, (S, E) -1 and
222	(R, E)-1, (S, Z) -1 and (R, Z) -1 had low activity against <i>B. sorokiniana</i> . (S, E) -1 and (R, E) -1 had
223	low activity against P. capsica and M. fructigena, and were synergistic against Rhizoctonia
224	<i>cerealis</i> . (S, Z) -1 and (R, Z) -1 were synergistic against <i>P. capsica</i> .
225	Compounds having the S optical configuration and the E configuration seem to have greater
226	antifungal potential. The spatial structure and activity information may lay a good foundation for
227	the study of the structure-activity relationship of polyacetylenes in the future.
228	In conclusion, an efficient and highly enantioselective general method (> 98% ee, 32-56%
229	yield) was established to synthesize C18 polyacetylenes (S, E)-octadeca-1,9-dien-4,6-diyn-3-ol,
230	(3R, 10R, E)-octadeca-1,8-dien-4,6-diyne-3,10-diol and their analogs for the first time. The
231	configuration of the double bond and the chiral alkynol centers have shown varying selectivity
232	against the tested fungi. The EC ₅₀ values ranged from 8 to 425 μ g/mL. The EC ₅₀ values of (S ,
233	<i>E</i>)-1, <i>rac</i> -(<i>E</i>)-1, (<i>S</i> , <i>Z</i>)-1, <i>rac</i> -(<i>Z</i>)-1, and (<i>3R</i> , 10 <i>R</i> , <i>E</i>)-2 against <i>B. sorokiniana</i> were 9, 8, 26, 24,
234	and 74 μ g/mL, respectively, which provide useful information to the structural optimization of

235 new polyacetylene fungicide candidates.

236

237 ACKNOWLEDGEMENTS

- 238 This work was supported in part by the Special Fund for the National Natural Science
- Foundation of China (No. 21602043, 21702048 and U1904111), National key research and
- development program (SQ2017YFNC050081-04), and USDA (HAW5032-R)

241

242 SUPPORTING INFORMATION

- ¹H and ¹³C NMR, 2D NMR spectra, HPLC chromatograms of the products. This material is
- available free of charge via the Internet at http://pubs.acs.org.

245

246 **REFERENCES**

- Ma, W.; Zhao, L.; Zhao, W.; Xie, Y. (E)-2-Hexenal, as a potential natural antifungal
 compound, inhibits aspergillus flavus spore germination by disrupting mitochondrial energy
 metabolism. J. Agric. Food Chem. 2019, 67 (4), 1138-1145.
- Wang, Y.; Sun, Y.; Wang, J.; Zhou, M.; Wang, M.; Feng, J. Antifungal activity and action mechanism of the natural product cinnamic acid against sclerotinia sclerotiorum. *Plant Dis.* 252 2019, *103* (5), 944-950.
- Wang, C.; Yuan, S.; Zhang, W.; Ye, X.; Ng, T. Buckwheat antifungal protein with
 biocontrol potential to inhibit fungal (botrytis cinerea) infection of cherry tomato. *J. Agric. Food Chem.* 2019, 67 (24), 6748-6756.
- Devi, P.; Singh, S.; Promila; Pragya. Phytochemical screening and evaluation of antifungal activity from Dalbergia sissoo Roxb. stem. *AIP Conf. Proc.* 2019, *2142*(1), 180009.
- Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Chen, Y.J.; Chang, S.T. Potential source of
 environmentally benign antifungal agents from *Cinnamomum osmophloeum* leaves against
 Phellinus noxius. *Plant Prot. Sci.* 2019, 55 (1), 43-53.
- Wicks, T.; Hitch, C.; Tucker, G. Strobilurins: new fungicides for grapes. *Australian and New Zealand grapegrower and winemaker* 2001, (449), 147-149.
- 263 7. Bartlett, D. W.; Clough, J. M.; Godwin, J. R.; Hall, A. A.; Hamer, M.; Parr-Dobrzanski, B.
 264 The strobilurin fungicides. *Pest. Manag. Sci.* 2002, *58* (7), 649-662.
- 8. Wicks, T. J.; Hitch, C. J., Integration of strobilurins and other fungicides for the control of powdery mildew on grapes. *Aust. J. Grape Wine Res.* 2002, 8 (2), 132-139.

- Saito, S.; Xiao, C. L., Fungicide resistance in botrytis cinerea populations in California and its influence on control of gray mold on stored mandarin fruit. *Plant Dis.* 2018, *102* (12), 2545-2549.
- 10. Shao, X.; Lee, P. W.; Liu, Z.; Xu, X.; Li, Z.; Qian, X., cis-Configuration: A New
 Tactic/Rationale for Neonicotinoid Molecular Design. *J. Agric. Food Chem.* 2011, 59 (7),
 2943-2949.
- 273 11. Cantrell, C. L.; Dayan, F. E.; Duke, S. O., Natural Products As Sources for New Pesticides.
 274 *J. Nat. Prod.* 2012, *75* (6), 1231-1242.
- 12. Kemp, M. S. Falcarindiol: an antifungal polyacetylene from *Aegopodium podagraria*.
 Phytochemistry 1978, *17* (5), 1002.
- Liang, C.; Ding, Y.; Kim, J. A.; Yang, S. Y.; Boo, H.J.; Kang, H.K.; Mahn Cuong, N.; Kim,
 Y. H. Polyacetylenes from *Panax stipuleanatus* and their cytotoxic effects on human cancer
 cells. *B. korean Chem. Soc.* 2011, *32* (9), 3513-3516.
- 14. Fois, B.; Bianco, G.; Sonar, V. P.; Distinto, S.; Maccioni, E.; Meleddu, R.; Melis, C.;
 Marras, L.; Pompei, R.; Floris, C.; Caboni, P.; Cottiglia, F. Phenylpropenoids from *Bupleurum fruticosum* as anti-human rhinovirus species a selective capsid binders. *J. Nat. Prod.* 2017, 80 (10), 2799-2806.
- 15. Geng, J. L.; Ren, Q. D.; Chang, C. Z.; Xie, X. N.; Liu, J.; Du, Y. G. Synthesis and biological activities of petrosiols B and D. *Rsc. Advances* 2019, *9* (18), 10253-10263.
- Liu, X.; Kunert, O.; Blunder, M.; Fakhrudin, N.; Noha, S. M.; Malainer, C.; Schinkovitz, A.;
 Heiss, E. H.; Atanasov, A. G.; Kollroser, M.; Schuster, D.; Dirsch, V. M.; Bauer, R. Polyyne
 hybrid compounds from *Notopterygium incisum* with peroxisome proliferator-activated
 receptor gamma agonistic effects. *J. Nat. Prod.* 2014, 77 (11), 2513-2521.
- 17. Chung, I.M.; Song, H.K.; Kim, S.J.; Moon, H.I. Anticomplement activity of polyacetylenes
 from leaves of *Dendropanax morbifera* Leveille. *Phytotherapy Res.* 2011, 25 (5), 784-786.
- 18. Malti, C. E. W.; Baccati, C.; Mariani, M.; Hassani, F.; Babali, B.; Atik-Bekkara, F.; Paoli,
 M.; Maury, J.; Tomi, F.; Bekhechi, C. Biological activities and chemical composition of *Santolina africana* Jord. et Fourr. aerial part essential oil from Algeria: occurrence of
 polyacetylene derivatives. *Molecules* 2019, 24 (1), 204.
- In, L.; Zhou, W.; Li, R.; Jin, M.; Jin, C.; Sun, J.; Li, G. A new polyacetylene and other
 constituents with anti-inflammatory activity from *Artemisia halodendron*. *Nat. Prod. Res.*2019, 1-4.
- 20. Jayaprakasha, G. K.; Chidambara Murthy, K. N.; Pellati, F.; Patil, B. S. BetaSweet carrot
 extracts have antioxidant activity and in vitro antiproliferative effects against breast cancer
 cells. J. Funct. Foods 2019, 62, 103552.
- Rawson, A.; Brunton, N. P.; Rai, D. K.; McLoughlin, P.; Tiwari, B. K.; Tuohy, M. G.
 Stability of falcarinol type polyacetylenes during processing of Apiaceae vegetables. *Trends Food Sci. Tech.* 2013, *30* (2), 133-141.
- Liu, J.; Li, H.L.; Guo, X.R.; Zhou, L.; Wang, Y.; Duan, Y.N.; Wang, M.Z.; Na, R.S.; Yu, B.
 A general strategy toward the total synthesis of C17 polyacetylenes virols A and C. *Tetrahedron* 2016, 72 (42), 6603-6610.
- Ward, R. L., An electron spin resonance study of nitro group-alkali metal interactions in aromatic hydrocarbons. *J. Am. Chem. Soc.* 1961, *83* (6), 1296-1300.
- 24. Cuomo, C. A.; Guldener, U.; Xu, J. R.; Trail, F.; Turgeon, B. G.; Di Pietro, A.; Walton, J.
- D.; Ma, L. J.; Baker, S. E.; Rep, M.; Adam, G.; Antoniw, J.; Baldwin, T.; Calvo, S.; Chang,
- 312 Y. L.; Decaprio, D.; Gale, L. R.; Gnerre, S.; Goswami, R. S.; Hammond-Kosack, K. Harris,

 313 314 315 316 317 318 		L. J.; Hilburn, K.; Kennell, J. C.; Kroken, S.; Magnuson, J. K.; Mannhaupt, G.; Mauceli, E.; Mewes, H. W.; Mitterbauer, R.; Muehlbauer, G.; Munsterkotter, M.; Nelson, D.; O'Donnell, K.; Ouellet, T.; Qi, W.; Quesneville, H.; Roncero, M. I.; Seong, K. Y.; Tetko, I. V.; Urban, M.; Waalwijk, C.; Ward, T. J.; Yao, J.; Birren, B. W.; Kistler, H. C. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. <i>Science</i> 2007 , <i>317</i> (5843), 1400-1402.
319 320	25.	Figueroa, M.; Hammond-Kosack, K. E.; Solomon, P. S. A review of wheat diseases-a field perspective. <i>Mol. Plant Pathol.</i> 2018 , <i>19</i> (6), 1523-1536.
321 322 323 324	26.	Obydennov, K. L.; Khamidullina, L. A.; Galushchinskiy, A. N.; Shatunova, S. A.; Kosterina, M. F.; Kalinina, T. A.; Fan, Z.; Glukhareva, T. V.; Morzherin, Y. Y. Discovery of methyl (5Z)-[2-(2,4,5-trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetates as antifungal agents against potato diseases. <i>J. Agric. Food Chem.</i> 2018 , <i>66</i> (24), 6239-6245.
325 326	27.	Trost, B. M.; Quintard, A. Asymmetric catalytic synthesis of the proposed structure of trocheliophorolide B. <i>Org. Lett.</i> 2012 , <i>14</i> (17), 4698-4700.
327 328 329	28.	Trost, B. M.; Quintard, A. Asymmetric catalytic alkynylation of acetaldehyde: application to the synthesis of (+)-tetrahydropyrenophorol. <i>Angew. Chem., Int. Ed.</i> 2012, <i>51</i> (27), 6704-6708.
330 331 332	29.	Yan, W.; Li, Z.; Kishi, Y. Selective activation/coupling of polyhalogenated nucleophiles in Ni/Cr-mediated reactions: synthesis of C1-C19 building block of Halichondrin Bs. <i>J. Am. Chem. Soc.</i> 2015 , <i>137</i> (19), 6219-6225.
333 334 335	30.	Arora, S.; Zhang, J.; Pogula, V.; Hoye, T. R. Reactions of thermally generated benzynes with six-membered N-heteroaromatics: pathway and product diversity. <i>Chem. Sci.</i> 2019 , <i>10</i> (39), 9069-9076.

2	3 5 6	8 10 12 14 7 9 11 13 1	16 5 17 2	5 6	8 11 13 7 9 10 12 1	15 17 4 16 18	2 3	20 8 OH 7 9 10 7 9 11	14 16 18 13 15 17
1 2	OH 19	(S, E)-	1	0 ŪH 19		(<i>R</i> , <i>Z</i>)-1	1 	(3 <i>R</i> , 10 <i>R</i> ,	E)-2
No ^a	$\delta_{\rm C}$	$\delta_{\rm H} (J \text{ in Hz})$	HMBC	$\delta_{ m C}$	$\delta_{\mathrm{H}} \left(J \text{ in Hz} \right)$	HMBC	$\delta_{\rm C}$	$\delta_{\rm H} \left(J {\rm in} {\rm Hz} \right)$	HMBC
1	117.0, CH ₂	$H_a 5.47 dt,$	H _a 2, 3, 4, 5	117.0, CH ₂	H _a 5.49 – 5.44, m	H _a 2, 3	117.2 CH ₂	H _a 5.47, dd (17.1, 1.4)	H _a 2, 3, 4 H _b 3, 4
		$H_{\rm b}$ 5.24 dt,	H _b 2, 3, 4		H _b 5.41 – 5.34, m	1102, 0		H _b 5.25, dd (10.1, 1.4)	
		(10.1, 1.3)							
2	136.1, CH	5.94 ddd,	3, 4	136.1, CH	5.94, ddd	3, 4, 5	135.9, CH	5.99 – 5.89,	1, 3, 4
	CII	(17.0, 10.1, 5.3)		en	(17.1, 10.2)		en	111	
3	63.5,	4.93 d, (5.0)	1, 2, 4,	63.5,	4.91, dt	1, 2, 4,	63.5,	4.97, d (5.0)	1, 2, 4,
	Сп		3	Сп	(5.4, 1.3)	3	Сп		
4	79.6, C			80.3, C			80.4, C		
5	65.7, C			64.0, C			70.9, C		
6	71.2, C			71.3, C			73.5, C		
7	74.5, C			74.2, C			77.5, C		
8	22.4,	3.00 dt, (5.6,	3, 4, 5,	17.7,	2.02, qd	6, 7, 9,	108.1,	5.76, d (15.9)	6, 7, 9, 10
	CH ₂	1.4)	6, 7, 9, 10, 11	CH ₂	(7.3, 1.5)	10	СН		
9	122.0,	5.39 – 5.30, m	7, 8, 10,	121.9, CU	5.24, dt	7, 8,	149.8,	6.33, ddd	7, 8, 10, 11
	CII		11	CII	(10.2, 1.2)	10, 11	CII	(15.9, 5.7, 1.5)	
10	133.6, CH	5.67 dtt,	7, 9, 11,	133.1,	5.51, dt	7, 8, 9,	72.0,	4.18, q (6.2)	8, 9, 11
		(15.3, 6.8, 1.8)	12 CH	(9.0, 1.7)	11,12 CH	СН			
11	32.3, CH ₂	2.03 – 1.98, m	11, 12, 13, 14, 16, 17	27.2, CH ₂	3.03, dt (7.0, 1.1)	9, 10, 12, 13, 14, 15	36.8, CH ₂	1.55 – 1.49, m	8, 9, 10, 12, 13, 14, 15, 16
12	22.6, CH ₂	1.26, s	11, 12, 13, 14, 16, 17	29.2, CH ₂	1.27, s	9, 10, 11, 13, 14, 15	25.2, CH ₂	1.27, q (5.4, 4.5)	11, 13, 15, 16, 17
13	29.1, CH ₂	1.26, s	11, 12, 14, 15, 16, 17	29.2, CH ₂	1.27, s	11, 12, 14, 15, 16	29.2, CH ₂	1.27, q (5.4, 4.5)	10, 11, 12, 14, 15, 16, 17

Table 1. ¹H NMR spectroscopic data ($\delta_{\rm H}$ in ppm, J in Hz) of (S, E)-1, (R, Z)-1 and (3R, 10R, E)-2. (400 MHz, CDCl₃)

14	29.2, CH ₂	1.26, s	11, 12, 13, 15, 16, 17	29.3, CH ₂	1.27, s	11, 12, 13, 15, 16, 17	29.4, CH ₂	1.27, q (5.4, 4.5)	11, 12, 13, 15, 16, 17
15	29.2, CH ₂	1.26, s	11, 12, 13, 14, 16, 17	29.4, CH ₂	1.27, s	12, 13, 14, 16, 17	29.5, CH ₂	1.27, q (5.4, 4.5)	11, 13, 14, 16, 17, 18
16	29.4, CH ₂	1.26, s	12, 13, 14, 15, 17, 18	22.7, CH ₂	1.27, s	12, 13, 14, 15, 17, 18	31.8, CH ₂	1.27, q (5.4, 4.5)	11, 12, 13, 14, 15, 17, 18
17	31.9, CH ₂	1.37 – 1.32, m	12, 13, 14, 15, 16, 18	31.8, CH ₂	1.35, q (7.0)	12, 13, 14, 15, 16, 18	22.6, CH ₂	1.27, q (5.4, 4.5)	11, 12, 13, 14, 15, 16, 18
18	14.1, CH ₃	0.88 t, (6.8)	9, 13, 14, 15, 16, 17	14.1, CH ₃	0.87, t (6.7).	13, 14, 15, 16, 17	14.1, CH ₃	0.87, t (6.8).	13, 14, 15, 16, 17
19		2.10 d, (5.6)			2.02, qd			2.52, d (6.2)	
					(7.3, 1.5)				
20								1.92, s	

^a Carbon position.

Fungus	Compound	Toxicity regression equation	<i>R</i> ²	EC ₅₀ (μg/mL)
B. sorokiniana	(<i>S</i> , <i>E</i>)-1	y=6.87+0.61x	0.983	9
	(<i>R</i> , <i>E</i>)-1	y=6.23+0.83x	0.956	330
	<i>rac-</i> (<i>E</i>)-1	y=6.47+0.47x	0.966	8
	(<i>S</i> , <i>Z</i>)-1	y=6.55+0.60x	0.984	26
	(<i>R</i> , <i>Z</i>)-1	y=6.28+0.64x	0.968	100
	<i>rac-(Z)-1</i>	y=6.47+0.56x	0.978	24
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=7.94+1.38x	0.986	74
	Thiophanate-methyl	y=5.50+0.36x	0.976	408
C. gloeosporioides	(<i>S</i> , <i>E</i>)-1	y=6.75+0.75x	0.991	46
	(<i>R</i> , <i>E</i>)-1	y=6.22+0.84x	0.982	353
	<i>rac-</i> (<i>E</i>)-1	y=6.69+0.90x	0.989	133
	(<i>S</i> , <i>Z</i>)-1	y=7.54+1.21x	0.970	80
	(<i>R</i> , <i>Z</i>)-1	y=6.79+0.87x	0.969	88
	<i>rac-(Z)-1</i>	y=6.90+0.96x	0.991	105
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=6.32+0.63x	0.960	80
	Thiophanate-methyl	y=6.67+0.97x	0.993	190
Phytophthora capsica	(<i>S</i> , <i>E</i>)-1	y=6.88+0.87	0.991	69
	(<i>R</i> , <i>E</i>)-1	y=5.85+0.48x	0.993	169
	<i>rac-</i> (<i>E</i>)-1	y=6.35+0.63x	0.997	72
	(<i>S</i> , <i>Z</i>)-1	y=5.79+0.54x	0.994	344
	(<i>R</i> , <i>Z</i>)-1	y=6.33+0.97x	0.979	425
	<i>rac-</i> (<i>Z</i>)-1	y=6.61+0.85x	0.973	128
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=6.47+0.94x	0.975	273
	Thiophanate-methyl	y=7.13+0.71x	0.981	10
F. graminearum	(<i>S</i> , <i>E</i>)-1	y=6.52+0.71x	0.951	72
	(<i>R</i> , <i>E</i>)-1	y=6.05+0.49x	0.966	72
	<i>rac-</i> (<i>E</i>)-1	y=6.60+0.96x	0.969	216
	(<i>S</i> , <i>Z</i>)-1	y=6.19+0.59x	0.984	96
	(<i>R</i> , <i>Z</i>)-1	y=6.53+0.94x	0.969	236
	<i>rac-</i> (<i>Z</i>)-1	y=5.77+0.41x	0.980	132
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=6.66+0.76x	0.964	66
	Thiophanate-methyl	y=8.24+1.20x	0.963	200
A. kikuchiana Tanaka	(<i>S</i> , <i>E</i>)-1	y=6.75+0.73x	0.992	41

Table 2. Antifungal activity of (3R, 10R, E)-2 and all the isomers of natural product 1.

	(<i>R</i> , <i>E</i>)-1	y=6.17+0.51x	0.988	51
	<i>rac-</i> (<i>E</i>)-1	y=6.08+0.57x	0.982	127
	(<i>S</i> , <i>Z</i>)-1	y=6.39+0.64x	0.971	67
	(<i>R</i> , <i>Z</i>)-1	y=6.76+0.76x	0.984	48
	<i>rac-(Z)-1</i>	y=6.45+0.73x	0.987	103
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=5.89+0.475x	0.994	134
	Thiophanate-methyl	y=9.90+2.01x	0.984	37
Rhizoctonia cerealis	(<i>S</i> , <i>E</i>)-1	y=5.73+0.48x	0.968	301
	(<i>R</i> , <i>E</i>)-1	y=5.72+0.39x	0.989	143
	<i>rac-</i> (<i>E</i>)-1	y=6.44+0.74x	0.981	113
	(<i>S</i> , <i>Z</i>)-1	y=6.38+0.72x	0.978	121
	(<i>R</i> , <i>Z</i>)-1	y=6.33+0.65x	0.990	90
	<i>rac-(Z)-1</i>	y=6.53+0.77x	0.992	103
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=6.58+0.65x	0.987	37
	Thiophanate-methyl	y=6.39+0.67x	0.987	84
F. pseudograminearum	(<i>S</i> , <i>E</i>)-1	y=6.12+0.46x	0.885	37
	(<i>R</i> , <i>E</i>)-1	y=6.86+0.83x	0.978	57
	<i>rac-</i> (<i>E</i>)-1	y=6.11+0.64x	0.990	184
	(<i>S</i> , <i>Z</i>)-1	y=6.90+0.83x	0.989	51
	(<i>R</i> , <i>Z</i>)-1	y=6.14+0.63	0.987	155
	<i>rac-(Z)-1</i>	y=6.00+0.53x	0.986	130
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=6.98+0.84x	0.968	44
	Thiophanate-methyl	y=8.26+1.20x	0.942	19
M. fructigena	(<i>S</i> , <i>E</i>)-1	y=5.73+0.50x	0.969	347
	(<i>R</i> , <i>E</i>)-1	y=6.38+0.66x	0.994	81
	<i>rac-</i> (<i>E</i>)-1	y=6.46+0.70x	0.985	82
	(<i>S</i> , <i>Z</i>)-1	y=6.33+0.59x	0.993	56
	(<i>R</i> , <i>Z</i>)-1	y=7.01+0.99x	0.971	93
	<i>rac-(Z)-1</i>	y=6.10+0.74x	0.993	326
	(<i>3R</i> , <i>10R</i> , <i>E</i>)-2	y=6.06+0.601x	0.948	172
	Thiophanate-methyl	y=7.20+0.610x	0.949	3

Figure and scheme captions

- Figure 1. Structures of strobilurin's family and polyacetylenes.
- Figure 2. Retrosynthetic analysis of (*S*, *E*)-1 and (3*R*, 10*R*, *E*)-2.
- Scheme 1. Synthesis of the terminal alkyne 8.
- **Scheme 2.** Synthesis of (*S*)-12 & (*R*)-12.
- Scheme 3. Synthesis of (*R*, *E*)-tridec-3-en-1-yn-5-ol 18.
- **Scheme 4.** Synthesis of (*S*, *E*)-1 and (3*R*, 10*R*, *E*)-2.
- Scheme 5. Synthesis of the terminal alkyne 23.
- Scheme 6. Synthesis of (*S*, *E*)-1 analogs.

Figure 1. Structures of strobilurin's family and polyacetylenes.

Figure 2. Retrosynthetic analysis of (*S*, *E*)-1 and (3*R*, 10*R*, *E*)-2.

Scheme 1. Synthesis of the terminal alkyne 8

Scheme 2. Synthesis of (S)-12 and (R)-12.

Scheme 3. Synthesis of (*R*, *E*)-tridec-3-en-1-yn-5-ol, 18.

Scheme 4. Synthesis of (*S*, *E*)-1 and (3*R*, 10*R*, *E*)-2.

Scheme 5. Synthesis of the terminal alkyne 23.

Scheme 6. Synthesis of (*S*, *E*)-1 analogs.

Table of Contents