

Bioorganic & Medicinal Chemistry Letters 11 (2001) 1885-1888

Studies Towards the Next Generation of Antidepressants. Part 1: Indolylcyclohexylamines as Potent Serotonin Reuptake Inhibitors

Kristin L. Meagher, Richard E. Mewshaw,* Deborah A. Evrard, Ping Zhou, Deborah L. Smith, Rosemary Scerni, Taylor Spangler, Susan Abulhawa, Xiaojie Shi, Lee E. Schechter and Terrance H. Andree

Global Chemical Sciences and Neuroscience Departments, Wyeth-Ayerst Research Laboratories, CN 8000, Princeton, NJ 08543-8000, USA

Received 23 January 2001; accepted 3 May 2001

Abstract—A series of indolylcyclohexylamines possessing potent and selective serotonin reuptake inhibition is reported. The most interesting compounds proved to have subnanomolar 5-HT transporter activity, and exhibited moderate 5-HT_{1A} affinity. C 2001 Elsevier Science Ltd. All rights reserved.

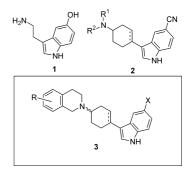
Depression is a debilitating disease with an overwhelming economic liability to society.¹ The treatment of depression has been revolutionized by the introduction of selective serotonin (5-HT) reuptake inhibitors (SSRIs) that possess fewer side effects than traditional tricyclic antidepressants.² A serious drawback to these SSRIs is the delay of therapeutic benefit, believed to be caused by the inhibitory role of the 5-HT_{1A} autoreceptors. Upon administration of an SSRI, the 5-HT_{1A} receptors decrease the firing of serotonergic neurons, resulting in no net increase of synaptic 5-HT in desired brain regions. After repeated administration and desensitization of the 5- HT_{1A} receptors the serotonergic neurons resume normal firing and therapeutic antidepressant effects are observed.³ Co-administration of a 5-HT_{1A} antagonist and an SSRI has been shown by several groups to accelerate antidepressant effects.^{4–8} By merging 5-HT_{1A} antagonism and 5-HT transporter reuptake inhibition into one molecular entity, a superior antidepressant may be achievable.

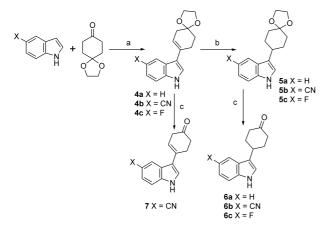
The design of new indole derivatives based on the 5-hydroxytryptamine (5-HT, 1) structure has been known to produce compounds with serotonergic activity both at the 5-HT_{1A} receptor and 5-HT transporter site.^{9,10} In this letter we wish to disclose our initial investigations directed at discovering new serotonergic agents within

*Corresponding author. Tel.: +1-610-341-2910; fax: +1-610-989-4588; e-mail: mewshar@war.wyeth.com

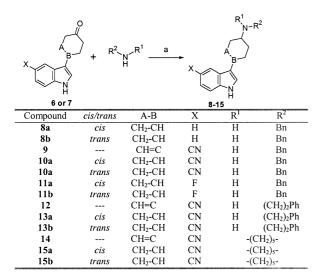
another series of less recognized indole derivatives. Since the cyclohexyl indoles (2) were known to be 5-HT transporter ligands,¹¹ this class was used as a starting point to systematically introduce the 5-HT_{1A} pharma-cophoric requirements. We now report the synthesis and structure–activity relationships (SAR) of a new class of indole derivatives (i.e., 3) that potently inhibit the serotonin transporter site, and begin to exhibit 5-HT_{1A} affinity (Fig. 1).¹²

Schemes 1–6 show the synthesis of the target molecules. The indolylcyclohexyl ketone was synthesized by the condensation of a 5-substituted indole with 1,4-cyclohexanedione mono-ethylene ketal.¹³ Hydrolysis afforded the unsaturated ketone 7. Ketal 4 was also hydrogenated to afford 5 followed by hydrolysis to $6.^{14}$ Preparation of known 5-HT transporter ligands was

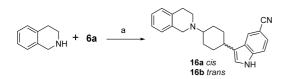



Figure 1. Serotonergic agents of interests.

⁰⁹⁶⁰⁻⁸⁹⁴X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(01)00334-1

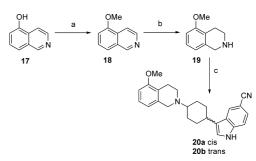

achieved by reductive amination to afford target compounds **8–15** as shown in Scheme 2. The *cis* and *trans* isomers could be easily separated by chromatography.

The tetrahydroisoquinoline analogue **16** was similarly prepared by reductive amination (Scheme 3). The 5-OMe analogue was prepared by the Mitsunobu reaction of 5-hydroxyisoquinoline (**17**) and MeOH to afford **18** (Scheme 4). Compound **18** was hydrogenated over Pt_2O^{15} affording **19**, which was reductively aminated with **6a** to give **20a**,**b**.

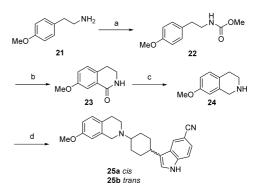

Preparation of the methoxy-tetrahydroisoquinolinyl derivatives was achieved by cyclization of the appropriate carbamate intermediates (Schemes 5 and 6).¹⁶ Reduction with LAH, followed by reductive amination

Scheme 1. Reagents and conditions: (a) 2N KOH in MeOH, reflux; (b) H₂, 10% Pd/C, EtOH; (c) 1 M HCl, THF.

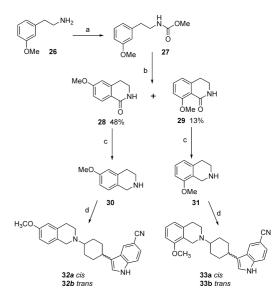
Scheme 2. Reagents and conditions: (a) NaBH(OAc)₃, HOAc, ClCH₂CH₂Cl.

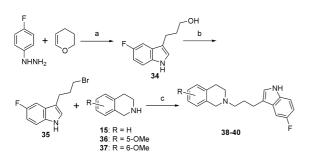


Scheme 3. Reagents and conditions: (a) NaBH(OAc)₃, HOAc, ClCH₂CH₂Cl.


with **6a** afforded target compounds **25a**,**b**, **32a**,**b**, and **33a**,**b**.

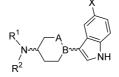
Reacting 4-fluorophenylhydrazine with 3,4-dihydropyran afforded **34**, followed by conversion to bromide **35** (Scheme 7). Displacement with the appropriate amine provided compounds **38–40**.


Compounds were evaluated in vitro to determine affinity for the 5-HT transporter, 5-HT_{1A} and α_1 receptors. A protocol similar to that of Cheetham¹⁷ was used to


Scheme 4. Reagents and conditions: (a) DEAD, Ph₃P, MeOH, THF; (b) H₂, Pt₂O, HOAc; (c) 6a, NaBH(OAc)₃, HOAc, CICH₂CH₂Cl.

Scheme 5. Reagents and conditions: (a) methyl chloroformate, Et₃N, THF; (b) PPA, 140 °C; (c) LAH, THF, reflux; (d) 6a, NaBH(OAc)₃, HOAc, ClCH₂CH₂Cl.

Scheme 6. Reagents and conditions: (a) methyl chloroformate, Et₃N, THF; (b) PPA, 140 °C; (c) LAH, THF, reflux; (d) 6a, NaBH(OAc)₃, HOAc, ClCH₂CH₂Cl.

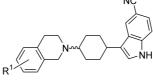


Scheme 7. Reagents and conditions: (a) H_2O , dioxane, 100 °C; (b) CBr₄, PPh₃, CH₂Cl₂; (c) Et₃N, DMSO, 100 °C.

determine affinity for the serotonin transporter (RB5-HT-T) and affinity for the α_1 receptor was determined by incubating rat cortical membranes with [³H]-prazosin.¹⁸ K_i values were calculated from IC₅₀ values using the method of Cheng and Prusoff.¹⁹ Human 5-HT_{1A} receptor binding (HC5-HT_{1A}) was determined by incubating CHO cells transfected with human 5-HT_{1A} receptors with [³H]-8-OH-DPAT and test compound.²⁰

The biological results of the simple cyclohexylamines are shown in Table 1. These compounds exhibited moderate to high affinity for the 5-HT transporter and

Table 1. Serotonin transporter, $5HT_{1A}$ and α_1 affinities for compounds 8–15



Compound	\mathbb{R}^1	\mathbb{R}^2	Х	A-B	cis/trans	RB5-HT-T K _i nM ^a	HC5-HT _{1A} %inhib@1 μ M	α_1 %inhib@1 μM
8a	Н	Bn	Н	CH ₂ –CH	cis	855	0%	21%
8b	Н	Bn	Н	CH ₂ –CH	trans	107	32%	64% ^c
9	Н	Bn	CN	CH=C		3.13	87% ^b	27%
10a	Н	Bn	CN	CH ₂ -CH	cis	7.50	15%	17%
10b	Н	Bn	CN	CH ₂ –CH	trans	25	37%	28%
11a	Н	Bn	F	CH ₂ -CH	cis	21	3%	9%
11b	Н	Bn	F	CH ₂ -CH	trans	16	11%	8%
12	Н	$(CH_2)_2Ph$	CN	CH=C		1.54	41%	32%
13a	Н	$(CH_2)_2Ph$	CN	CH ₂ -CH	cis	7.50	0%	40%
13b	Н	$(CH_2)_2Ph$	CN	CH ₂ -CH	trans	1.98	0%	56%
14	$(CH_{2})_{5}$	/_	CN	CH=C		178	0%	10%
15a	$(CH_2)_5$		CN	CH ₂ -CH	cis	22	0%	3%
15b	$(CH_2)_5$		CN	CH ₂ –CH	trans	152	0%	14%

 ${}^{a}K_{i}$ values are the mean of 2–3 experiments run at six different concentrations. Each experiment was carried out in triplicate. 95% confidence limits were generally $\pm 15\%$ of the mean value.

 ${}^{b}K_{i} = 374 \text{ nM}.$ ${}^{c}K_{i} = 368 \text{ nM}.$

Table 2. Serotonin transporter, 5HT_{1A}, and α_1 affinities for compounds 16, 20, 25, 32 and 33

Compound	\mathbb{R}^1	cis/trans	RB5-HT-T K_i (nM ^a)	$HC5-HT_{1A}$ %inhib@1 μM	$\alpha_1 K_i nM$
16a	Н	cis	1.23	0%	337
16b	Н	trans	10	10%	88
20a	5-OMe	cis	0.61	7%	920
20b	5-OMe	trans	12	47%	120
25a	7-OMe	cis	0.80	26%	11%@100
25b	7-OMe	trans	12	48%	113
32a	6-OMe	cis	0.10	21%	11%@100
32b	6-OMe	trans	8	74% ^b	228
33a	8-OMe	cis	1.01	14%	336
33b	8-OMe	trans	7.5	46%	66

 ${}^{a}K_{i}$ values are the mean of 2–3 experiments run at six different concentrations. Each experiment was carried out in triplicate. 95% confidence limits were generally $\pm 15\%$ of the mean value. ${}^{b}K_{i} = 300 \text{ nM}.$

Compound	\mathbb{R}^1	RB5-HT-T <i>K</i> _i (nM ^a)	$\frac{\text{HC5-HT}_{1A}}{K_{i} (\text{nM})}$	$\kappa_{i}^{\alpha_{1}}$		
38	Н	4.85	48%@1000	35		
39	5-OMe	1.94	242.9	31.4		
40	6-OMe	1.39	288	58		

 ${}^{a}K_{i}$ values are the mean of 2–3 experiments run at six different concentrations. Each experiment was carried out in triplicate. 95% confidence limits were generally $\pm 15\%$ of the mean value.

exhibited selectivity over the α_1 receptor. Moderate 5- HT_{1A} activity was observed only in the unsaturated analogue 9 ($K_i = 374 \text{ nM}$). Substitution at the indole 5 position with a cyano or fluoro led to an improvement on 5-HT transporter affinity (8a,b vs 10a,b and 11a,b). Comparing the benzyl analogues to the corresponding phenethylamine analogues (i.e., 9 vs 12: 10b vs 13b), an increase in 5-HT transporter affinity was observed, while the affinity of the *cis* analogues remained the same (10a vs 13a). Unsaturation in the cyclohexyl ring increased 5-HT transporter and 5-HT_{1A} affinity for both the benzyl and phenethylamines (i.e., 9 and 12). Removal of the phenyl ring, as shown with the piperidinyl derivatives (i.e., 14, 15a, and 15b), resulted in a detrimental effect with respect to 5-HT transporter and 5-HT_{1A} affinities.

Incorporating the tetrahydroisoquinoline moiety (i.e., 16a and 16b, Table 2) led to an increase in 5-HT transporter affinity of >15-fold over the corresponding piperidine analogues 15a and 15b and, in general, were more potent than the benzyl and phenethylamines (i.e., 10a, 10b, and 13a). In the tetrahydroisoquinolinyl series the *cis* isomers (i.e., 16a, 20a, 25a, 32a, and 33a) were consistently more potent at the 5-HT transporter site than were the *trans* isomers (i.e., 16b, 20b, 25b, 32b, and **33b**). The *trans* isomers also were generally less selective than the *cis* isomers when compared to the α_1 receptor. An attempt to increase 5-HT_{1A} affinity by attachment of a methoxy substituent to the tetrahydroisoquinoline moiety led to only a modest improvement in affinity for the 5-HT_{1A} receptor and a slight increase in the 5-HT transporter affinity. Compound 32a is particularly interesting as a pure SSRI, since it was observed to have subnanomolar affinity for the 5-HT transporter and high selectivity versus the 5-HT_{1A} and α_1 receptors. Results where the cyclohexyl linker was replaced with a more flexible propyl side chain are shown in Table 3. These analogues (i.e., 38–40) still possessed potent 5-HT transporter activity and had slightly more affinity at the 5-HT_{1A} receptor. However, 38-40 also had higher affinity for the α_1 receptor.

Our initial attempts to incorporate 5-HT transporter and 5-HT_{1A} activity into a single molecule resulted in the identification of a novel class of indolylalkylamines. The indolylcyclohexylamines disclosed here generally possessed potent 5-HT transporter affinity and low to moderate 5-HT_{1A} affinity. The incorporation of the methoxy-substituted tetrahydroisoquinoline moiety led to a slight increase in 5-HT_{1A} affinity. The most potent tetrahydroisoquinoline derivative with dual activities was **32b** (5-HT transporter, $K_i = 8 \text{ nM}$: 5-HT_{1A} $K_i = 300 \text{ nM}$). In the course of our research we discovered a novel, potent and selective SSRI (32a). Research is continuing in our laboratories toward the discovery of a dual activity agent having a more balanced 5-HT reuptake and 5-HT_{1A} activity profile. SAR studies focused on the replacement of the tetrahydroisoquinoline moiety with more optimized 5-HT_{1A} pharmacophoric groups will be reported in due course.

References and Notes

1. Andrews, J. M.; Nemeroff, C. B. Am. J. Med. 1994, 97, 24S.

- 2. Blackwell, B. Drugs 1981, 21, 201.
- 3. Blier, P.; Bergeron, R. J. J. Clin. Psychiatry 1998, 59, 16.
- 4. Artigas, F.; Perez, V.; Alvarez, E. Arch. Gen. Psychiatry 1994, 51, 248.
- 5. Artigas, F.; Romero, L.; de Montigny, C.; Blier, P. Trends Neurosci. 1996, 19, 378.
- 6. Blier, P.; Bergeron, R. J. Clin. Psychopharmacol. 1995, 15, 217.
- 7. Romero, L.; Hervas, I.; Artigas, F. Neurosci. Lett. 1996, 219, 123.
- 8. Romero, L.; Artigas, F. J. Neurochem. 1997, 68, 2593.
- 9. Taylor, E. W.; Nikam, S. S.; Lambert, G.; Martin, A. R.; Nelson, D. L. Mol. Pharm. 1988, 34, 42.
- 10. Gueremy, C.; Audiau, F.; Champseix, A.; Uzan, A.; Le Fur, G.; Retaud, J. J. Med. Chem. **1980**, 23, 1306.
- 11. Cipollina, J. A.; Mattson, R. J.; Sloan, C. P. US Patent 5,468,767, 1995. CAN 124:175827.
- 12. Mewshaw, R. E.; Meagher, K. L.; Evrard, D. A.; Smith, D. L.; Scerni, R.; Adulhawa, S.; Shi, X.; Schechter, L. E.; Andree, T. H. *Book of Abstracts*, 219th National ACS Meeting, San Francisco, CA, March 26–30, 2000.
- 13. Guillaume, J.; Dumont, C.; Laurent, J.; Nedelec, L. *Eur. J. Med. Chem.* **1987**, *1*, 33.
- 14. Wustrow, D. J.; Smith, W. J.; Corbin, A. E.; Davis, M. D.;
- Gerogic, L. M.; Pugsley, T. A.; Whetzel, S. Z.; Heffner, T. G.; Wise, L. D. J. Med. Chem. 1997, 40, 250.
- 15. Georgian, V.; Harrison, R. J.; Skaletsky, L. L. J. Org. Chem. **1962**, 4571.
- 16. Sall, D. J.; Grunewald, G. L. J. Med. Chem. 1987, 30, 2208.
- 17. Cheetham, S. C.; Viggers, J. A.; Slater, N. A.; Heal, D. J.; Buckett, W. R. *Neuropharmacology* **1993**, *8*, 737.
- 18. Morrow, A.; Creese, I. Mol. Pharmacol. 1986, 29, 321.
- 19. Cheng, Y.-C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 23, 3099.
- 20. Dunlop, J.; Zhang, Y.; Smith, D. L.; Schechter, L. E. J. Pharmacol. Toxicol. Methods 1998, 40, 47.