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ABSTRACT:

Emergence of drug resistance and targeting alestafjthe parasite life cycle are currently theanaj
challenges in antimalarial chemotherapy. Molechlridization combining two scaffolds in a single
molecule is an innovative strategy for achievingstgoals. In this work, a series of novel quinoxeal
1,4-di-N-oxide hybrids containing either chloroquine ornpaiquine pharmacophores was designed,
synthesized and tested against both chloroquingtaenand multidrug resistant strainsRdasmodium
falciparum. Only chloroquine-based compounds exhibited pddodd stage activity with compounds
4b and 4e being the most active and selective hybrids a$ tharasite stage. Based on their
intraerythrocytic activity and selectivity or thethemical nature, seven hybrids were then evaluated
against the liver stage dPlasmodium yoelii, Plasmodium berghei and Plasmodium falciparum
infections. Compoundb was the only chloroquine-quinoxaline 1,4MNHexide hybrid with a moderate
liver activity, whereas compoun@a and 6b were identified as the most active primaquine-dase
hybrids against exoerythrocytic stages, displaygmpanced liver activity again§t. yodii and P.
berghei, respectively, and better S| values than primagu/ithough both primaquine-quinoxaline
1,4-diN-oxide hybrids slightly reduced the infection of sgaitoes, they inhibited sporogony Bf
berghei and compounéa showed 92% blocking of transmissidn.vivo liver efficacy assays revealed

that compoundba showed causal prophylactic activity affording [steemia reduction of up to 95%
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on day 4. Absence of genotoxicity and vivo acute toxicity were also determined. These results
suggest the approach of primaquine-quinoxalinedi-M-oxide hybrids as new potential dual-acting

antimalarials for further investigation.
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Chloroquine; Primaquine; Quinoxaline 1,4MHexide; Hybrid drugs; Blood stage; Liver stage

1. Introduction

Malaria is one of the most important and devasgaparasitic diseases worldwide, affecting 91
countries. Despite the decreasing incidence of maat¢hobally over the last 15 years due to the afse
strategies for vector control and artemisinin-basethbination therapies (ACTSs), an estimated 216
million cases and 445,000 deaths were caused bgrimalorldwide in 2016 (WHO, 2017). The
widespread drug resistance to most current antmablarugs and the complex life cycle of
Plasmodium spp. remain the major impediments for the eliminatadrithe disease (Wellems et Plowe,
2001; Ashley et al., 2014; Mbengue et al., 201b)the context of the malaria eradication strategy,
novel drugs effective against multidrug resistardiss and targeting all stages of the parasiechicle

for the prevention, treatment and transmissionsdatse are urgently required (Alonso et al., 2011).

The development of antimalarial chemotherapy heenlraditionally focused on the symptomatic
intraerythrocytic stage. Chloroquin€@, Fig. 1), has been the classical blood schizatdicdrug
widely used as a standard therapy for decades lmaséd high clinical efficacy, limited toxicitypiv
cost, simple usage, and simple effective synth&sien though its clinical use has been restricigsl d
to the emergence of resistance, the 7-chloro-4-@mimoline scaffold is critical for conferring
antimalarial potency by inhibiting haemozoin forroat and consequently, accumulating the drug in
the digestive vacuole of the parasites (Thomé.eR@l 3). Additionally, a great number of chlorawgii

analogues have been reported with high antimaladtity against chloroquine resistant strain$of
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falciparum (Guantai et al., 2011; de Souza et al., 2014), estgyy that the resistance mechanism
seems to be compound specific and does not depetiteahanges in the structure of the drug target.
Therefore, 7-chloro-4-aminoquinoline continues tiwaat special attention as a privileged scaffold i
current antimalarial drug discovery.

On the other hand, liver and vector stages haes lederexplored. Currently, primaquirfeQ,

Fig. 1) is the only licensed drug targeting thesges. The use of PQ does not only eliminate the i
forms of Plasmodium, including hypnozoites ifP. ovale and P. vivax infections leading to a causal
prophylaxis and avoiding relapse (Li et al., 20Bt PQ is also used as gametocytocidal blockieg th
transmission of the disease inside the mosquitadoveKamtekar et al., 2004; Abay, 2013).
Unfortunately, potential side effects such as matiglobinemia and haemolytic anaemia in glucose-6-
phosphate dehydrogenase-deficient patients (Deatid, 2017) and the signs of emerging resistance
to PQ (Ariey et al., 2014; Lu et al., 2017; Suthed et al., 2017) have limited its clinical use.
Moreover, recent studies show that primaquine ifféctive in people with low metabolizing
cytochrome P450 2D6 genotypes (Potter et al., 2015)

The hybridization concept, which is the use of anbmation of two (or more) active chemical
scaffolds into a single molecule is an attractippraach for overcoming the challenges of multidrug
resistance irP. falciparum, for further improving antimalarial activity andrfreducing undesired side
effects (Viegas-Junior et al., 2007; Agarwal et a@D17). Additionally, the linking of dual-acting
chemical moieties could be usedctmracterize new potential dual-stage antimalairatys (Meunier,

2008; Muregi and Ishih, 2010)

Various chloroquine- and primaquine-based hybriagehbeen reported to target multiple stage of
Plasmodium life cycle in the past few years, namélycinnamoylated chloroquine analogues (Pérez et
al., 2013), primaquine-chloroquine hybrid (Lodigeag, 2013), primaquine-pyrimidine hybrids (Kaur

et al., 2015) and primaquine-artemisinin hybridag€la et al., 2011; Miranda et al., 2014).
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As a part of our ongoing research on antimalamahpounds, we have recently reported that the
fusion of quinoxaline 1,4-dN-oxide (QdNO) core with a 7-chloro-4-hydrazinequine (CQ moiety)
showed a significant increase in antiplasmodialvagtin comparison to other previously synthesized

analogues without a CQ cor®, Fig. 1) (Quiliano et al., 2017).

cl | Ny =
= N

HNw/\/\,\(\ HNYV\NHZ

OMe

7

Chloroquine (CQ) Primaquine (PQ)
Cl N
| N
¥
CI).
HN. = ! R7
"X X
NS
l}l’r R6
o

[ 1st generation of hybrids ]

Figure 1. Chemical structures of chloroquine (CQ), primaguiRQ) and the first generation of

chloroquine-QdNO hybrids

Quinoxaline derivatives are well-known for theiohd therapeutic potential (Hui et al., 2006; El
Aissi et al., 2014; Cheng et al., 2016). In thet k&8 decades, our group has synthesized a large
number of quinoxaline 1,4-d\-oxide derivatives (QdNO) with different substituis at positions 2, 3,

6, and 7, displaying good activities for multipidactious diseases (Vicente et al., 2011; Torred.et
2013; Barea et al., 2013), and especially agalmsterythrocytic stage of malaria (Gil et al., 2014,
Quiliano et al., 2017).

Taking all these requirements into account anddasethis strategy, we designed and synthesized

two new series of hybrids, covalently linking treaBolds of two known antimalarial drugs, CQ and

PQ with the QdNO core via an appropriate linkeg(F). Thein vitro antiplasmodial activities of all
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synthesized hybrid compounds against 3D7 chloragsénsitive and FCR-3 multidrug resistant strains
of P. falciparum and cytotoxicity against HepG2 cell line are repdrtAdditionally, we presei vitro
andin vivo liver stage efficacy and the transmission blockpotential results for the active compounds
in the mosquito stage. Finally, an acute oral ibxistudy in mice and the genotoxicity screeningf te

SOSUmu test were also conducted for the best compound.
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Figure 2. Design of chloroquine- and primaquine-quinoxaling-di-N-oxide (QdNO) hybrids

2. Results and discussion
2.1. Chemistry

The chloroquine-based hybridsi-e were synthesized using a three-step proceduraitiisea in
Scheme 1. The commercially available 4,7-dichlomogline was reacted with an excess of
ethylenediamine via ay@r to afford compoun@. Subsequent acetoacetylation2afising diketene in
the presence of methanol under a nitrogen atmospbr@vided the desired derivatid(Clemens,

1986). Condensation @& with the corresponding benzofuroxaBBEX(a-e) by a variation of the Beirut
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reaction using calcium chloride and ethanolamineaalysts give the final chloroquine-quinoxaline-

1,4-diN-oxide hybridsAa-e(Stumm and Niclas, 1989; Li, 2006)

Y T 0D

NH,
2 3
cl N +
| N
; -0
Q9 Nz R7
HN. A~ _NY R7 & j@[
N @ N R6
ll\l+ R6
o
4a-e R6/R7 BFX (a-e)
a: H/H
b: H/CI
c: H/OCH3
d: H/ICHj
e: CH3/CH3

Reagents and conditions: (i) ethylendiamine, reflux, 1h, 92%; (ii) diketene, MeOH, N,, 0°C, 1h, 75%;
(iii) MeOH, CacCl,, ethanolamine, rt, 1-24 h

Scheme 1Synthesis of Chloroquine-Quinoxaline 1,4Mbexide hybrids

The general synthetic approach to primaquine-bdsditids 6a-e is presented in Scheme 2.
PrimaquinePQ was obtained from the commercially available pgoiae bisphosphate through an
extraction using an aqueous solution of sodiumrbmaate to afford the free base of the compound.
Treatment ofPQ with diketene in the presence of methanol undeit@ogen atmosphere at 0°C
provided the pB-acetoacetamide derivative. Finally, the primaquine-quinoxaline 1,4-toxide
hybrids6a-ewere obtained by a variation of the Beirut reacid5 with the appropriatBFX(a-e) in
the presence of calcium chloride and ethanolansneatalysts.

5,6-dimethylbenzofuroxaiBFXe was obtained by previously described methods (fartet al.,
2002; Gonzalez and Cerecetto, 2007) whereas thefreenzofuroxan8FX(a-d) were commercially

available.
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Scheme 2Synthesis of Primaquine-Quinoxaline 1,4MNibxide hybrids

2.2. In silico physicochemical properties (ADME profile)

The prediction of the ADME profile and the drugditess of all hybrid compounds were performed
computationally and are outlined in Table 1. Topatal polar surface area (TPSA) is a useful
descriptor for human intestinal absorption, Cacm@olayers permeability, and blood-brain barrier
penetration (Ertl et al., 2000). Furthermore, Lgkrs rule of five (Lipinski et al., 1997) and the
number of rotatable bonds (n-ROTB) were also cated since they are found to be important
predictors for good oral bioavailability. Veber at(2002) stated that compounds withO rotatable
bonds and TPSA < 140 A2 are more likely to showdgbimavailability. In this study, all compounds
exhibited high predicted gastrointestinal absorptilm addition, none of the hybrids violated either
Lipinski's rule of five or Veber’s criteria (i.eall exceptéd with 10 rotatable bonds). Therefore, the

oral bioavailability of these hybrid compounds @bbk considered promising.
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Table 1.In silico physicochemical properties of hybrid compounds KMDprofile)

n-ON n-OHNH

Comp. ALOGPs21 MW LV nROTB Gl  TPSA(A?
acceptors donors
Rule <5 < 500 <10 <5 <1 <10 <140
4a 1.55 423.85 4 2 0 6 High  104.94
4b 2.20 458.30 4 2 0 6 High  104.94
4c 1.69 453.88 5 2 0 7 High  114.17
4d 1.70 437.88 4 2 0 6 High  104.94
de 1.80 451.91 4 2 0 6 High  104.94
6a 2.01 461.51 5 2 0 9 High  114.17
6b 2.61 495.96 5 2 0 9 High  114.17
6c 2.12 475.54 5 2 0 9 High  114.17
6d 2.11 491.54 6 2 0 10 High  123.40
6e 2.22 489.57 5 2 0 9 High  114.17
CQ 5.28 319.87 2 1 1 8 High 28.16
PQ 2.76 259.35 3 2 0 6 High 60.17

ALOGPs (LogP): logarithm of compound partition domént between n-octanol and water; MW: molecular
weight expressed in Daltons; n-ON: number of hydrogpond acceptors; n-OHNH: number of hydrogen bond
donors; LV: Lipinski's violations; n-ROTB: numberf ootatable bonds; Gl: human gastrointestinal gitsam;
TPSA: topological polar surface area; CQ: chloraguPQ: primaquine

2.3. Blood Stage Activity
2.3.1. Invitro antiplasmodial activity (3D7 and FCR-3 strains of P. falciparum)

The antiplasmodial activity of all synthesized hghbtompounds was determined against the 3D7
chloroquine sensitive (CQS) strain and the FCR-&idrug resistant (MDR) strain dP. falciparum
using the hypoxanthine incorporation assay (TaBlasd 3). Chloroquine (CQ) and primaquine (PQ)

were used as reference drugs.

All CQ-QdNO hybrids exceptc showed submicromolar activity in the CQS straiD{3Csp < 1
uM), whereas only two showed 4€in the same range against the MDR strain. Compodbdnd4e
were found to be the most active CQ-based hybritls s, values ranging from 0.40 to 0.9®/ in
both strains. Although none of these hybrids exédibetter erythrocytic activity than CQ, most of
them resulted in a moderate to strong increasentiplasmodial activity in the MDR strain in
comparison with previous CQ-QdNO hybrids (*) syrsized by our group (Table 4b vs*1b and4c

vs *1c: FCR-3 IGg= 0.40-2.07uM vs 2.56-2.8QuM). In contrast, they resulted slightly less actine
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the CQS strain. These results revealed that thggHeand chemical nature of the linker may contebut

to the biological activity of this kind of hybrid.

Table 2.1n vitro antiplasmodial activity against blood stagd>délciparum 3D7 and FCR-3 strains
and cytotoxicity on HepG2 cell line of CQ-QdNO higlsr

cl N
|
= o (I)
HN o~ AN N R7
SO
N* R6
o
Comp. Substituents P.falciparum Cytoxicity sl
IC 50 (UM)* CCso (UM)"
R6 R7 3D7 FCR-3 HepG2*
4a H H 0.78 £0.20 1.90 £ 0.72 58.22 £+0.11 30.64

4b H Cl 0.52+0.11 0.40 +0.23 21.83+0.28 54.58
4c H OCH; 2.11+0.99 2.07+£0.12 92.69 +2.55 44.77
4d H CHs 0.57 +0.08 2.24 +0.67 31.41 +4.43 14.02
4e CHs CHs 0.68 +0.25 0.90 +0.29 64.54 +5.07 71.71

CQ 0.026 +0.003 0.207 £0.015 137.42+0.02 663.86

Mean values of three independent experiments geediin triplicate + standard deviation (SD)
%Cso: Concentration inhibiting 50% of the parasite gitow

PCCsy: Concentration producing 50% of cytotoxicity:

‘HepG2: Hepatocellular carcinoma cells;

US|: Selectivity index= C (cytotoxicity on HepG2)/I§ (FCR-3)

As can be seen from Table 2, this set of CQ-QdNkritlg is much less active than CQ. This fact is
significantly correlated with the lower selectivitydices (although still reasonable) which falloirg
somewhat less comfortable range. The research grbigan and co-workers provided evidence that
drug accumulation in the acidic food vacuole of plaeasite though pH trapping is essential for gfron
antiplasmodial activity and the need of a basioog#n atom attached to the aminoalkyl side chain of
the quinoline to assist this accumulation at the af action (Egan et al., 2000; Kaschula et #&Q2).
These findings appear to be the explanation forréokeiced activity of these hybrids in comparison
with those obtained by CQ and this representstareghat must be explored in depth in further &tsid

(i.e. changing ethylendiamine with diethylentriamems a linker).

10



188
189
190

191

192

193

194

195

196

197

198
199

200
201

202
203
204
205
206
207

208

209

Regarding PQ-QdNO hybrids (Table 3), all compousldswed weak activity in the erythrocytic
stage, not exhibiting better activity than PQ (oBg-fold less than PQ in CQS) and CQ. This fact is
not particularly surprising because PQ is itsefh@dest blood schizonticidal drug (Vale et al., 2009
and the lack of a basic amino group in these hghlitiked to PQ was established for obtaining blood
stage activity with PQ derivatives (Philip et &988). In contrast to the CQ-based hybrids, the
antiplasmodial activities of PQ-based hybrids wewenparable in both strains, with the exception of
6b.

Table 3.1nvitro antiplasmodial activity against blood stagd”délciparum 3D7 and FCR-3 strains
and cytotoxicity on HepG2 cell line of PQ-QdNO higlsr

= OMe
N\
N (0] (I)
HN N* R7
j/\/\N z
DU
ll\l+ R6
o

Substituents P.falciparum Cytoxicity
Comp. 1C 50 (UM) CCsq (M) SI
n R7 3D7 FCR-3 HepG2
6a H H 67.18 + 3.12 68.20 + 3.26 39.48 £1.07 0.58
6b H Cl 62.62 + 7.85 36.05 + 3.56 154.69 + 12.08 3.34
6C H OCHs 26.98+4.27 30.71 £ 3.97 >203.66 6.63
6d H CH;  44.85%+5.82 50.64 + 5.36 109.75 +13.12 2.17
6e CHs; CHs 30.83 + 2.47 52.87 + 3.29 >202.02 3.82
CQ 0.026 +0.003 0.207 £0.015 137.42 +0.02 663.86
PQ 9.86 +1.85 1.10£0.22 120.03 +11.89 109.11

Mean values of three independent experiments geediin triplicate + standard deviation (SD)
4Cso: Concentration inhibiting 50% of the parasite gitow
CCsq: Concentration producing 50% of cytotoxicity:

‘HepG2: Hepatocellular carcinoma cells;

US|: Selectivity index= C& (cytotoxicity on HepG2)/I§ (FCR-3)

Thus, both CQ- and PQ- based hybrids were foundet@ less effective blood schizonticidal drug

against 3D7 and FCR-3 strains than the referenggsdrevealing no additional or synergistic effects

11
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Additionally, the poor results obtained for PQ hgbrcould be an indication of the resistance-rexgrs

effect of primaquine (Bray et al., 2005).

Furthermore, no correlation between the electrgrattern of substituents R6 and R7 of the
quinoxaline ring and the antiplasmodial activitysffaund. In the CQ hybrids, substitution at positio
7 with a chlorine group led to an increase of blataige activity, whereas PQ hybrids bearing an

electron-releasing group such as a methoxy werentigt active compounds in this series.

Table 4.Comparison of new CQ-QdNO hybrids with previousrgdb

Comp. Structure P. falciparum
IC 5¢ (uM)
3D7 FCR-3
Cl

8

4b HN A~ J:[ g 0.52 0.40

C

*1b HN. /:[ j©/ 0.24 2.80
N+

Cl

4c HN A~ )J:[ O/OCH3 2.11 2.07

C

*1c HN. /): j©/OCH3 1.40 2.56

4Cso: Concentration inhibiting 50% of the parasﬁe gttawv
*Compounds from Quiliano et al (2017)

@@@
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2.3.2. Cytotoxicity studies
The cytotoxicity of the ten newly synthesized hybrda-e and6a-e was evaluated by measuring
the metabolic activity of HepG2 cell line using thdT assay. The cytotoxicity and selectivity index

(SI) results are outlined in Tables 2 and 3.

CQ-QdNO hybrid compounds exhibited low toxicity agh this hepatocellular carcinoma cell line,
with a CGo ranging between 21 and $ and only 1-6-times less than CQ. The most acB@@

based hybrids4p and4e) showed high Sl values (SI> ©#/).

Most PQ-QdNO hybrids showed comparable or loweotoyicity than the parent compound PQ

(i.e., all excepba). However, PQ-based hybrids displayed a low seiec(SI < 6.63).

2.4. Liver Sage Activity
2.4.1. Invitro inhibitory activity in Plasmodium liver stage

To evaluate the ability of these compounds to ititife liver stage oPlasmodium spp in vitro., cell
lines (HepG2-CD81 and HepG2) and primary culturdvainan’s hepatocytes were infected with
yoelii, P. berghel and P. falciparum sporozoites, respectively and assayed by immuoadicence
microscopy againg®lasmodium Hsp70 after 2-7 days of treatment with seven setecompoundsAp,
4e 63, 6b, 6¢, 6d and6€). The compounds were selected on the basis obefier antiplasmodial
activity and selectivity index in the blood stage €Q-QdNO hybrids; and (ii) chemical nature of the
hybrid with the presence of PQ in their structurge do its ability to eliminate liver forms of
Plasmodium for PQ-QdNO hybrids. Thus, two CQ-QdN@b(and4e) and five PQ-QdNOda, 6b, 6¢,

6d and6e€) hybrids were chosen.

The data forin vitro liver stage activity are presented in Table 5. foomds6a and 6b were
identified as the most active hybrid compounds reggahe exoerythrocytic forms (EEFs), compared to

PQ control. Compounfla was 1.5-fold more active than PQ agaisoelii (ICso= 1.39 vs 2.13M),

13
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while 6b showed 3.2-fold higher activity agairfdtberghel than the reference drug @& 1.14 vs 3.65
uM). In contrast, hybrid$a and 6b exhibited only moderate activity against the listage ofP.
falciparum. We found that other hybrids with primaquine haverbesynthesized and evaluated as
antiplasmodial agents. For example, primaquinesasi@in hybrids showed an increase in their
activity compared to the parent drugs against gxbeocytic stages (Capela et al., 2011). Similarly,
two series of primaquine-derived hybrids synthebibased on endoperoxides (trioxane-primaquine
and tetraoxane-primaquine) showed a potent actimitthe asexual phases of parasitic development
(Miranda et al., 2014). Likewise, promising new npgiquine-imidazolidinone hybrids showed

antimalarial activity in the exoerythrocytic phg#euiar et al., 2017).

Compound4b was the only CQ-QdNO hybrid with a moderate attihagainst all liver stage
parasites. This result was surprising because congsostructurally related to chloroquine (7-chldro-
aminoquinolines scaffold) are remarkably activeiagjeblood stages but not against liver stage naalar

(Delves et al., 2012; Derbyshire et al., 2011).
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261 Table 5.1nvitro antiplasmodial activity against liver stageRoyodlii, P. berghel and P. falciparum and cytotoxicity on HepG2-CD81,

262 HepG2 cell lines and human’s hepatocytes of hybrids
263
Comp. IC50(uM)? CCso(uM)® SI°
P.yodlii P.berghel P.falciparum HepG2-CD81 HepG2 hsggt]gcny?es P.yoelii  P.berghel P.falciparum

4b 1459 10.13+1.61 6.39 69.86 +3.25 21.83+0.28 61.13 4.78 2.15 9.56
4e NA® NA NA ND® 64.54 +5.07 ND - - -
6a 1.39 519+0.13 5.38+0.03 >212.76 39.48 +1.07 >212.76 153.02 7.59 39.53
6b 571 1.14+0.26 3.64+2.46 >198.21  154.69 +12.08 >198.21 34.71 136.32 54.45
6C NA 14.05+5.63 NA >203.66 >203.66 >203.66 - 14.49 -
6d 14.02 6.34+0.46 7.21 >206.61  109.75+13.12 >206.61 14.74 17.32 28.65
6e ND 11.33+1.16 8.11 >202.02 >202.02 >202.02 - 17.83 20.22
PQ 2.13 3.65%+0.73 0.40+0.19 69.80 +4.87 120.03 +£11.89 54.21 +1.23 32.76 32.95 135.53

264 Mean values of two independent experiments perfdrimériplicate + standard deviation (SD).

265  ®Csy Concentration inhibiting 50% of the parasite gitow

266 °CCsy Concentration producing 50% of cytotoxicity

267  “Selectivity Index (Sl)= C& (corresponding cell line)/ls (corresponding parasite); HepG2-CD81 cell lineFgoelii, HepG2 cell line foP.berghe,
268 and human’s hepatocytes feifalciparum

269  “NA: Not active at the highest concentration usep@/mL).

270  °ND: Not determined.
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2.4.2. Cytotoxicity assays

All of these hybrid compounds were evaluated fommmealian cytotoxicity against different cell
lines (HepG2-CD81, HepG2 and human’s hepatocytds).can be observed in Table 5, most
compounds showed very low toxicity against all delés that were much lower than those for the
reference drug PQ. Remarkably, no cytotoxic agtivitis exhibited by the most active hybrids in the
liver stagefa and6b (CCsp > 154uM). More importantly, high SI values were displaygdéa and6b
in P.yoelii andP. berghei, respectively, resulting in a 4-fold higher Slualthan that of PQ alone (SI=

153.02 and 136.32 vs 32.76 and 32.95).

2.4.3. Invivo causal prophylaxis efficacy

To assess the causal chemoprophylactic potemtiaivo, mice were treated with the selected
hybrids @a, 6b, 6¢, 6d and 6€) prior to being infected withP.yodlii 17XNL sporozoites. The
prophylactic activity was measured as the percentaf inhibition of parasitaemia, detected
microscopically between 3 and 4 day post infectiompared to the negative control group. Compound
6a showed a median parasitaemia of 0% on day 4 obvelp, whereas the values of median
parasitaemia fo6b, 6¢, 6d and6e were 0.01, 0.02, 0.03 and 0.06%, respectively. ridgative control
exhibited a median parasitaemia of 0.06%. No sicanit difference was found (p <0.05) (Fig. 3). For
the positive control group (PQ), no parasites vadrgerved on day 1 of the follow-up and a significan
difference was observed compared to the negatingaldp=0.0236). In addition, 1 out 4 (25%) mice
treated with compoun&a showed peripheral blood parasites (0.007 parasiteon day 1 with
significant difference relative to the negative troh (p<0.05). Although the percentage of blood
parasites in mice treated witha remained lower than that of the negative contmolday 5, the

significant difference was lost (p>0.05).
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Figure 3. Comparison of parasitaemias in BALB/c mice on day 4ost infection with P.yodlii
17XNL and treated with the hybrids and with primaquine. Negative control group (vehicle) n=5,
positive control group (primaquine) n=5, treatméybrid group n=4. Significance was calculated

using the Kruskal-Wallis test (p=0.0284)

Interestingly, on day 4, compourté displayed excellent reduction parasitaemia of B&a9very
similar to that of PQ (100%) (Fig. 4) and the pegemt period (the time from inoculation until pares
become microscopically detectable) was extendeddproximately 24 h over that of the negative
control. This fact underlines the prophylactic atyi of hybrid 6a.

Others hybrid molecules with covalently linked paiquine related to the results of this work have
been reported. Lodige et al. showed that the hybifld primaquine administered at 20 mg/kg in mice
infected with 10.000 sporozoites Bf berghel was able to extend the prepatent period of paesiia,
similar to our assays, but only for 7 days (Lodageal., 2013). Hybrids composed of primaquine and

derivatives of artemisinins have shown antiplasmbdictivity. However, the combination with
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inhibitors of erythrocytes and hepatics forms mé#sk chemoprophylactic causal activity, because
these compounds inhibit 60% of parasitaemia in nmtected with 10,000 sporozoites Bfberghei at

day 4 post-infection and after this day (Capelal €2011).
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Figure 4. Percentage inhibition of parasitaemia of the treatrant groups in different post infection

days Each point represents the mean parasitaemia wdlngice treated with four doses of hybrid

compounds (n=4) and primaquine (n=5)

2.5. Effects on Transmission Stages
2.5.1. Inhibition of sporogonic devel opment of Plasmodium in mosquitoes.

We evaluated the effect 6B and6b onin vivo P. berghei oocyst formation irAnopheles stephensi
mosquitoes. These compounds were selected bastb@iobetter selectivity index against EEFsPof
falciparum. A. stephenss mosquitoes were allowed to feed BbhGFP-infected mice 1.5 h after the
treatment. Mosquito midguts were evaluated for paoameters: (i) the presence of oocysts, and (ii)
the number of oocysts per mosquito, compared tonibequito control group. Compoubd displayed

a 20% reduction in infected mosquitoes and dematastrpotent activity with a 92% reduction in the
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323 oocyst numbers per midgut (p<0.001) compared toguitses fed on untreated mice (Figs. 5A and
324 5B). On the other hand, compou6t reduced the infection dk.stephensi and number of oocysts in
325 midguts by 23% and 77%, respectively. DMSO groughi#e) showed no alteration in the formation

326 of oocysts.
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328 Figure 5. Hybrids 6a and 6b reduce the number of aysts in midgut of Anopheles stephensi.
329 Number of oocysts oPbGFP in midgut ofA. stephensi (n=60 per group) was quantificated using

330 fluorescence microscopy. (A) Scatter dot plot shomes number of oocyst per mosquito; black line
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represents median with interquartile range; (B)sBalot shows the mean of number of oocysts per

group of treatment. Data are expressed as the tn8&1T111p<0.001

2.6. Preliminary Toxicity evaluation of compound 6a

2.6.1. Invivo acute oral toxicity

On the basis of its high antimalarial activityvitro andin vivo against liver stage, significam
vitro selectivity index and promising transmission blagkactivity, additional safety profiling dda
was performed. First, we evaluated fimevivo acute oral toxicity o6a. All mice showed normal
behaviour and feeding habits without any signsoafcity specific to its species when a dose of 300
mg/kg of 6a was administered. In clinical examination, the enexhibited good general condition,
clear and bright eyes, normal coloured mucosa agthtbhair without erection. Same behaviour was
observed in two of the three mice administered W8 mg/kg of this hybrid compound, while one of
them was euthanized to be prostrated after 20 hofulg/brid administration. At the necropsy, the
organs were observed to be normal in appearancsiaadin addition, the microscopic findings were
acute necrosis of liver and kidney. In contraste anouse was sacrificed to be unconscious and
convulsing 20 hours after the administration of B0§’kg of PQ. At the necropsy, a degree of severe

and ulcerated congestion in the stomach was olibemesreas the rest of the organs were normal.

On the other hand, all surviving mice treated véthat both 300 (3/3 mice) and 500 mg/kg (2/3
mice) showed the same weight gain as the untreatiedals. Additionally, haematological parameters
were not significantly different from those of thetreated mice (Kruskal-Wallis test, p=0.098) and
blood urea nitrogen, creatinine, and total bilirubvere similar to those of the untreated mice. The
alanine transferase enzyme in a mouse treated5@0hmg/kg was the only enzyme displaying a slight

increase (82 U/L) compared to the range of enzyahgeg in untreated animals (34-78 U/L).
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2.6.2. Genotoxicity assay

We also established the DNA-damaging effect of coumg 6a using the SO%fu test as a
preliminary genotoxicity assay due to the good egrent between the SQEiu test and the
standardized Ames test (OECD guideline 471) (OEC897; Reifferscheid and Heil, 1996). All
controls used for the SQ®#fu test were correct (IF< 2 for negative and IF>2 gositive controls).
From the eleven concentrations tested, the comp6apdecipitated in the wells containing the highest
concentrations tested (1, 0.5; 0.25 and 0.125 my/thius, these wells were not considered in the
analysis.

The rest of the tested concentrations (from 0.@00.063 mg/mL) were not toxic for the bacteria
because the survival percentages were always hilgaer80% with or without S9 (Fig. 6).

Compoundéa was considered non-genotoxic as its inductiorofasts always lower than 2 at non-
cytotoxic concentrations with or without the S9cfran (Fig. 6). Even if a high degree of agreement
between the SOGhu test and the standardized Ames test (OECD, 1998%)faund (Reifferscheid et
al., 1996), it should be noted that the S@%( test is used for screening purposes. For regylator

purposes, further evaluation with the standardxess test should be performed.
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371 Figure 6. Results from SOSimu test with (black) o without S9 (grey) activation.A) Bacterial
372 survival is shown as percentage. Concentrationsarsidered non-cytotoxic if survival is > than 80%
373 B) Genotoxicity. A compound is considered genotakithe induction factor i$ 2 at non-cytotoxic

374 concentrations for the bacteria in any of the cbowl$ tested

375

376 3. Conclusions

377 In this paper, two new classes of QdNO hybrids Hasen described. Chloroquine-based hybrids
378 displayed potentn vitro blood stage antiplasmodial activity in CQS and MBiRains. Remarkably,

379 compoundstb and4ewere the most active and selective hybrids ag&nghrocytic stage of malaria

22



380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

parasite with a moderate liver stage activity fee compoundib that may represent an opportunity for
the further development of CQ-related moleculegeting both liver and blood stage parasites.

Novel primaquine-QdNO hybrids have been found tbilak preferential inhibition of parasite
growth in the liver versus blood stage parasitem@aunds6a and 6b were identified as the most
active hybrids against exoerythrocytic stages, eaing the parent drug’s liver activity agaifsyoelii
and P.berghei, respectively, as well as demonstrating betteveBles than the reference primaquine
drug. Furthermore, both compounds reduced the nunolbeoocysts in the mosquito midgut.
Significantly, compoundb6a resulted in high inhibition ofP.berghei oocyst formation, inhibiting
sporogony and demonstrating 92% blocking of traesion. Interestingly, compour&h was also the
only PQ-based hybrid to show causal prophylactivigg displaying excellent parasitaemia inhibition
(95.97%), slightly less than primaquine and extegdihe prepatent period of parasitaemia by
approximately 24 hours.

A preliminary toxicity evaluation ofa was performed. No signs of genotoxicity andivo acute
toxicity at doses of 300 mg/kg were found. At doséH00 mg/kg, compoun@a exhibited fewer
histopathological alterations than primaquine. lr@rrevaluations at higher doses must be performed.

In addition, because PQ-QdNO hybrids are racemixtures as the classical arylamino alcohol
primaquine, it is necessary to confirm the absewfcsignificant potency differences between both
enantiomers. Further chiral separation and enaetigntesting of PQ-QdNO hybrids must be done in
future studies.

Overall, this study led to the identification oP&-QdNO hybrid as a dual stage antimalarial agent.
Its effects on the liver stage and mosquito stagegiest not only a possible role in chemoprophglaxi
but also a potential to reduce the transmissiomaliaria, two fundamental properties in the current
agenda for the treatment and eradication of theeatdie. These findings establish the hybridizatfon o
primaquine and QdNO scaffolds as a valuable appri@mahe development of dual-action antimalarial

drugs and provide a good basis for further drugettgament.
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4. Experimental section
4.1. Chemicals and instrumentation

All solvents and chemicals were obtained from comumésources and used as supplied. Diketene
(acetyl ketene) was purchased from BOC Sciencadé$hNY, USA).

Melting points were determined using a Mettler FF8280 apparatus and are uncorrected. Infrared
(IR) spectra were obtained with a Nicolet Nexus FETising KBr pellets'H NMR and*C NMR
spectra were recorded on a Bruker 400 Ultrashipttsometer at 400 and 100 MHz, respectively,
with tetramethylsilane (TMS) as the internal staddand DMSOds as the solvent. The chemical
shifts, o, are expressed in ppm and the coupling constdnése given in Hz. Signal multiplicities are
represented as s (singlet), bs (broad singletjlodiilet), t (triplet), g (quartet), m (multiplegnd dd
(doublet of doublets). Elemental microanalyses wsgormed using a Leco CHN-900 Elemental
Analyzer and were within 0.4 of the theoreticalues. All final compounds were confirmed to have
>96% purity. The reactions were monitored by tlEper chromatography (TLC) on Alugram SIL
G/UV 254 sheets (Layer: 0.2 mm) and visualized uriéMé light. All final compounds were purified
by automated flash chromatography with a binaryigra of dichloromethane and methanol and UV
variable dual-wavelength detection. Flash chromajglyy was run on a Teledyne Isco Combiflash®
Rf using DCM/MeOH as solvents in the gradient madd the normal phase of 12 g Silica RediSep®

Rf columns.

4.2. General synthetic methods for Chloroguine-Quinoxaline-1,4-di-N-oxide hybrids

4.2.1. General method for the synthesis of N-(7-chloroquinolin-4-yl)ethane-1,2-diamine (2). 4,7-
dichloroquinoline (1.0 equiv, 3.00 g, 15 mmol) wasred with ethylenediamine (6.0 equiv, 6.01 mL,
90 mmol) under reflux for 1 h. The mixture was @aléa to cool to room temperature and then was
poured into a water-ice mixture. The precipitates Witered off. The resulting residue was washethwi

diethyl ether and used in the next step withoutherr purification. Yield: 92%. IR (KBry cmi*: 3315
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(m, N-H); 2950 (w, C-Halip); 1587 (s, C=C); 1020, (#r-Cl). '"H-RMN (400 MHz, DMSO#€s) o
(ppm): 8.38 (dJ= 5.4 Hz, 1H), 8.31 (d]= 9.0 Hz, 1H), 7.77 (d]= 2.4 Hz, 1H), 7.43 (dd= 9.0, 2.2
Hz, 1H), 7.31 (bs, 1H), 6.49 (d= 5.5 Hz, 1H), 3.27 (= 6.4 Hz, 2H), 2.83 (t)= 6.5 Hz, 2H), 2.61
(bs, 2H).
4.2.2. General method for the synthesis of N-[ 2-(7-chloroquinolin-4-ylamino)ethyl] -3-oxobutanamide
(3). Diketene was added (1.2 equiv, 1.56 mL, 20.29 muhajpwise to a solution d& (1.0 equiv, 3.60
g, 16.23 mmol) in methanol (30 mL) cooled in anlegh under NatmosphereThe reaction mixture
was stirred for 1 h and the residue was suspendembld diethyl ether. The white precipitate was
filtered and used without purification for furthexactions. Yield: 75%. IR (KBry: 3335 (m, N-H);
1718 (s, C=(xetone); 1672 (s, C=amide); 1579 (s, C=C);035 (m, Ar-Cl) crit. *H-RMN (400 MHz,
DMSO-dg) 6 (ppm): 8.41 (dJ= 5.3 Hz, 1H), 8.31 ()= 5.5 Hz, 1H), 8.18 (dJ= 9.0 Hz, 1H), 7.79 (d,
J= 1.8 Hz, 1H), 7.46 (ddl= 8.9, 1.9 Hz, 1H), 7.38 (8= 5.2 Hz, 1H), 6.56 (dJ= 5.4 Hz, 1H), 3.36 (bs,
6H), 2.13 (s, 3H).
4.2.3. General method for the synthesis of Chloroquine-Quinoxaline-1,4-di-N-oxide hybrids (4a-€). A
mixture of 3 (1.2 equiv) and the appropriate benzofuro@tiX(a-e) (1.0 equiv) was dissolved in
methanol (30 mL). Calcium chloride (0.1 equiv) a&tbdanolamine (0.1 equiv) were then added to the
solution and the reaction mixture was stirred amaemperature for 2-3 h. The obtained solid was
then filtered and washed with cold diethyl etheheTcrude product was purified by flash
chromatography eluting with DCM/MeOH (9:1) to affiahe desired hybrid.

4.2.3.1. N-[ 2-(7-chloroquinolin-4-ylamino)ethyl] -3-methyl qui noxal i ne-2-car boxamide-1,4-di-N-
oxide (4a). The title compound was synthesized fr8r(iL.50 g, 4.90 mmol) anBFX(a) (0.70 g, 4.09
mmol) according to the general procedure descriiee. Yield: 73%, mp: 199-200°C. IR (KBr)
3421 (m, N-H); 1676 (m, C=0); 1578 (s, C=C); 1383N-0); 1082 (s, Ar-Cl) cih 'H NMR (400
MHz, DMSO-dg) 6 (ppm): 9.10 (tJ= 5.7 Hz, 1H), 8.52-8.45 (m, 2H), 8.44 (& 5.4 Hz, 1H), 8.23 (d,

J= 9.1 Hz, 1H), 8.03-7.92 (m, 2H), 7.80 & 2.1 Hz, 1H), 7.48 (dd)= 9.0, 2.1 Hz, 1H), 7.40 (0=
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5.2 Hz, 1H), 6.64 (dJ= 5.5 Hz, 1H), 3.66 (qJ= 6.1 Hz, 2H), 3.53 (qg)= 5.8 Hz, 2H), 2.38 (s, 3H}°C
NMR (100 MHz, DMSO#g) 6 (ppm): 159.56; 152.00; 150.05; 149.02; 139.07; 887137.07; 136.36;
133.56; 132.56; 131.73; 127.54; 124.32; 124.02;86;9119.60; 117.51; 98.96; 41.66; 37.60; 14.36.
Anal. calcd for GiH1gCINsO3 - ¥2 BO: C, 58.27%; H, 4.42%; N, 16.18%; Found: C, 58.38%
4.30%; N, 15.95%.

4.2.3.2. N-[ 2-(7-chloroquinolin-4-ylamino)ethyl] - 7-chl or o-3-methyl quinoxaline-2-car boxamide-1,4-
di-N-oxide (4b). The title compound was synthesized fr8r(0.96 g, 3.13 mmol) anBFX(b) (0.44 g,
2.61 mmol) according to the general procedure destabove. Yield: 69%, mp: 146-148°C. IR (KBr)
v: 3325 (m, N-H); 3096 (m, C-Harom); 1671 (m, C=0578 (s, C=C); 1327 (s, N-O); 1085 (m, Ar-Cl)
cm™. H NMR (400 MHz, DMSOdg) 6 (ppm): 9.11 (tJ= 5.6 Hz, 1H), 8.45 (dd]= 9.2, 2.7 Hz, 2H),
8.42 (d,J= 2.4 Hz, 1H), 8.22 (dJ= 9.1 Hz, 1H), 8.00 (ddl= 9.2, 2.3 Hz, 1H), 7.80 (d= 2.2 Hz, 1H,
7.48 (dd,J= 9.0, 2.1 Hz, 1H), 7.45 (bs, 1H), 6.64 {d,5.5 Hz, 1H), 3.67 (g)= 5.7 Hz, 2H), 3.53 (q,
J= 6.0 Hz, 2H), 2.37 (s, 3H):°C NMR (DMSO4ds, 100 MHz)§ (ppm): 159.24; 151.57; 150.32;
148.48; 139.57; 138.59; 136.88; 136.69; 136.02;.7183132.88; 127.11; 124.43; 124.08; 122.02;
118.96; 117.39; 98.94; 41.73; 37.62; 14.33. Analca for G1H17/CloNsOs: C, 55.02%; H, 3.71%; N,

15.28%; Found: C, 54.62%; H, 4.10%; N, 14.92%.

4.2.3.3. N-[2-(7-chloroquinolin-4-ylamino)ethyl] - 7-methoxy-3-methyl qui noxaline-2-car boxamide-
1,4-di-N-oxide (4c). The title compound was synthesized fr8r{0.92 g, 3.00 mmol) anBFX(c) (0.42
g, 2.50 mmol) according to the general proceduszmlged above. Yield: 68%, mp: 153-155°C. IR
(KBr) v: 3305 (s, N-H); 3093 (m, C-Harom); 1655 (s, C=0§59 (s, C=C); 1328 (s, N-O); 1085 (m,
Ar-Cl) cm™. *H NMR (400 MHz, DMSOds) § (ppm): 9.13 (tJ= 5.6 Hz, 1H), 8.44 (d]= 5.4 Hz, 1H),
8.37 (d,J= 9.5 Hz, 1H), 8.25 (dJ= 9.0 Hz, 1H), 7.80 (dJ= 1.9 Hz, 1H), 7.74 (dJ= 2.5 Hz, 1H)7.57
(dd,J= 9.5, 2.6 Hz, 1H), 7.48 (dd= 9.1, 2.0 Hz, 1H), 7.43 (bs, 1H), 6.64 {&, 5.5 Hz, 1H), 3.97 (s,

3H), 3.67 (gJ= 5.8 Hz, 2H), 3.54 (gJ= 5.7 Hz, 2H), 2.35 (s, 3H}°C NMR (DMSOds, 100 MHz)s
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(ppm): 161.54; 159.60; 151.65; 150.19; 148.65; 380138.16; 137.64; 136.91; 133.64; 132.31,
127.21; 124.30; 124.05; 123.68; 121.31; 117.418B856.42; 41.70; 37.57; 13.93. Anal. calcd for

C2oH20CINsO;4 - 1/3 HO: C, 57.45%; H, 4.42%; N, 15.25%; Found: C, 57.365/4.70%; N, 15.05%.

4.2.3.4. N-[ 2-(7-chloroquinolin-4-ylamino)ethyl] -3, 7-dimethyl quinoxaline-2-car boxamide- 1,4-di-N-
oxide (4d). The title compound was synthesized fr8(0.92 g, 3.00 mmol) anBFX(d) (0.38 g, 2.50
mmol) according to the general procedure descrdiexe. Yield: 71%, mp: 146-148°C. IR (KBFr)
3318 (m, N-H); 3059 (m, C-Harom); 1670 (m, C=0)724s, C=C); 1329 (s, N-O); 1079 (m, Ar-Cl)
cm™. 'H NMR (400 MHz, DMSOdg) § (ppm): 9.13 (tJ= 5.7 Hz, 1H), 8.44 (dJ= 5.4 Hz, 1H), 8.32
(dd, J= 8.8, 2.2 Hz, 1H), 8.24 (bs, 1H), 8.22 (s, 1HY97(d,J= 2.2 Hz, 1H), 7.77 (ddl= 8.7, 1.7 Hz,
1H), 7.47 (ddJ= 9.0, 2.0 Hz, 1H), 7.43 (8= 4.9 Hz, 1H), 6.64 (dJ= 5.5 Hz, 1H), 3.67 (q)= 6.0 Hz,
2H), 3.54 (q,J= 5.8 Hz, 2H), 2.55 (s, 3H), 2.37 (s, 3HIC NMR (DMSO+s, 100 MHz)5 (ppm):
159.63; 151.70; 150.17; 148.70; 142.50; 138.20;.887136.44; 135.38; 134.14; 133.63; 127.27;
124.31; 124.01; 119.30; 118.54; 117.42; 98.89; @1.37.60; 21.17; 14.16. Anal. calcd for
C22H20CINsO3 - 1/3 BO: C, 59.53%:; H, 4.66%; N, 15.78%; Found: C, 59.2H%64.81%; N, 15.43%.

4.2.3.5. N-[2-(7-chloroquinolin-4-ylamino)ethyl] -3,6,7-trimethyl quinoxaline-2-car boxamide-1,4-di-
N-oxide (4e). The title compound was synthesized fr@n{1.21 g, 3.52 mmol) anBFX(e) (0.44 g,
2.94 mmol) according to the general procedure destabove. Yield: 73%, mp: 177-179°C. IR (KBr)
v: 3348 (m, N-H); 3066 (m, C-Harom); 1670 (m, C=0979 (s, C=C); 1330 (s, N-O); 1080 (m, Ar-Cl)
cm™. 'H NMR (400 MHz, DMSOsg) § (ppm): 9.12 (tJ= 5.8 Hz, 1H), 8.43 (dJ= 5.4 Hz, 1H), 8.25-
8.20 (m, 2H), 8.19 (bs, 1H), 7.79 @ 2.2 Hz, 1H), 7.47 (dd}= 9.0, 2.2 Hz, 1H), 7.38 (= 5.3 Hz,
1H), 6.63 (dJ= 5.5 Hz, 1H), 3.67 (qJ= 6.2 Hz, 2H), 3.53 (qJ= 5.9 Hz, 2H), 2.47 (s, 6H), 2.35 (s,
3H). 3C NMR (DMSOds, 100 MHz) § (ppm): 159.70; 151.92; 150.00; 148.97; 143.32; 382.

138.17; 137.18; 135.27; 134.51; 133.49; 127.49;224123.94; 118.67; 118.54; 117.45; 98.87; 41.68;
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502 37.62; 19.87; 19.76; 14.18. Anal. calcd fosl;,CINsOs: C, 61.13%; H, 4.87%; N, 15.50%; Found:
503 C, 61.02%; H, 4.95%; N, 15.27%.
504

505 4.3. General synthetic methods for Primaquine-Quinoxaline-1,4-di-N-oxide hybrids

506 4.3.1. General method for the extraction of primaquine (PQ). Primaquine bisphosphate (1.0 equiv, 1.50
507 g, 3.30 mmol) was dissolved in an aqueous solutibsodium bicarbonate NaHGJ50 mL) and
508 extracted with dichloromethane (2 x 100 mL). Thembmmed organic phases were dried over
509 anhydrous sodium sulfate (p&0y), filtered, and concentrated in vacuo. The fraenpquinePQ was

510 obtained as a beige oil and used in the subsege&ction without further purification.

511 4.3.2. General method for the synthesis of N-[4-(6-methoxyquinolin-7-ylamine)-4-pentyl]-3-

512 oxobutanamide (5). In a round-bottom flask, 1.0 equiv 8Q (0.93 g, 3.59 mmol) was dissolved in
513 methanol (30 mL) cooled in an ice bath underalinosphere and stirred at 0°C. After 30-45 minutes
514 diketene (1.2 equiv, 0.35 mL, 4.49 mmol) was adethe solution and the reaction was carried out
515 under stirring for 1-2 h. The residue was conceettainder reduced pressure and the crude product
516 was used without purification for further reactiolgeld: 87%. IR (KBr)v: 3387 (m, N-H); 3081 (w,
517 C-H aromatic); 2935 (w, C-H aliphatic); 1718 (s,@ketone); 1650 (s, C=0 amide); 1520 (vs, C=C);
518 cm™. 'H NMR (400 MHz, DMSO€g) & (ppm): 8.54 (ddJ= 4.2, 1.5 Hz, 1H), 8.08 (dd= 8.3, 1.6 Hz,

519 1H), 8.04 (tJ= 5.3 Hz, 1H), 7.43 (dd]= 8.2, 4.2 Hz, 1H)6.48 (d,J= 2.5 Hz, 1H), 6.27 (dJ= 2.5 Hz,

520 1H), 6.12 (dJ= 8.8 Hz, 1H), 3.82 (s, 3H), 3.12-3.08 (m, 1H),B(Bs, 2H), 3.29 (s, 2H), 2.11 (s, 3H),

521 1.71-1.44 (m, 4H), 1.21 (d= 6.3 Hz, 3H).

522 4.3.3. General method for the synthesis of Primaquine-Quinoxaline-1,4-di-N-oxide hybrids (6a-€). A
523 mixture of 5 (1.2 equiv) and the appropriate benzofuro@tiX(a-e) (1.0 equiv) was dissolved in
524 methanol (30 mL). Calcium chloride (0.1 equiv) atbanolamine (0.1 equiv) were then added to the

525 solution and the reaction mixture was stirred amdemperature for 1-2 h. The reaction mixture was
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concentrated under reduced pressure and the cmadieigb was purifiedoy flash chromatography
eluting with DCM/MeOH to afford the desired compdun

4331  Synthesis of  N-[4-(6-methoxyquinolin-7-ylamino)-4-pentyl] -3-methyl quinoxaline-2-
carboxamide-1,4-di-N-oxide (6a). The title compound was synthesized frér(0.93 g, 2.71 mmol) and
BFX(a) (0.31 g, 2.26 mmol) according to the general pilace described above. Purified by flash
chromatography eluting with DCM/MeOH (99:1). Yielt6%, mp: 96-98°C. IR (KBry: 3384 (m, N-
H); 3076 (w, C-H aromatic); 2936 (w, C-H aliphafi@78 (s, C=0); 1518 (s, C=C); 1333 (vs, N-O)
cm®. 'H NMR (400 MHz, DMSOsg) J (ppm): 8.91 (tJ= 5.6 Hz, 1H), 8.52 (ddl= 4.1, 1.5 Hz, 1H),
8.46 (dd,J= 8.1, 1.3 Hz, 1H), 8.12 (dd= 8.1, 1.3 Hz, 1H), 8.06 (dd= 8.2, 1.3 Hz, 1H), 7.95-7.83
(m, 2H), 7.41 (dddj= 8.2, 4.2, 1.1 Hz, 1Hp.44 (d,J= 2.0 Hz, 1H), 6.27 (dJ= 2.0 Hz, 1H), 6.16 (d,
J= 8.7 Hz, 1H), 3.77 (s, 3H), 3.72-3.67 (m, 1H),8(Bs, 2H), 2.59 (s, 3H), 1.84-1.51 (m, 4H), 1.84 (
J= 6.2 Hz, 3H).**C NMR (100 MHz, DMSOde) & (ppm): 164.58; 158.98; 150.46; 144.63; 144.25;
141.62; 138.95; 136.07; 134.82; 134.56; 131.38,2A(81129.90; 129.59; 122.12; 118.24; 96.21,; 91.57,
54.96; 46.98; 33.37; 25.69; 20.25; 15.22; 13.77alAcalcd for GsH27/NsO4 - ¥2 HO: C, 63.83%; H,
5.96%; N, 14.89%; Found: C, 63.49%; H, 5.62%; N24%6.

4.3.3.2. Synthesis of N-[4-(6-methoxyquinolin-7-ylamino)-4-pentyl] - 7-chloro-3-methyl quinoxaline-
2-carboxamide-1,4-di-N-oxide (6b). The title compound was synthesized frén(1.10 g, 3.20 mmol)
andBFX(b) (0.46 g, 2.67 mmol) according to the general pilace described above. Purified by flash
chromatography eluting with DCM/MeOH (98:2). Yiel3%, mp: 102-104°C. IR (KBn): 3379 (m,
N-H); 3075 (w, C-H aromatic); 2960 (w, C-H alipt@ti1679 (s, C=0); 1518 (vs, C=C); 1327 (vs, N-
0) cmi*. 'H NMR (400 MHz, DMSO#dg) 6 (ppm): 8.86 (tJ= 5.6 Hz, 1H), 8.53 (dd)= 4.2, 1.6 Hz,
1H), 8.46 (dJ= 9.1 Hz, 1H), 8.42 (dJ= 2.2 Hz, 1H), 8.06 (ddl= 8.3, 1.6 Hz, 1H), 7.98 (dd= 9.2,
2.3 Hz, 1H), 7.41 (ddl= 8.2, 4.2 Hz, 1H), 6.47 (d= 2.5 Hz, 1H), 6.30 (dJ= 2.4 Hz, 1H), 6.16 (dl=
8.8 Hz, 1H), 3.82 (s, 3H), 3.76-3.62 (m, 1H), 3(89 2H), 2.37 (s, 3H), 1.78-1.58 (m, 4H), 1.241d,

6.3 Hz, 3H).2C NMR (100 MHz, DMSOdg) J (ppm): 159.02; 158.56; 144.62; 144.24; 139.47;
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138.76; 136.87; 136.57; 135.88; 134.79; 134.55;A32129.58; 122.09; 121.92; 118.96; 96.29; 91.65;
54.98 (2C); 46.97; 33.38; 25.55; 20.24; 15.16; 94Anal. calcd for GH26NsO4Cl: C, 60.54%; H,
5.25%; N, 14.13%; Found: C, 60.70%; H, 5.61%; N7036.

4.3.3.3. Synthesis of N-[ 4-(6-methoxyqui nolin-7-ylamino)-4-pentyl] - 7-methoxy-3-
methyl quinoxaline-2-carboxamide-1,4-di-N-oxide (6¢). The title compound was synthesized fr&am
(0.86 g, 2.50 mmol) an8FX(c) (0.35 g, 2.09 mmol) according to the general ploce described
above. Purified by flash chromatography elutinghwitCM/MeOH (98:2). Yield: 47% mp: 95-97°C.
IR (KBr) v: 3221 (m, N-H); 3049 (w, C-H aromatic); 2936 (wHCaliphatic); 1677 (s, C=0); 1520
(vs, C=C); 1328 (vs, N-O) cfh’H NMR (400 MHz, DMSO¢g) 6 (ppm): 8.88 (tJ = 5.6 Hz, 1H), 8.53
(dd,J= 4.2, 1.1 Hz, 1H), 8.38 (d= 9.5 Hz, 1H), 8.08 (ddl= 8.2, 1.3 Hz, 1H), 7.75 (d= 2.7 Hz, 1H),
7.58 (ddJ= 9.5, 2.7 Hz1H), 7.42 (ddJ= 8.2, 4.2 Hz, 1H), 6.48 (d= 2.3 Hz, 1H), 6.30 (dJ= 2.3 Hz,
1H), 6.16 (dJ= 8.8 Hz, 1H), 3.97 (s, 3H); 3.82 (s, 3H), 3.7613(f, 1H), 3.30 (bs, 2H), 2.35 (s, 3H),
1.80-1.52 (m, 4H), 1.24 (d= 6.2 Hz, 3H).X*C NMR (100 MHz, DMSOd;) 6 (ppm): 161.55; 159.04;
158.98; 144.66; 144.30; 138.41; 137.73; 136.89,.864134.57; 132.26; 129.63; 123.72; 122.17;
121.32; 98.93; 96.27; 91.68; 56.47; 55.02; 46.96383; 25.62; 20.27; 15.54; 13.92. Anal. calcd for
Ca6H29Ns0s: C, 63.54%; H, 5.91%; N, 14.25%; Found: C, 63.2FH6.31%; N, 13.86%.

4.3.3.4. Synthesis of N-[4-(6-methoxyquinolin-7-ylamino)-4-pentyl] - 3,7-dimethylquinoxaline-2-
carboxamide-1,4-di-N-oxide (6d). The title compound was synthesized frbr(l.21 g, 3.52 mmol) and
BFX(d) (0.44 g, 2.94 mmol) according to the general pilace described above. Purified by flash
chromatography eluting with DCM/MeOH (99:1). YieltB%, mp: 100-101°C. IR (KBn): 3221 (m,
N-H); 3077 (w, C-H aromatic); 2963 (w, C-H aliplati1678 (s, C=0); 1519 (vs, C=C); 1329 (vs, N-
0) cm*. *H NMR (400 MHz, DMSOds) J (ppm): 8.87 (tJ= 5.6 Hz, 1H), 8.53 (ddJ= 4.2, 1.6 Hz,
1H), 8.33 (tJ= 9.1 Hz, 1H), 8.24 (bs, 1H), 8.07 (di}; 8.3, 1.6 Hz, 1H), 7.77 (dd= 9.0, 1.6 Hz, 1H),
7.42 (ddJ= 8.2, 4.2 Hz, 1H), 6.47 (3= 2.5 Hz, 1H), 6.31 (dJ= 2.5 Hz, 1H), 6.16 (dJ= 8.8 Hz, 1H),

3.82 (s, 3H), 3.77-3.62 (m, 1H), 3.42-3.36 (m, 22456 (d,J= 4.4 Hz, 1H), 2.38 (s, 3H), 1.90-1.51 (m,
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4H), 1.24 (d,J= 6.3 Hz, 3H).®*C NMR (100 MHz, DMSOds) 6 (ppm): 159.03; 158.96; 144.64;
144.25; 142.41; 138.14; 136.18; 135.29; 134.80;.84134.06; 133.23; 129.60; 122.10; 119.27;
118.60; 96.27; 91.66; 54.98; 46.97; 33.39; 25.57;12, 20.24; 15.16; 14.08. Anal. calcd for
Ca6H20Ns04: C, 65.68%; H, 6.10%; N, 14.74%; Found: C, 65.98§05.92%; N, 14.56%

4.3.3.5. Synthesis of N-[4-(6-methoxyquinolin-7-ylamino)-4-pentyl] - 3,6,7-trimethyl quinoxaline-2-
carboxamide-1,4-di-N-oxide (6€). The title compound was synthesized frér(l.00 g, 2.91 mmol) and
BFX(e) (0.40 g, 2.43 mmol) according to the general pdace described above. Purified by flash
chromatography eluting with DCM/MeOH (99:1).Yielti1%, mp: 94-95.8°C. IR (KBn): 3369 (m, N-
H); 3064 (w, C-H aromatic); 2955 (w, C-H aliphati@d79 (s, C=0); 1518 (vs, C=C); 1330 (vs, N-O)
cm™. 'H NMR (400 MHz, DMSOds) J (ppm): 8.88 (tJ= 5.7 Hz, 1H), 8.53 (dd]= 4.2, 1.6 Hz, 1H),
8.18 (s,1H), 8.15 (s1H), 8.06 (ddJ= 8.3, 1.6 Hz, 1H), 7.41 (dd= 8.2, 4.2 Hz, 1H), 6.47 (d= 2.5
Hz, 1H), 6.30 (dJ= 2.5 Hz, 1H), 6.16 (dJ= 8.8 Hz, 1H), 3.82 (s3H), 3.76-3.61 (m1H), 3.43-3.35
(m, 2H), 2.45 (dJ= 3.9 Hz, 6H), 2.37 (3H), 1.84-1.57 (m4H), 1.24 (dJ= 6.3 Hz, 3H).*C NMR
(100 MHz, DMSO€) & (ppm): 159.02; 144.62; 144.24; 143.23; 142.31; 138137.40; 135.18;
134.80; 134.56; 129.59; 122.10; 118.73; 118.5220691.66; 54.98; 46.97; 33.40; 25.58; 20.24;
19.86; 19.72; 15.16; 14.11. Anal. calcd fof7l51Ns04 - 1/3H20: C, 65.45%; H, 6.40%; N, 14.14%;

Found: C, 65.51%; H, 6.76%; N, 13.86%.

4.4. Parasites, cell linesand primary cultures

GFP-expressind®. berghei (PbGFP) andP. yoelii (PyGFP) (Manzoni et al., 2014) were used.
PbGFP andPyGFP blood stage parasites were propagated in feBwlss mice (6—8 weeks old).
Anopheles stephensi mosquitoes were fed dPbGFP orP. yodlii-infected mice and kept at 21°C and
24°C, respectivelyPbGFP andPyGFP sporozoites were freshly isolated from thevaaji glands of
infected mosquitoes 21 or 15 days post-feedingrecssely.A. stephens mosquitoes infected witR.

falciparum sporozoites (NF54 strain) were obtained from tlepd@tment of Medical Microbiology,
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University Medical Centre, St Radboud, Nijmegen,th¢dands.P. yoelii 17XNL cryopreserved
sporozoites were obtained in the Sanaria® Comp8MALB/c mice were obtained from Animal
Facilities University of Antioquia. These experinenwere conducted according to Colombian
legislation on laboratory animal use and care (088430) and the institutional ethical committee for
experimentation in animals approved all assaysopedd in the animal model (Act, June 25, 2015).
HepG2 (ATCC HB-8065) and HepG2-CD81 cells (Yalaetial., 2008) were cultured in 96 well
culture plates coated with rat tail collagen | (BecDickinson, Le Pont de Claix, France) at 37°C
under 5% CQ@in DMEM supplemented with 10% fetal calf serum amtibiotics (Life Technologies).
Primary human hepatocytes were isolated and cudltasedescribed previously (Silvie et al., 2003).
Human liver fragments used to prepare primary loepyé¢ cultures were collected after written
informed consent from patients undergoing a pahgpatectomy. The collection and use of these
tissues were undertaken in accordance with Freatibrral ethical regulations and have been approved
by the Ethic Committee of the Centre Hospitalo-l@nsitaire Pitié-Salpétriere, Assistance Publique-

Hoépitaux de Paris, Paris, France.

4.5. In silico physicochemical properties calculation
Topological Polar Surface Area (TPSA) (Ertl et 8D00), ALOGPs2.1, number of rotatable bonds
and violations of Lipinski's rule of five (Lipinsket al., 1997) were calculated using Virtual

Computational Chemistry Laboratory (Tetko et a0p2) (http://www.vcclab.org/) and SwissADME

web tool (http://www.swissadme.ch/) (Daina et 2017).

4.6. Blood Stage Activity Assays
4.6.1. In vitro antiplasmodial activity (3D7 and FCR-3 strains of P.falciparum)
The chloroquine sensitive 3D7 strain and the mulgdresistant FCR-3 o. falciparum were

cultured at 37°C in 5% CO5% G in a balanced Natmosphere environment on RPMI 1640 medium
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supplemented with 25 mM HEPES, 5% (w/v) NaHC&hd 0.1 mg/mL gentamicin 0.1 mg/mL and
10% heat-inactivated Ahuman serum, as previously described (Desjardiag €979). Chloroquine-
QdNO and primaquine-QdNO hybrids were dissolvedimethyl sulfoxide and then added at final
concentrations ranging from 1.56 to 1@§mL (range of 3.5-198M). The final DMSO concentration
was never greater than 1%a.vitro antimalarial activity was measured using Hoecl33®42 (Thermo
Fisher Scientific) nuclei acid staining accordimgMalleret et al. (2011). Briefly, 250L of the total
culture medium with the diluted drug and the susjmenof human red blood cells in medium™(A
group, 2% haematocrit) with 1% parasitaemia andgrenance of rings (>80%) were placed into the
wells of 96-well microtiter plates. On the secory @f the test (48 h), analysis of 1%1@lls by flow
cytometry was performed using a FACS CantoTMII Riytometer, Becton Dickinson (San Jose’
CA). All experiments were performed in triplicatEhe results were expressed as the concentration
resulting in 50% inhibition (1), which was calculated by a nonlinear regressiogistic dose
response-sloped variable model. The meag Values and standard deviation for each compound we

calculated.

4.7. In vitro cytotoxicity assays (HepG2, HepG2-CD81 and human hepatocytes)

Hybrids cytotoxicity for the HepG2, HepG2-CD81 Ickhes or primary human hepatocytes was
evaluated by a colorimetric test using 3-(4,5-dmgihiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT), as described by Mosmann (1983). In brieg tells were cultured in a 96-well flat-bottomed
plate (2 x 105 cells/well in 10Q0L complete medium) and incubated for 24 h at 3@ 5% CQ
humidified atmosphere to allow monolayer formatién. aliquot of each compound dilution was then
added to the wells in triplicate. The plates wereubated for another 48 h and then @0MTT (2
mg/mL) was added and the plates were incubatech dgaé h; DMSO (96%, 13QL) was added and
plates incubated for a further 20 min at room temrajpee. The DMSO diluent agent and untreated cells

in complete medium as negative controls were irefludAbsorbance was measured at 550 nm and
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Statistical Prism version 5.0 software (GraphPattwgwe Inc., La Jolla, CA, USA) was used to

calculate the toxic concentration (6

4.8. Liver Stage Activity Assays
4.8.1. In vitro exoerythrocytic activity (P. yodlii, P. berghel and P. falciparum)

To assess liver stage development, HepG2 or Hep@tQells (3 x 16 per well in collagen-
coated 96-well plates) were infected with GFP-egpireg sporozoites (5 x 16 1 x 10 per well) and
cultured for 40 h prior to analysis by fluorescemaeroscopy, after fixation with cold methanol and
immunolabelling of exoerythrocytic forms (EEFs) hwiantibodies specific foPlasmodium HSP70.
Primary human hepatocytes (8 x*}&r well in collagen-coated 96-well plates) werkeited withP.
falciparum sporozoites (2.5 x f@er well) and cultured for 8 days prior to fixatiwith cold methanol
and immunolabelling of EEFs with antibodies specitir Plasmodium HSP70. Primaquine was used
as the reference drug in all experiments. Hybridsewdiluted in DMEM at 1Qg/mL as the maximum
concentration and seven serial dilutions were peréd. The treatments of the cells were
simultaneously with infection. The culture mediurasichanged after 3 h and every 24 h post infection
and fresh compounds were added at the same coagemtto maintain exposure. The cultures were
allowed to grow at 37°C in 5% GOAfter the time necessary for the developmentaaheparasite, the
cells were fixed with cold methanol, and then iretghl for 1 h with antibodies specific Bbasmodium
HSP70 at 37°C. The plates were washed three tintePBS and incubated with secondary antibodies
coupled to Alexa 594 (Life Technologies) for 1 h3a°C, using DAPI (Life Technologies) as nuclei
staining. Analysis of liver stage parasites wasfgered using a Cellinsight NXT HCS Platform
(Thermo Scientific). All experiments were performiadtriplicate. The results were expressed as the
concentration resulting in 50% inhibition @&, which was calculated by a nonlinear regression
logistic dose response-sloped variable model. TeanmG, values and standard deviation for each

compound were calculated.
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4.8.2. In vivo mouse causal chemoprophylaxis efficacy

The causal prophylaxis efficacy was determined mlicg to the method modified by Peters (Peters,
1970). BALB/c mice (n=5 per negative and positieatcol group; n=4 per treatment group; 6-8 weeks
old; 20-23 g) were randomly allotted to five treatrh groups and two control groups and orally
administered either 100L of the tested hybrid compound8a( 6b, 6¢, 6d and6e) at the dose of 100
mg/kg dose on days -1, 0, +1, and +2 or DMSO 1008gdtive control group). Primaquine
diphosphate 98% (Sigma Aldrich) was used as aipesiontrol at the dose of 30 mg/kg daily. On day
0, the mice were infected by intravenous inocutatif 5 x 16 P.yoelii 17XNL cryopreserved
sporozoites obtained from Sanaria Company. Bloothsss were obtained from each mouse on days
4, 5, 7 and 14 and the infection was monitored biyleedd smear stained with Giemsa and flow
cytometry using Sybr Green as a DNA marker. Theemvere observed daily for clinical signs and
mortality. The prophylactic activity was expressederms of the absence or decrease of parasitaemia
compared to the negative control group. Statistaralysis was undertaken via one-way analysis of
variance (ANOVA) tests coupled to Tukey HSD testing GraphPad PrisM program version 5.01.

The exact p-value is given only if it exceeded 0.01

4.9. Effects on Transmission Stages
4.9.1. P. berghei sporogonic assays

Two Swiss mice from the experimental group (fema&@eweeks old, 25 g) were inoculated
intraperitoneally (i.p.) with 20QL of PbGFP infected red blood cells (3000 parasites/For 4 days
after the infection, parasitaemia was monitorechgigbiemsa-stained blood smear and examined for
the presence of gametocytes and testing for exfiigy gametocytesA. stephensi mosquitoes were
blood-fed from the mice whose blood showed 1% ohefacytes during 1 h. Hybridga and6b were
administered (i.p) at 100 mg/kg in DMSO 1.5 h befarfection of mosquitoes. Mice untreated and

treated with DMSO (96%, 50L) were used as controls. After 8 days, 30 mosesifzer group were
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dissected. Midguts were removed and the number aoysts was determined by fluorescence
microscopy. Inhibition of sporogony was calculateatsed on the number of oocysts in the control
mosquitoes considered as 100% infection. Statls#dam software version 5.0 (GraphPad Software

Inc., La Jolla, CA, USA) was used for comparisotwaen the groups.

4.10. Preliminary Toxicity Sudies
4.10.1. In vivo mouse acute oral toxicity testing

The acute oral toxicity of hybriéa was evaluated according to the procedures outlmedhe
Organization for Economic Co-operation and Develept{OECD, 2001). BALB/c (female mice; 6-8
weeks old; 20-23 g and variation in weight lowe2@%) were divided into groups of three and each
mouse was treated with a single oral dose of 30&kgngr 500 mg/kg body weight of this hybrid and
the control group received the vehicle (DMSO 1008&)other control group was treated with 2000,
500 and 300 mg/kg body weight doses of primaquiie. animals were observed for signs of toxicity
for 4 h after the administration of the dose andngies in physical appearance, injury, pain andssign
of illness were recorded daily for the 14 days e study. On day 14 or in the case of signs of
suffering, the animals were euthanized in,@Bamber. After the death of the animals, the anslgf
macroscopic pathological anatomy was carried odttesue samples from the spleen, liver and kidney
were fixed in formaldehyde 37%nd taken for microscopic evaluation using haemgditmand eosin
staining performed in the Pathology Laboratoryhaf Faculty of Veterinary Sciences of the University
of Antioquia. Blood samples were also taken by iearghuncture to measure biochemical parameters
of renal function (urea nitrogen and creatinine)l &epatic (alanine aminotransferase: ALT and total

bilirubin) and Lab tests-complete blood count usangindray-2800vet.
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4.10.2. Genotoxicity assay

The SOS4mu test was used to determine the DNA damage effettwas carried out according to
the method of Oda et al. (1985) and Reifferscheal.€1991) with some modifications. The testistra
Salmonella typhimurium TA1535/pSK1002 (German Collection for microorgamssand Cell cultures
(DSMZ)) from stock (-80°C; in TGA medium containiri@% DMSO as cryoprotective agent) was
thawed and 0.5 mL of bacteria were suspended imil00 GA medium supplemented with ampicillin
(50 pg/mL). The tester strain suspension was irteabavernight at 37°C with slight orbital shaking
(155 rpm) until optical density was reached ¢fbetween 0.5 and 1.5). Then, the overnight culture
was diluted with fresh (not supplemented with anipy TGA medium and incubated for 2 h at 37°C,
155 rpm in order to obtain log-phase bacteria egptial growth culture (OEo between 0.15 and 0.4).

The test was performed in the absence and presémaceexternal metabolic activation system (10%
of rat S9 mix, prepared from S9 SD rat liver AradkCl frozen, Trinova, Germany) in order to also
determine the possible genotoxic effects of anyabmdite. Negative and positive controls were
included in each test performed, with DMSO usedhassolvent control (negative control), and 4-
nitroquinoline-N-oxide (4-NQO) (Sigma-Aldrich, Clah and 2-aminoanthracene (2-AA) (Sigma-
Aldrich, Germany) used as positive controls indbeence and presence of the S9 mix, respectively.

The test procedure was as follows: first, eachetestompound was dissolved in DMSO at 40
mg/mL (for the final concentration in the assaylohg/mL) and 11 serial ¥z dilutions were prepared in
a 96-well plate (plate A; final volume in each weths 10ulL). The highest concentrations in DMSO
used for the positive controls were 100 pg/mL fe@O (final concentration: 2.5 pg/mL) and 0.5
mg/mL for 2-AA (final concentration: 0.0125 mg/mUjhen, 70uL of water was added to each well.
At this point, each well was checked in order ttedeany precipitation of the compounds. In othey t
96-well plates (plates B; one for the test with &l the other without S9), 10 S9 mix or 10uL
PBS, respectively, were added followed by the &mlditof 25 pL of each concentration of the

compound previously prepared. Finally, @D of exponentially growing bacteria was added tohea
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well and both plates were incubated for 4 h by sigakb00 rpm) at 37°C. After the incubation period,
absorbance at 600 nm was measured in order to agalthe toxicity onS typhimurium
TA1535/pSK1002.

Toxicity was calculated as follows:

Agoonm for eachconcentration tested

Survival percentage = ( ) x 100

Media Aggonm for negative control

Afterwards, for the determination @fgalactosidase activity, in two new 96-well pla{ptates C)
150 uL ONPG solution (2-nitropheny-D-galactopyranoside, Sigma-Aldrich, Switzerland).9(
mg/mL in B-buffer prepared according to Reifferadhet al. (1991) was added to each well angu30
of the content of each well of the plates B wasdfarred to these plates C. Both plates were irtedba
for 30 minutes by shaking (500 rpm) at 28°C avaiddirect light exposure. After the incubation
period, 120uL of the stop reagent (N&Os;, 1 M) was added to stop the reaction. Absorbanei2@
nm was then measured immediately, frghlactosidase activity (relative units; RU) wakckated as
follows:

A0 nm for each concentration tested

alactosidase enzymatic units = ,
Be y Agoo nm for each concentration tested

And finally, the induction factor (IF) was calcigatas:

I B galactosidase RU for each concentration tested

Average [3 galactosidase RU for negative control

Where:

Average A4, nm for negative control

Average [3 galactosidase RU for negative control =
gePe & Average Agoo nm for negative control
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In the same way§i-galactosidase relative units were calculated &dh Ipositive controls and the test
was only considered valid if the positive contridached an induction facte? under the given test
conditions.

Thus, a compound was considered genotoxic whenyirofthe conditions studied (with or without
metabolic activation) the induction factor wa& at non-toxic concentrations (bacteria survival
percentage> 80%). Any well where compound precipitation wasetved was discarded from the

analysis.
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Highlights

- New chloroquine/primaquine—quinoxaline 1,4-di-N-oxide (QdNO) hybrids were synthesized
- Chloroquine-based 4b was the most active in blood stage with a moderate liver activity

- Primaquine-QdNO 6a/6b displayed better liver Py/Pb activity and SI than primaquine

- Hybrid 6a showed causal prophylactic activity and high inhibition of sporogony (92%)

- Absence of genotoxicity and in vivo acute toxicity for primaquine-QdNO 6a was found



