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Heterocyclic compounds containing morpholine
and oxathiane fragments show a wide spectrum of
physiological activity [1–3]. Among different methods
for the synthesis of these compounds, the intramolecu-
lar rearrangement of oxonium, ammonium, and sulfo-
nium ylides resulting from the catalytic reaction of
diazo compounds with 1,3-diheterocycloalkanes is the
most convenient route [4–8]. For example, the reaction
of methyl diazoacetate with 1,3-dioxanes in the pres-
ence of Rh

 

2

 

(OAc)

 

4

 

 leads to 1,4-dioxepanes, the 

 

cis 

 

iso-
mer predominating when the initial 1,3-dioxane con-
tains a substituent in the second position [9].

Therefore, it seemed useful to study the catalytic reac-
tion of methyl diazoacetate with heterocyclic derivatives
of unsaturated carbonyl compounds (cyclic acetals (ket-
als), 1,3-oxazolidines, and 1,3-oxathiolanes).

The study showed that the reaction of N

 

2

 

CHCO

 

2

 

Me
with 1,3-diheterocycloalkanes (

 

I

 

, 

 

IIa

 

, 

 

IIb

 

) in the pres-
ence of Rh

 

2

 

(OAc)

 

4

 

 occurred preferably via the ylide
mechanism to give the products of formal insertion of
methoxycarbonylcarbene into the C–X bond. The for-
mation of ylides takes place by the electrophilic addi-
tion of carbenoid species generated from methyl diaz-
oacetate to the heteroatom under the action of the cata-
lyst.

Thus, the cyclic acetals (

 

Ia

 

, 

 

Ib

 

) and 1,3-oxathi-
olanes (

 

IIa

 

, 

 

IIb

 

) under the above conditions react with
methyl diazoacetate to yield the products of C–X inser-
tion (

 

III

 

, 

 

IVa

 

, 

 

IVb

 

) and [2,3]-sigmatropic rearrange-
ment (

 

V

 

, 

 

VIa

 

, 

 

VIb

 

). It should be noted that no products
of cycloaddition of methoxycarbonylcarbene to the
C=C bond were detected in the reaction mixture.
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The reaction of 2-(3-butenyl)-2-methyl-1,3-diox-
olane (

 

VII

 

) with N

 

2

 

CHCO

 

2

 

Me in the presence of
Rh

 

2

 

(OAc)

 

4

 

 leads to the formation of a mixture of dim-
ethyl esters of 

 

trans

 

- and 

 

cis

 

-2-[2-(2-methyl-1,3-diox-
olan-2-yl)ethyl]cyclopropanecarboxylic acids (

 

VIII

 

) in
a 3 : 2 ratio and 40% total yield.

At the same time, the reaction of 2-(3-butenyl)-2-

methyl-1,3-oxathiolane (

 

IX

 

) with N

 

2

 

CHCO

 

2

 

Me cata-

lyzed by Rh

 

2

 

(OAc)

 

4

 

 is accompanied by the insertion of

a methoxycarbonylmethylene fragment into a five-

membered ring resulting from the Stevens rearrange-

ment of the initially formed 

 

S

 

-ylide to give selectively

methyl 2-(3-butenyl)-2-methyl-1,4-oxathiane-3-car-

boxylate (

 

X

 

) in 50% yield.

 

We obtained unexpected results for the reaction of
2-(

 

trans

 

-2-phenylethenyl)-3-ethyl-1,3-oxazolidine (

 

XI

 

)
and 2-(3-butenyl)-2-methyl-3-ethyl-1,3-oxazolidine (

 

XII

 

)
with N

 

2

 

CHCO

 

2

 

Me in the presence of Rh

 

2

 

(OAc)

 

4

 

. It was
found that Rh

 

2

 

(OAc)

 

4

 

 catalyzes the cleavage of initial

oxazolidines (

 

XI

 

, 

 

XII

 

) to form cinnamaldehyde and
hexen-2-one, respectively.

Thus, our study showed that the direction of the
reaction of the unsaturated compounds with
N

 

2

 

CHCO

 

2

 

Me in the presence of Rh

 

2

 

(OAc)

 

4

 

 is deter-

O O

Me

O O

Me
MeO2C

(VII) (VIII)

Rh2(OAc)4

CH2Cl2
+ N2CHCO2Me

Me

O S
CO2MeMe

O
S

(IX) (X)

Rh2(OAc)4

CH2Cl2
+ N2CHCO2Me

 

Table 1. 

 

 Yields and 

 

1H NMR spectra for compounds IIIa, IIIb, IVa, Va, Vb, VIa, VIb, VIII, and X

Compound Yield, % 1H NMR spectrum (δ, ppm, J, Hz)

IIIa (X = O,
R = Me)

32 1.72 (d, 3 H, Me, 3J = 6.3); 3.86 (m, 2 H, H2C(5)); 3.95 (m, 2 H, H2C(6)); 3.83 (dd, 1 H, HC(3),
3J = 5.8, 3J = 8.8); 3.92 (s, 3 H, OMe); 4.15 (d, 1 H, HC(2), 3J = 5.8); 5.41 (dd, 1 H, HC(1'),
3J = 8.8, 3J = 15.7); 5.82 (dq, 1 H, HC(2'), 3J = 6.3, 3J = 15.7)

IIIb (X = O,
R = Ph)

47 3.73 (s, 3 H, OMe); 3.88–3.96 (m, 4 H, H2C(5) and H2C(6)); 4.04 (d, 1 H, HC(2), 3J = 8.8);
4.25 (dd, 1 H, HC(3), 3J = 7.1, 3J = 8.8); 6.15 (dd, 1 H, HC(1'), 3J = 16.0, 3J = 7.1);
6.72 (d, 1 H, HC(2'), 3J = 16.0); 7.27–7.35 (m, 5 H, Ar)

IVa (X = S,
R = Me)

8 1.68 (d, 3 H, Me, 3J = 6.1); 2.39 (m, 2 H, H2C(6)); 3.95 (m, 2 H, H2C(5)); 3.45 (d, 1 H, HC(2),
3J = 12.5); 3.71 (s, 3 H, OMe); 4.78 (dd, 1 H, HC(3), 3J = 12.5, 3J = 6.7); 5.51 (dk, 1 H, HC(2'),
3J = 6.1, 3J = 15.5); 5.72 (dd, 1 H, HC(1'), 3J = 6.7, 3J = 15.5)

Va (X = O,
R = Me)

55 1.02 (d, 3 H, Me, 3J = 7.2); 2.76–2.89 (ddq, 1 H, HC(6), 3J = 5.1, 3J = 7.2, 3J = 10.1); 3.70 (t, 2 H, 
H2C(3), 3J = 7.1); 3.71 (s, 3 H, OMe); 4.36 (t, 2 H, H2C(2), 3J = 7.1); 4.54 (d, 1 H, HC(5),
3J = 10.1); 4.82 (dd, 1 H, HC(7), 3J = 5.1, 3J = 6.3); 5.79 (d, 1 H, HC(8), 3J = 6.3)

Vb (X = O,
R = Ph)

23 3.52 (t, 2 H, H2C(3), 3J = 7.2); 3.73 (s, 3 H, OMe); 4.04 (d, 1 H, HC(5), 3J = 8.8); 4.25 (dd, 1 H, 
HC(6), 3J = 6.3, 3J = 8.8); 4.47 (t, 2 H, H2C(2), 3J = 7.2); 6.15 (dd, 1 H, HC(7), 3J = 6.3,
3J = 16.0); 6.72 (d, 1 H, HC(8), 3J = 16.0); 7.27–7.35 (m, 5 H, Ar)

VIa (X = S,
R = Me)

8 1.00 (d, 3 H, Me, 3J = 6.8); 2.66 (ddq, 1 H, HC(6), 3J = 5.0, 3J = 7.0, 3J = 6.8); 3.08 (t, 2 H, H2C(3), 
3J = 7.1); 3.67 (s, 3 H, OMe); 3.71 (d, 1 H, HC(5), 3J = 7.0); 4.16 (t, 2 H, H2C(2),
3J = 7.1); 5.52 (dd, 1 H, HC(7), 3J = 5.0, 3J = 6.2); 5.87 (d, 1 H, HC(8), 3J = 6.2)

VIb (X = S,
R = Ph)

10 2.72 (t, 2 H, H2C(3), 3J = 7.1); 3.71 (s, 3 H, OMe); 3.96 (dd, 1 H, HC(6), 3J = 5.0, 3J = 7.8);
4.28 (t, 2 H, H2C(2), 3J = 7.1); 4.42 (d, 1 H, HC(5), 3J = 7.8); 5.48 (dd, 1 H, HC(7), 3J = 7.7,
3J = 5.0); 6.04 (d, 1 H, HC(8), 3J = 7.7); 7.27–7.35 (m, 5 H, Ar)

VIII 40 0.89 (m, 2 H, CH2 in cyclopropane ring); 0.96 and 1.26 (both m, 1 H each, 2 CH in cyclopropane ring); 
1.27 (s, 3 H, Me); 1.33 and 1.74 (both m, 1 H each, CH2CH); 1.47 (m, 2 H, CH2C); 3.63 (s, 3 H, OMe); 
3.71–3.91 (m, 4 H, H2C(4) and H2C(5))

X 50 1.48 (s, 3 H, Me); 1.87 (t, 4 H, H2C(1'), 3J = 6.7); 2.08 (m, 2 H, H2C(2r')); 2.88 (q, 2 H, H2C(5), 
3J = 6.3); 3.69 (m, 1 H, HC(3)); 3.71 (s, 3 H, OMe); 3.78 (dt, 2 H, H2C (6), 3J = 6.3, 3J = 7.8); 5.00 
(br d, 2 H, H2C=, 3J = 17.2); 5.82 (ddt, 1 H, =CH, 3J = 6.5, 3J = 10.2, 3J = 17.2)
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mined by the nature of the substituent in the initial ole-
fins.

EXPERIMENTAL

1H and 13C NMR spectra were recorded on a Bruker
AM-300 spectrometer (300.13 and 75.47 MHz, respec-
tively) in CDCl3 with SiMe4 as an internal reference.
Qualitative and quantitative analysis of initial mixtures
and reaction products was accomplished on a Chrom-5
chromatograph with a flame ionization detector (a
1200 × 5 mm column with 5% SE-30 on Inerton N-AW
DMCS (0.125–0.160 mm); carrier gas, helium).

1,3-Dioxolanes (Ia, Ib) [10], 1,3-oxazolidines (XI,
XII) [11], and 1,3-oxathiolanes (IIa, IIb) [12] were
synthesized by known procedures. The purity of the
unsaturated compounds used was at least 99%.

Catalytic reaction of 2-alkenyl-1,3-diheterocy-
clopentanes with methyl diazoacetate (general pro-
cedure). Methyl diazoacetate (0.7 g, 7.0 mmol) in
20 mL of CH2Cl2 was added to a solution of 7.0 mmol
of an unsaturated compound (Ia, Ib, IIa, IIb, VII, IX,
XI, or XII) and 0.07 mmol of Rh2(OAc)4 in 10 mL of
the solvent over 1 h and the mixture was stirred addi-
tionally for 1–1.5 h with heating. The solvent was
removed, the residue was dissolved in 10 mL of diethyl
ether and passed through a thin layer of Al2O3, the sol-
vent was removed under slightly reduced pressure, and
the residue was distilled in vacuum or chromato-
graphed on SiO2.

The data on the compounds obtained are summa-
rized in Tables 1 and 2.
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Table 2.  13C NMR spectral data for compounds IIIa, IIIb, IVa, Va, Vb, VIa, VIb, VIII, and X

Compound 13C NMR spectrum (δ, ppm)

IIIa 17.4 (Me); 51.7 (OMe); 64.7 (C(5) and C(6)); 77.7 (C(3)); 79.4 (C(2)); 125.7 (C(1')); 129.6 (C(2')); 169.9 (CO)

IIIb 52.4 (OMe); 63.7 (C(6)), 66.1 (C(5)); 73.4 (C(3)); 79.6 (C(2)); 123.9 (C(1')); 134.3 (C(2')); 127.8–128.9 
(5 CH, Ar); 136.3 (C, Ar); 168.6 (CO)

IVa 17.6 (Me); 28.3 (C(6)); 43.8 (C(2)); 53.3 (OMe); 69.4 (C(5)); 76.3 (C(3)); 126.4 (C(2')); 130.6 (C(1')); 172.9 (CO)

Va 17.7 (Me); 33.4 (C(6)); 52.1 (OMe); 69.8 (C(3)); 70.7 (C(2)); 81.5 (C(5)); 120.0 (CH)); 145.6 (CH)); 168.7 (CO)

Vb 46.7 (C(6)); 52.4 (OMe); 77.8 (C(5)); 79.6 (C(2) and C(3)); 118.3 (CH); 146.7 (CH); 127.8–128.9 (5 CH, Ar); 
136.3 (C, Ar); 168.6 (CO)

VIa 20.3 (Me); 28.4 (C(3)); 37.1 (CH(6)); 42.1 (CH (5)); 53.1 (OMe); 69.8 (C(2)); 117.1 (C(7)); 144.4 (C(8)); 
178.7 (CO)

VIb 28.4 (Me); 41.9 (C(5)); 47.0 (C(6)); 53.4 (OMe); 70.0 (C(2)); 115.7 (C(7)); 127.8–128.9 (5 H, Ar); 142.7 (C, Ar); 
145.9 (C(8)); 178.4 (CO)

VIII cis-VIII. 13.5 (CH2 in cyclopropane ring); 18.2 (CH); 21.7 (CH); 23.6 (Me); 27.3 (C(2')); 38.2 (C(3'));
51.9 (OMe); 64.3 (C(4) and C(5)); 109.3 (C(2)); 173.0 (CO)
trans-VIII. 15.3 (CH2 in cyclopropane ring); 20.0 (CH); 22.4 (CH); 23.7 (Me); 27.5 (C(2')); 38.6 (C(3'));
52.0 (OMe); 64.3 (C(4) and C(5)); 109.5 (C(2)); 174.5 (CO)

X 28.5 (Me); 30.7 (C(5)); 33.1 (C(1')); 34.5 (C(2')); 51.3 (C(3)); 51.4 (OMe); 69.7 (C(6)); 80.9 (C(2));
114.1 (CH2=); 137.3 (CH=); 170.0 (CO)


