Accepted Manuscript

Synthesis of aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones/ones starting from chalcone-derived β -isothiocyanato ketones

Anastasia A. Fesenko, Mikhail S. Grigoriev, Anatoly D. Shutalev

PII: S0040-4020(16)31043-2

DOI: 10.1016/j.tet.2016.10.021

Reference: TET 28162

To appear in: Tetrahedron

Received Date: 26 July 2016

Revised Date: 29 September 2016

Accepted Date: 10 October 2016

Please cite this article as: Fesenko AA, Grigoriev MS, Shutalev AD, Synthesis of aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones/ones starting from chalcone-derived β -isothiocyanato ketones, *Tetrahedron* (2016), doi: 10.1016/j.tet.2016.10.021.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis of aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones/ones starting from

chalcone-derived β -isothiocyanato ketones

Anastasia A. Fesenko, Mikhail S. Grigoriev, Anatoly D. Shutalev

Synthesis of aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones/ones starting from chalcone-derived β -isothiocyanato ketones

Anastasia A. Fesenko^a, Mikhail S. Grigoriev^b, Anatoly D. Shutalev^{a,*}

^a Department of Organic Chemistry, Moscow Technological University, 86 Vernadsky Ave., 119571 Moscow, Russian Federation

^b A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Ave., 119071 Moscow, Russian Federation

Abstract: A general two-step synthesis of 7-aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3thiones from 1-aryl-3-isothiocyanatopropan-1-ones has been developed. The synthesis involved reaction of these isothiocyanato ketones with hydrazines followed by acid-catalyzed heterocyclization of the prepared 4-(3-oxopropyl)thiosemicarbazides or their hydrazones. Triazepine-3-thiones were converted into their 3-oxo analogs by oxidation with H₂O₂ under basic conditions. Conformations of the obtained triazepine-3-thiones/ones in DMSO solution and in solid state were established using ¹H NMR spectroscopy and single crystal X-ray diffraction.

Keywords: Isothiocyanato ketones; Thiosemicarbazides; Hydrazones; 1,2,4-Triazepine-3-thiones/ones

1. Introduction

1,2,4-Triazepines,¹ particularly 1,2,4-triazepin-2-ones/thiones are the subject of intensive studies due to their diverse pharmacological properties. These compounds are effective antagonists of parathyroid hormone 1 (PTH1R)² and holecystokinin hormone 2 (CCK₂)³ receptors. They possess antioxidant,⁴ antipsychotic,⁵ and HIV protease inhibitory activities.⁶ The reported approaches to 1,2,4triazepin-2-one/thione backbone include reaction of β -isocyanato or β -isothiocyanato ketones with hydrazines,^{7,8} condensation of (thio)semicarbazides with various 1,3-dicarbonyl compounds or their derivatives,^{4,9} reaction of arylidene ketones with N₂H₄· 2HNCS,¹⁰ addition of (thio)semicarbazides to α , β -unsaturated carbonyl compounds or their synthetic equivalents,¹¹ reaction of γ -hydrazinosubstituted amines with phosgene equivalents,^{3a,6,12} intramolecular cyclization of 4-(γ oxoalkyl)((thio)semicarbazides and their derivatives.^{7b,8d,13}

^{*} Corresponding author. Tel.: +7 495 246 0555x908; fax: +7 495 246 0555x909.

E-mail address: anatshu@gmail.com, shutalev@orc.ru (A.D. Shutalev).

Various benzo- and hetero-fused 1,2,4-triazepin-2-ones/thiones were prepared using the above methods. In contrast, only a few specific types of monocyclic triazepin-2-ones/thiones were described. Besides, some of the reported results on the triazepine formation from acyclic precursors were proved to be incorrect. For example, it was demonstrated that the reaction of 2-substituted thiosemicarbazides with malonyl chlorides provided four-membered imides⁹ⁱ instead of triazepines,¹⁴ and condensation of acetylacetone with 2-methylsemicarbazides did not afford any triazepines (ref. 15 vs ref. 9d). Thus, the development of reliable and practical approaches to monocyclic triazepines remains a challenge.

Previously, we showed that aryl substituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-ones 2 can be obtained by acid-catalyzed cyclization of hydrazones of 4-[(1,3-diaryl-3-oxo)prop-1-yl]semicarbazides 1 (Scheme 1).¹³

We studied this cyclization under various conditions and found that the reaction temperature and concentration of the starting material **1** had a dramatic effect on the yield of triazepines **2**. However, under all conditions tested, the yield of the products did not exceed 45%. Besides, synthesis of semicarbazides **1** involved substitution of the ethoxy group in the corresponding ethyl *N*-(3-oxopropyl)carbamates **3** under the action of refluxing anhydrous hydrazine for 20–24 h. Because of the harsh reaction conditions the starting carbamates partially decomposed, and therefore semicarbazides **1** were obtained in only 28–46% yield. Thus, the low availability of starting material remained the principal limitation of 1,2,4-triazepine synthesis by the cyclization of 4-[(1,3-diaryl-3-oxo)prop-1-yl]semicarbazide hydrazones. We hypothesized that triazepines could be obtained from thioxo analogs of **1** whose simple synthesis could be based on the reaction of readily available 1,3-diaryl-3-isothiocyanatopropan-1-ones¹⁶ with hydrazines. Here, we report synthesis of aryl substituted 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones and their oxidative transformation into the corresponding 3-oxo derivatives starting from 1,3-diaryl-3-isothiocyanatopropan-1-ones.

2. Results and discussion

2.1. Synthesis of 4-(3-aryl-3-oxopropyl)thiosemicarbazides and their hydrazones

3

ACCEPTED MANUSCRIPT

4-(3-Aryl-3-oxopropyl)thiosemicarbazides and their hydrazones were obtained from 1,3-diaryl-3isothiocyanatopropan-1-ones **4a-i** (Scheme 2). Isothiocyanates **4a-i** were synthesized by the addition of HNCS to the corresponding chalcones following our previously reported procedure.¹⁶

Scheme 2. Synthesis of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 5a-e and their hydrazones 7a-k.

The reaction of isothiocyanates **4a**,**g** with 1 equivalent of hydrazine hydrate readily proceeded in EtOH at room temperature for 1 h to give 4-(3-oxopropyl)thiosemicarbazides **5a**,**b** in excellent yields (Scheme 2, Table 1).

Table	1. Reaction	of isothiocy	anato keto	nes 4a,b,g	with hyd	drazine h	ydrate or	methyl h	ydrazine. ^a
Table	1. Reaction	of isothiocy	anato keto	nes 4a,b,g	with hyd	drazine h	ydrate or	methyl h	ydrazine.ª

Entry	4	R	\mathbb{R}^1	R ³	Product(s)	5/6 ratio ^b	Yield (%) ^c
1	4a	Н	Н	Н	5a + 6a	89:11 ^d	99
2	4g	Me	Me	Н	5b + 6b	95:5°	98
3	4a	Н	Н	Me	5c	-	99
4	4b	Н	Me	Me	5d	-	98
5	4g	Me	Me	Me	5e	-	98

^a 1:1 molar ratio of reagents, EtOH, rt, 1 h.

^b According to ¹H NMR spectroscopic data for the crude products.

^c Isolated yields.

^d Diastereomeric ratio for **6a** was 69:31.

^e Diastereomeric ratio for **6b** was 67:33.

It should be noted that preparation of oxo-analogs of **5a,b**, namely 4-(3-oxopropyl)semicarbazides, by the reaction of ethyl *N*-(3-oxopropyl)carbamates with hydrazine (see Scheme 1) did not work since substitution of the ethoxy group by hydrazine proceeded much slower than formation of hydrazone moiety.¹³

According to ¹H NMR data, initially formed thiosemicarbazides **5a,b** partly cyclized into 1-amino-6-hydroxypyrimidines **6a,b** (11 and 5 mol%, respectively). Pyrimidines **6a,b** were obtained as mixtures

of two diastereomers (69:31 for **6a**, 67:33 for **6b**). The major diastereomer of **6a,b** had (4*R**,6*R**)configuration with equatorial orientations of the aryl groups and axial position of the hydroxyl group $({}^{3}J_{\text{H-4,H-5}} = 11.8-12.1, {}^{3}J_{\text{N(3)H,H-4}} = 0, {}^{4}J_{\text{H-5,OH}} = 1.5 \text{ Hz})^{17,18}$ in DMSO-*d*₆ solution. The minor diastereomer had (4*R**,6*S**)-configuration with equatorial orientations of the hydroxyl group and 4-aryl substituent (${}^{3}J_{\text{H-4,H-5}} = 11.6-12.0, {}^{3}J_{\text{N(3)H,H-4}} = 0, {}^{4}J_{\text{H-5,OH}} = 0 \text{ Hz}$). Since the ratios of acyclic and two cyclic isomers did not change after crystallization we suppose that these three isomers were formed under thermodynamic control.

Isothiocyanates **4a,b,g** reacted with methyl hydrazine (EtOH, rt, 1 h) with complete regioselectivity to give 2-methyl-substituted thiosemicarbazides **6c-e** in 98–99% yields (Scheme 2, Table 1).

Hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides **7a-i** were obtained by the reaction of isothiocyanates **4a-i** with excess hydrazine hydrate (20 equiv.) in refluxing EtOH for 3 h in 89–94% yields (Scheme 2; Table 2, entries 1, 3–10). The crude thiosemicarbazides **7a-i** were isolated as mixtures of *E*- and *Z*-isomers with significant predominance of one of them (83–97%). At room temperature isothiocyanate **4a** reacted with N₂H₄·H₂O (20 equiv.) in EtOH for 24 h to give hydrazone **7a** as a single isomer (entry 2).

Table 2. Synthesis of 4-(3-aryl-3-oxopropyl)thiosemicarbazide hydrazones 7a-k by reaction of isothiocyanates 4a-i or thiosemicarbazides 5c,d with excess hydrazine.^a

Entry	Starting compd	R	\mathbb{R}^1	R ²	R ³	Product	Isomer ratio ^b	Yield (%) ^c
1	4a	Н	Н	Н	Н	7a	87:13	92
2 ^d	4a	Н	Н	Н	Н	7a	100:0	84
3	4b	Н	Me	Н	Н	7b	83:17	91
4	4c	Н	OMe	Н	Н	7c	84:16	94
5	4d	Н	OMe	OMe	Н	7d	84:16	89
6	4 e	Н	t-Bu	Н	Н	7e 🔨	90:10	89
7	4f	Me	Н	Н	Н	7f	97:3	93
8	4g	Me	Me	Н	Н	7g	83:17	89
9	4h	Me	OMe	Н	Н	7h	88:12	89
10	4i	Me	OMe	OMe	Н	7i	83:17	92
11	5c	Н	Н	Н	Me	7j ^e	78:22	94
12	5d	Н	Me	Н	Me	$7\mathbf{k}^{\mathrm{f}}$	78:22	97

^a 20 equiv. of N₂H₄·H₂O, EtOH, reflux, 3 h.

^b According to ¹H NMR spectra of the crude products.

^c Isolated yields.

^d 20 equiv. of N₂H₄·H₂O, EtOH, rt, 24 h.

^e Along with 5 mol% of 7a.

f Along with 5 mol% of 7b.

Treatment of 2-methyl thiosemicarbazides **5c,d** with hydrazine hydrate (20 equiv.) in refluxing EtOH for 3 h led to formation of hydrazones **7j,k** (two geometric isomers, 78:22) along with small amounts of the corresponding thiosemicarbazides **7a,b** (5%) (entries 11, 12). Crystallization of the crude products from EtOH afforded pure **7j,k**. The formation of **7a** was not observed when **5c** reacted with excess hydrazine hydrate at room temperature, but this reaction proceeded very slowly to give **7j** (80% conversion after 24 h according to ¹H NMR spectrum of isolated product). The C=N double bond geometries in the major and minor isomers of hydrazones **7a-k** were determined as *E* and *Z*, respectively. The assignments were based on ¹H and ¹³C NMR spectroscopic data, ¹H, ¹H NOESY experiment for **7a** in DMSO-*d*₆, DFT calculations of hydrogen and carbon chemical shifts for both *E*-**7a** and *Z*-**7a**, and comparison of ¹H and ¹³C NMR spectra of **7a-k** with those of structurally similar semicarbazides.¹³ For the major isomer of **7a**, NOE was observed between the C=NNH₂ and CH₂ protons, and no NOE correlation was detected between the *ortho*-phenyl protons of the PhC=N fragment and the C=NNH₂ protons, thus confirming the *E*-configuration of the C=N double bond in this isomer.¹⁹ Comparison of the experimental carbon chemical shift for the CH₂ group in **7a** (31.5 ppm in DMSO-*d*₆) with that calculated by the GIAO method at the DFT B3LYP/6-311++G(2df,p) level using the DFT B3LYP/6-311++G(d,p) optimized geometries for *E*-**7a** and *Z*-**7a** in the gas phase (33.7 and 54.0 ppm, respectively) also proved the *E*-configuration of the major isomer of **7a**. The assignment of the stereochemistry of other thiosemicarbazides **7b-k** followed from similarity of the ¹H and ¹³C NMR spectra of the major and minor isomers of **7a** with those of **7b-k**.

It is noteworthy that the ¹H NMR signal of the C=NNH₂ group for *E*-**7a-k** (6.45–6.67 ppm) was downfield shifted compared with that for *Z*-**7a-k** (5.59–5.67 ppm) (see also ref. 13). This significant shift (about +1 ppm) could be explained by decrease in electron density on the NH₂ nitrogen due to the strong conjugation in the ArC=NNH₂ moiety of *E*-**7a-k**. Indeed, DFT B3LYP/6-311++G(d,p) calculations showed that the ArC=NNH₂ fragment in *E*-**7a** is almost planar while in *Z*-**7a** the planes of the phenyl ring and C=N bond form an angle of about 65°, resulting in a sharp decrease in the conjugation.

2.2. Acid-catalyzed cyclization of 4-(3-aryl-3-oxopropyl)thiosemicarbazides or their hydrazones into 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones

We found that hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides **7a-k** could be readily cyclized in the presence of acid (>1 equiv.) to give the corresponding 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones **8a-k** (Scheme 3).

Scheme 3. Synthesis of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones 8a-k from hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 7a-k.

According to the ¹H NMR spectroscopic data for isolated crude materials under all studied conditions some amount of unidentified side products always formed along with triazepines **8a-k**. The characteristic feature of these spectra was an increase in the relative integral intensity of the aromatic protons region. The reaction conditions including catalyst, solvent, temperature, substrate concentration, and amount of catalyst were optimized with hydrazone **7a**. The experimental data are summarized in Table 3.

Table 3. Acid-catalyzed cyclization of hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 7a-k into 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones 8a-k.

Entry	7 ^a	R	\mathbb{R}^1	\mathbb{R}^2	R ³	Solvent	Acid (equiv.)	Conc. of 7 (mol/L)	Reaction conditions	8	Purity of 8 ^b (%)	Yield ^c (%)
1	7a	Н	Н	Н	н	EtOH	TsOH (1.05)	0.300	rt. 2 h	8a	37	_
2	7a	Н	Н	Н	Н	MeCN	TsOH (1.03)	0.300	rt, 2 h	8a	35	_
3	7a	Н	Н	Н	Н	EtOH	TsOH (1.05)	0.300	reflux, 1.5 h	8a	61	_
4	7a	Н	Н	Н	Н	EtOH	TsOH (1.10)	0.097	reflux, 1.5 h	8a	79	_
5	$7a^{d}$	Н	Н	Н	Н	EtOH	TsOH (1.11)	0.097	reflux, 1.5 h	8a	78	76
6	7a	Н	Н	Н	Н	EtOH	TsOH (1.52)	0.098	reflux, 1.5 h	8a	77	_
7	7a	Н	Н	Н	Н	EtOH	TsOH (1.07)	0.054	reflux, 1.5 h	8a	80	_
8	7a	Н	Н	Н	Н	EtOH	HCl (1.05)	0.107	reflux, 1.5 h	8a	72	_
9	7a	Н	Н	Н	Н	AcOH	AcOH	0.100	reflux, 1.67 h	8a	68	_
10	7b	Н	Me	Н	Н	EtOH	TsOH (1.10)	0.095	reflux, 1.5 h	8b	80	76
11	7c	Н	OMe	Н	Н	EtOH	TsOH (1.10)	0.098	reflux, 1.5 h	8c	75	75
12	7d	Н	OMe	OMe	Н	EtOH	TsOH (1.15)	0.091	reflux, 1.5 h	8d	74	73
13	7e	Н	t-Bu	Н	Н	EtOH	TsOH (1.12)	0.096	reflux, 1.5 h	8e	80	78
14	7f	Me	Н	Н	Н	EtOH	TsOH (1.12)	0.098	reflux, 1.5 h	8f	84	81
15	7g	Me	Me	Н	Н	EtOH	TsOH (1.11)	0.097	reflux, 1.5 h	8g	81	76
16	7h	Me	OMe	Н	Н	EtOH	TsOH (1.12)	0.095	reflux, 1.5 h	8ĥ	81	81
17	7i	Me	OMe	OMe	Н	EtOH	TsOH (1.11)	0.098	reflux, 1.5 h	8i	83	82
18	7j	Н	Н	Н	Me	MeCN	TsOH (1.12)	0.092	reflux, 1.5 h	8j	78	72
19	7j	Н	Н	Н	Me	MeOH	TsOH (1.11)	0.095	reflux, 1.5 h	8j	75	_
20	7j	Н	Н	Н	Me	EtOH	TsOH (1.11)	0.102	reflux, 1.5 h	8j	72	_
21	7ĸ	Н	Me	Н	Me	MeCN	TsOH (1.12)	0.092	reflux, 1.5 h	8k	71	48

^a The crude products obtained by the reaction of **4a-i** or **6c,d** with excess N_2H_4 in refluxing EtOH were used. Their *E/Z* ratios are presented in Table 2 (entire 2, 3–12).

^b Purity of the isolated crude product was estimated as ratio of the expected integral intensity of the aromatic protons region (10 H for **8a**,j, 9 H for **8b**,c,e,f,k, 8 H for **8d**,g,h, and 7 H for **8i**) to the observed integral intensity in this region in the ¹H NMR spectrum of the crude product multiplied by 100. In all cases complete conversion of the starting material was observed.

^c Isolated yield (after column chromatography).

^d The crude product obtained by the reaction of 4a with excess N₂H₄ in EtOH at rt was used (Table 2, entry 2).

At room temperature in the presence of TsOH (1.03–1.05 equiv.) the reaction of **7a** completed for 2 h. Both in MeCN and in EtOH, considerable amount of side products formed along with **8a** (estimated yields 35–37%) (entries 1 and 2). At reflux the yield of **8a** significantly increased (entry 3 vs entry 1). Decrease in the concentration of the starting material from 0.300 to 0.097 mol/L led to the increase in the amount of **8a** in the crude product from 61 to 78% (entry 3 vs entry 4). Further dilution (up to 0.054 mol/L) of the reaction mixture (entry 4 vs entry 7), use of higher excess of TsOH or other acidic catalysts had no effect on the product yield (entries 6, 8, and 9). It is noteworthy that the yield of

triazepine **8a** did not depend on the configuration of the starting hydrazone **7a** since both E/Z-**7a** and E-**7a** gave **8a** in close estimated yields (column 12 in Table 3, entry 4 vs entry 5).

Thus, under optimal reaction conditions hydrazones **7a-i** cyclized in refluxing EtOH for 1.5 h in the presence of TsOH (1.10–1.15 equiv.) to give triazepines **8a-i** which were isolated in 73–82% yields using column chromatography on aluminium oxide (entries 5, 10–17). Purification of triazepine **8a** by chromatography on silica gel with various eluting systems (CHCl₃-petroleum ether, EtOAc-petroleum ether, acetone-petroleum ether) failed to give pure product.

2-Methylthiosemicarbazide **7j** cyclized in the presence of TsOH (1.12 equiv.) to give 2methyltriazepine **8j**. In this case the yield of the product was slightly higher in refluxing MeCN compared with that in EtOH or MeOH (entries 18, 19, and 20). Thus, compounds **8j** and **8k** were obtained from **7j** and **7k** (MeCN, reflux, 1.5 h) after purification using column chromatography on aluminium oxide in 71% and 48% yield, respectively (entries 18 and 21).

Obviously, acid-catalyzed transformation of **7a-k** into **8a-k** can proceed via two possible pathways with participation of the NH_2 group of either thiosemicarbazide or hydrazone moiety. Formation of **8j,k** from **7j,k** proves that the cyclization of **7a-k** involves nucleophilic attack of the thiosemicarbazide amino group on the electrophilic carbon of the C=N double bond.

The obtained data clearly show that hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides have a stronger tendency to cyclize into triazepines under acidic conditions compared with analogous hydrazones of semicarbazides (see ref. 13). For example, thiosemicarbazide **7a** was converted into triazepine-2-thione **8a** in 76% isolated yield (Table 3, entry 5), while under similar conditions 4-[(3-oxo-1,3-diphenyl)prop-1-yl]semicarbazide hydrazone (**9**) gave 5,7-diphenyl-2,4,5,6-tetrahydro-3*H*-1,2,4-triazepin-3-one (**10**) only in 28% estimated yield.¹³ At room temperature, traces of triazepinone **10** formed from semicarbazide **9** under the action of TsOH in EtOH,¹³ while compound **7a** gave about 37% of the expected product **8a** (entry 1).

The differences in the reactivity of thiosemicarbazide hydrazones 7 and their oxo-analogs (e.g., 9) can be explained by different basicities of these compounds. Similar basicities²⁰ of the semicarbazide NH₂ group and nitrogen atom of the C=N double bond in 9 lead to protonation of the NH₂ group in considerable extent under strong acidic conditions²¹ resulting in decrease in cyclization rate. In contrast, significant difference in the basicities²² of the corresponding nitrogen atoms in 7 provides a greater tendency to give triazepines.

A plausible pathway for the acid-catalyzed cyclization of *E*-**7a** into **8a** is shown in Scheme 4. We suppose that this reaction includes initial protonation of compound **7a** under the action of acid (HA) to give one of two possible cations **A** or **B**. The calculations performed at the DFT B3LYP/6-311++G(d,p) level of theory using the PCM solvation model showed that cation **B** is significantly less stable than cation **A** ($\Delta G = 8.8$ kcal/mol in EtOH, 298 K and 1 atm),²³ therefore its formation can be excluded. The initially formed cation **A** cyclizes into **8a** via the intermediate triazepine **C**. Clearly, the acid-catalyzed cyclization of **7b-k** into triazepines **8b-k** proceeds analogously.

Scheme 4. A plausible pathway for the acid-catalyzed (HA) cyclization of E-7a into 8a.

Thus, we showed that 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones **8** can be readily prepared from hydrazones of 4-(1,3-diaryl-3-oxopropyl)thiosemicarbazides **7**. Obviously, thiosemicarbazides **5a-e** could also serve as a precursors for the triazepine synthesis. Reported data indicated that thiosemicarbazide **5a** did not cyclize under acidic or basic conditions.²⁴ Later, the cyclization of thiosemicarbazides **5a** and **5c** into triazepines **8a** (no yield given) and **8g** (30% yield) by heating in dioxane or isopropyl alcohol in the presence of TsOH was scarcely described without any experimental details.^{8d}

We studied transformation of thiosemicarbazides **5a-e** into the corresponding triazepines **8a,g,j-l** (Scheme 5) under different conditions varying solvent, catalyst and its amount, additive, substrate concentration, and reaction time.

Scheme 5. Synthesis of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones 8a,g,j-l from 4-(3-aryl-3-oxopropyl)thiosemicarbazides 5a-e.

In initial experiments, we found that triazepine **8a** formed only in 17–23% estimated yields from thiosemicarbazide **5a** along with considerable amounts of unidentified side products in refluxing EtOH or MeCN in the presence of TsOH (0.10–0.11 equiv.) for 1 h (Table 4, entries 1 and 2). One of the

characteristic features of ¹H NMR spectra of the isolated crude materials was an increase in the relative integral intensity of the aromatic protons region. The yield of **8a** slightly increased when various TsOH–N₂H₄ combinations were tested (entries 3–5).

Entry	5	R	\mathbb{R}^1	R ³	Solvent	Acid (equiv.)	Additive (equiv.)	Reaction time (h)	Conv. ^b (%)	8	Purity of 8 ^c (%)	Yield ^d (%)
	_										<u> </u>	
1	5a	Н	Н	Н	EtOH	TsOH (0.11)	-	1	100	8a	17	_
2	5a	Н	Н	Н	MeCN	TsOH (0.10)	-	1	100	8a	23	-
3	5a	Н	Н	Н	EtOH	TsOH (1.12)	$N_2H_4 \cdot H_2O(1.01)$	1	100	8a	32	_
4	5a	Н	Н	Н	EtOH	TsOH (1.00)	$N_2H_4 \cdot H_2O(1.01)$	1	100	8a	33	_
5	5a	Н	Н	Н	MeCN	TsOH (1.04)	$N_2H_4 \cdot H_2O(1.04)$	1	100	8a	26	-
6	5a	Н	Н	Н	EtOH	AcOH (4.05)	-	1	87	8a	68	_
7	5a	Н	Н	Н	EtOH	AcOH (4.10)	-	3	100	8 a	85	83
8	5a	Н	Н	Н	MeCN	AcOH (4.14)	_	3	55	8 a	22	_
9	5b	Me	Me	Н	EtOH	AcOH (4.13)	-	3	100	8g	83	79
10	5c	Н	Н	Me	EtOH	TsOH (0.10)	-	1	85	8j	31	-
11	5c	Н	Н	Me	MeCN	TsOH (0.10)	-	1	100	8j	58	-
12	5c	Н	Н	Me	EtOH	AcOH (4.01)	-	1	39	8j	26	-
13	5c	Н	Н	Me	MeCN	AcOH (4.13)	-	5	21	8j	10	_
14	5c	Н	Н	Me	EtOH	AcOH (10.40)	-	8	100	8j	89	89
15	5d	Н	Me	Me	EtOH	AcOH (10.62)	-	8	100	8k	89	82
16	5e	Me	Me	Me	EtOH	AcOH (10.16)	-	8	100	81	88	81

Table 4. Acid-catalyzed cyclization of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 5a-e into 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones 8a,g,j-l.^a

^a The reactions were performed at reflux with concentrations of the starting material ranging from 0.091 to 0.136 mol/L.

^b Level of conversion of the starting material according to ¹H NMR of the crude product.

^c Purity of the isolated crude product was estimated as ratio of the expected integral intensity of the aromatic protons region (10 H for **8a**, **j**, 9 H for **8k**, 8 H for **8g**,**l**) to the observed integral intensity in this region in the ¹H NMR spectrum of the crude product multiplied by 100.

^d Isolated yield (after column chromatography).

The use of AcOH as the catalyst led to a significant increase in the yield of **8a**. The treatment of **5a** with AcOH (4.05 equiv.) in refluxing EtOH for 1 h resulted in a 87% conversion of the starting material (**8a/5a** = 84:16) and 68% purity of **8a** (entry 6). Under these conditions, the reaction completed in 3 h and triazepine **8a** was isolated using column chromatography on silica gel in 83% yield (entry 7). Analogously, triazepine **8g** was obtained from **5b** in 79% isolated yield (entry 9). Though the yields of triazepines **8a**,g prepared from thiosemicarbazides **5a**,b are comparable with those obtained from hydrazones **7a**,g (Table 3, entries 5 and 15), the isolation of compounds **8a**,g when thiosemicarbazides **5a**,b were used as starting materials was much more easy. It is noteworthy that the cyclization of **5a** into **8a** under the action of AcOH proceeded significantly slower in refluxing MeCN compared with that in EtOH (Table 4, entry 7 vs entry 8).

In contrast to **5a**, TsOH-catalyzed cyclization of 2-methylthiosemicarbazide **5c** in refluxing MeCN or EtOH gave the expected triazepine **8j** in higher yields (entry 1 vs entry 10, entry 2 vs entry 11). However, the best results were also achieved with AcOH. In this case, the rate of cyclization of 2-methylthiosemicarbazide **5c** decreased compared with 2-unsubstituted compounds **5a,b** (entry 6 vs entry 12, entry 8 vs entry 13). The use of a 10-fold excess of AcOH and prolongating of the reaction time (8 h) resulted in the smooth formation of 2-methyl-substituted triazepines **8j-1** starting from thiosemicarbazides **5c-e** (entries 14–16). Compounds **8j-l** were isolated in 81–89% yields by column

chromatography on silica gel. The obtained data show that preparation of 2-methyl-substituted triazepines **8j,k** starting from 4-(3-aryl-3-oxopropyl)thiosemicarbazides **5c,d** is more preferable than from their hydrazones **7j,k**.

All attempts to convert compound **5a** into **8a** under basic conditions failed; for example, based on our experience^{8a} we tried to cyclize **5a** under the action of KOH (3.02 equiv.) in EtOH at room temperature (2 h). However, a complex mixture of products was obtained containing only 7% of the expected triazepine **8a** (¹H NMR spectroscopic data). Low conversion of **5a** into **8a** (< 8%) was observed when compound **5a** was heated at reflux in pyridine for 2 h or in EtOH in the presence of aniline (0.15 equiv.) for 4 h.

2.3. Synthesis of 5-unsubstituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione

Next we studied the effect of substituent at the α -position to nitrogen on the cyclization of 4-(3aryl-3-oxopropyl)thiosemicarbazides or their hydrazones. Previously, we described regioselective synthesis of β -unsubstituted β -isothiocyanatoketones from α , β -unsaturated ketones by addition of HN₃ followed by reaction of the obtained β -azidoketones with CS₂ and PPh₃.²⁵ Using this reaction sequence we prepared isothiocyanatoketone **11** from phenylvinylketone and then reacted it with N₂H₄·H₂O. The reaction smoothly proceeded in MeCN (0 °C, 10 min) to give thiosemicarbazide **12** in quantitative yield (Scheme 6).

Scheme 6. Synthesis of 5-unsubstituted triazepine 15 from isothiocyanate 11.

According to ¹H NMR spectroscopic data, thiosemicarbazide **12** was formed along with small amount (2 mol%) of its 6-membered cyclic isomer, 1-amino-6-hydroxypyrimidine **13**. It is noteworthy that the isomeric ratio did not change after crystallization from EtOH indicating that these isomers are in equilibrium.

At room temperature thiosemicarbazide **12** slowly reacted with N_2H_4 · H_2O (10.0 equiv.) in EtOH for 24 h affording a mixture of **14** and **12** in a ratio 25:75 (¹H NMR data). In refluxing EtOH the reaction completed in 6 h 20 min to give hydrazone of thiosemicarbazide **14** in 90% yield as a mixture

of *E* and *Z* isomers in a ratio of 92:8, respectively. The stereochemical assignments were based on ¹H and ¹³C NMR spectroscopic data, particularly by comparing these spectra with those of **7a-k** (see above). As for **7a-k**, the ¹H NMR signal of the C=NNH₂ group for *E*-**14** (6.84 ppm) was significantly downfield shifted compared with that for *Z*-**14** (5.74 ppm).

We studied the cyclization of ketone **12** and its hydrazone **14** under the action of TsOH (1.1 equiv.). All reactions were performed with concentrations of the starting material ranging from 0.090–0.150 mol/L which was found to be optimal for the cyclization of **7a-k** and **5a-e** (see Table 3 and Table 4).

At room temperature in EtOH and MeCN in the presence of TsOH the reaction of hydrazone 14 completed for 1 h 45 min. However, besides the expected triazepine 15, considerable amount of side products formed. According to ¹H NMR spectroscopic data, the estimated yield of 15 in isolated crude materials was 24% (in EtOH) and 55% (in MeCN). In contrast to the TsOH-catalyzed cyclization of 7a-k (Table 3) the estimated yield of 15 significantly decreased (30%) when hydrazone 14 was treated with TsOH in refluxing MeCN for 2 h.

We found that the cyclization of **12** into **15** under the action of TsOH in EtOH at room temperature proceeded quite slowly and gave significant amounts of side products. In refluxing MeCN or EtOH in the presence of TsOH (0.1 equiv.) reaction completed for 1 h to afford triazepine **15** in low yields (27–33%, ¹H NMR estimated). Use of AcOH as the catalyst resulted in significant increase in the yield of **15**. Triazepine **15** was obtained by the reaction of thiosemicarbazide **12** with AcOH (4.09 equiv.) in refluxing EtOH for 3 h in 74% yield after column chromatography on silica gel.

2.4. Synthesis of 2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-ones

The obtained triazepine-3-thiones **8a-1**, **15**, containing reactive thiosemicarbazone fragment, can serve as versatile starting materials for syntheses of a large variety of triazepines and related compounds. As an example we carried out oxidative transformation of triazepine-3-thiones **8a-c,e,f** into their 3-oxo-analogs **16a-e** (Scheme 7).

Scheme 7. Transformation of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones **8a-c,e,f** into their 3-oxo-analogs **16a-e**.

ACCEPTED MANUSCRIPT

The oxidation of **8a-c,e,f** proceeded at room temperature for 1.5–2.5 h under the action of excess of H_2O_2 (10 equiv.) in EtOH–H₂O solution in the presence of KOH (5 equiv.) to give the corresponding triazepinones **16a-e** in good yields (Table 5). Compounds **16a-c,e** were isolated with 98% purity (¹H NMR spectroscopic data). Column chromatography on silica gel was used only for isolation of compound **16d**.

Table 5. Oxidative transformation of triazepine-3-thiones 8a-c,e,f into their 3-oxo-analogs 16a-e.ª

Entry	8	R	R^1	Product	Yield ^b (%)
1	8a	Н	Н	16 a	89
2	8b	Н	Me	16b	87
3	8c	Н	OMe	16c	88
4	8e	Н	t-Bu	16d	58
5	8f	Me	Н	16e	93

 a Reaction conditions: H₂O₂ (10 equiv.), KOH (5 equiv.), EtOH/H₂O, rt, 1.5–2.5 h. b Isolated yield (for **16d** after column chromatography).

Previously, we prepared triazepinones **16a,b** using carbamate method in overall yields of 11-15% starting from corresponding ethyl *N*-[(aryl)(tosyl)methyl]carbamates.¹³ All our attempts to prepare triazepinones **16c** and **16d** by the carbamate method failed. The described above approach to 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepin-3-ones is significantly more effective and flexible. Indeed, triazepinones **16a,b** were obtained in 61–68% overall yields starting from isothiocyanatoketones **4a,b**.

2.5. Structure of 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones/ones

The triazepine structure of compounds **8a-1**, **15**, **16a-e** was established by ¹H and ¹³C NMR spectroscopy. For example, the ¹H NMR spectra of **8a-i**, **15**, **16a-e** in DMSO-*d*₆ show a long-range coupling between the N(2)H and N(4)H protons (⁴J = 2.0–2.1 Hz) typical for cyclic (thio)ureas, particularly, 2,3,4,5-tetrahydro- and 2,3-dihydro-1*H*-1,3-diazepin-2-ones,²⁶ hexahydro- and 1,2,3,4-tetrahydropyrimidine-2-thiones/ones,²⁵⁻²⁷ 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones/ones,^{8a,13} etc. The proton spin system of the HN(4)-C(5)H-C(6)H(A)H(B) fragment in triazepines **8a-l**, **15**, and **16a-e** is characterized by a long-range coupling between the N(4)H proton and one of the protons of CH₂ group (⁴J = 0.7–1.0 Hz), as well as a high geminal coupling constant between the C(6)H(A) and C(6)H(B) protons (²J = 13.5–14.7 Hz), indicating that these protons are located at α-position to a double bond.²⁸

The structures of compounds **8b**, **8i**, and **8j** were independently confirmed by X-ray single-crystal analyses (Fig. 1–3).^{29,30} The crystal of **8b** (monoclinic, noncentrosymmetric space group $P2_1$) is a racemic twin. The unit cell contains both enantiomers (Fig. 1). Note, the conformations of these

enantiomers are significantly different; the triazepine ring in both isomers adopts a puckered conformation with a pseudo equatorial position of the *p*-tolyl group for *R*-**8b** (C8–C5–C6–C7 torsion angle is 173.4°) (Fig. 1a) and a pseudo axial orientation of this group for *S*-**8b** (C8–C5–C6–C7 torsion angle is 53.4°) (Fig. 1b), while the C7, N1, N4, and C5 atoms in *R*-**8b** are located in one plane (maximal deviation from the plane is 0.013 Å), and the N2, C3, and C6 atoms deviate from the plane by 0.618, 0.428, and 0.746 Å in the same direction, respectively. Therefore, the triazepine ring in *R*-**8b** has a distorted boat conformation. In contrast to *R*-**8b**, the seven-membered ring in *S*-**8b** adopts a distorted envelope conformation where the C6 and C7 atoms deviate from the mean-square plane formed by the other ring atoms (maximal deviation from the plane is 0.016 Å) by 0.943 and 0.395 Å, respectively.

Figure 1. Views of molecular X-ray structures of *R*-**8b** (a) and *S*-**8b** (b) with ellipsoids drawn at the 50% probability level.

The crystal of *R*-**8i** obtained by crystallization of racemic **8i** was triclinic with the space group *P*-1. Conformation of *R*-**8i** is close to that of *R*-**8b** (see above), the triazepine ring adopts a distorted boat conformation where the N2, C3, and C6 atoms deviate from the mean-square plane formed by the other ring atoms (maximal deviation from the plane is 0.017 Å) by 0.681, 0.504, and 0.709 Å, respectively. The dimethoxyphenyl substituent has a pseudo equatorial orientation (C8–N5–C6–C7 dihedral angle is 177.0°) (Fig. 2).

The unit cell of the crystal of **8j** (monoclinic, space group $P2_1/c$) contains both enantiomers (Fig. 3). Conformations of *R*-**8j** and *S*-**8j** are very close. Analogously to *R*-**8b,i**, the seven-membered ring in *R*-**8j** and *S*-**8j** adopts a distorted boat conformation where the C7, N1, N4, and C5 atoms are located in one plane, and the N2, C3, and C6 atoms deviate from this plane. However, in contrast to *R*-**8b,i**, the C5 substituent in **8j** has a pseudo axial position (C8–C5–C6–C7 torsion angles in *R*-**8j** and *S*-**8j** are 70.5° and -72.4°, respectively).

The values of couplings between the N(4)H, C(5)H, C(6)H(A), and C(6)H(B) protons (${}^{3}J_{N(4)H,H-5} = 2.2-2.5$, ${}^{3}J_{H-5,H(A)-6} = 4.4-4.6$, and ${}^{3}J_{H-5,H(B)-6} = 9.0-9.3$ Hz) in ¹H NMR spectra of 2-methyl-substituted triazepinethiones **8j-1** in DMSO- d_6 prove that they exist predominantly in a puckered conformation with a pseudo equatorial orientation of the C5 substituent. It is noteworthy that conformations of **8j** in DMSO solution and in solid state (see above) are different. According to ¹H NMR spectroscopic data, 2-unsubstituted triazepinethiones/ones **8a-i**, **16a-e** in DMSO- d_6 have a pseudo axial position of the C5 substituent (${}^{3}J_{N(4)H,H-5} = 3.2-5.0$, ${}^{3}J_{H-5,H(A)-6} = 6.2-7.0$, and ${}^{3}J_{H-5,H(B)-6} = 2.6-3.4$ Hz).

3. Conclusion

A general synthesis of 7-aryl substituted 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones and their 3-oxo analogs has been developed. The key step of the synthesis includes acid-catalyzed cyclizations of 4-(3-oxopropyl)thiosemicarbazides or their hydrazones to give corresponding 1,2,4-triazepine-3-thiones in high yields. Under optimal reaction conditions 4-(3-oxopropyl)thiosemicarbazide hydrazones are cyclized in refluxing EtOH for 1.5 h in the presence of TsOH (1.10–1.15 equiv.), and 4-(3-oxopropyl)thiosemicarbazides are converted into the target products under reflux in EtOH for 3–8 h using AcOH (4.10–10.62 equiv.) as a catalyst. Both triazepine precursors can be prepared in excellent yields by reaction of readily available 1-aryl-3-isothiocyanatopropan-1-ones with hydrazine or methyl hydrazine in EtOH at room temperature or at reflux. 1,2,4-Triazepin-3-ones are obtained in good yields by oxidation of 3-thioxo derivatives with excess of H₂O₂ in EtOH–H₂O solution in the presence of KOH at room temperature (1.5–2.5 h). Conformational analysis of the obtained triazepine-3-thiones/ones in DMSO solution and solid state based on ¹H NMR spectroscopic data and single crystal X-ray diffraction shows that the triazepine ring adopts a puckered conformation (distorted boat or distorted envelope) with a pseudo axial or pseudo equatorial orientation of substituent at the C5 carbon.

4. Experimental section

4.1. General

All solvents were distilled before use, 95% EtOH was used unless otherwise indicated. The petroleum ether had a distillation range of 40–60 °C. 100% hydrazine hydrate was used. Isothiocyanatoketones **4a-i** were prepared as described in ref. 16. Isothiocyanatoketone **11** was prepared as described in ref. 25. All other reagents were purchased from commercial sources and used without additional purification. IR spectra (Nujol) were recorded using a BrukerVector 22 spectrophotometer. Band characteristics in the IR spectra are defined as very strong (vs), strong (s), medium (m), weak (w), and shoulder (sh). ¹H NMR and proton decoupled ¹³C NMR spectra (solutions in DMSO-*d*₆) were acquired using a Bruker DPX 300 spectrometer at 300.13 MHz (¹H) and 75.48 MHz (¹³C). ¹H NMR chemical shifts are referenced to the residual proton signal in DMSO-*d*₆ (2.50 ppm). In ¹³C NMR spectra, central signals of DMSO-*d*₆ (39.50 ppm) were used as references. Multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), and some combinations of these, multiplet (m). Selective ¹H–¹H decoupling and DEPT-135 experiments were used to aid in the assignment of ¹H and ¹³C NMR signals. Elemental analyses (CHN) were performed using a Thermo Finnigan Flash EA1112 apparatus. Thin-

layer chromatography was carried out on Aldrich silica gel 60 F254 aluminum backed plates in CHCl₃ and CHCl₃/MeOH (9:1, v/v) as solvent systems. Spots were visualized with UV light or iodine vapors. Column chromatography was performed with Macherey-Nagel silica gel 60 (0.063-0.200 mm) or Macherey-Nagel aluminium oxide 90 neutral (activity 1). X-ray diffraction experiments were carried out on an automatic four-circle diffractometer with area detector Bruker KAPPA APEX II at 100 K, MoK_{α} radiation, graphite monochromator. Unit cell parameters were refined over the whole datasets.³¹ The structures were solved using direct method (SHELXS97³²) and refined using full-matrix leastsquares method (SHELXL-2014³³) on F^2 over the whole dataset in the anisotropic approximation for all nonhydrogen atoms. H atoms were introduced in geometrically calculated positions with isotropic temperature factors $U_{\rm H} = 1.5 U_{\rm eq}({\rm C})$ for CH₃ groups and $U_{\rm H} = 1.2 U_{\rm eq}({\rm C},{\rm N})$ for CH, NH, CH₂ and NH₂ groups. Suitable single crystals were obtained from slow evaporation of saturated solutions in MeCN (for **8b**,**i**) and EtOH (for **8j**) at room temperature. All yields refer to isolated, spectroscopically and TLC pure compounds. The color of solid substances was white, if not otherwise mentioned. The geometry optimizations of R-7a and S-7a, cations A and B (Scheme 4) were carried out at the B3LYP level of theory using Gaussian 09 suite³⁴ of quantum chemical programs. Pople's basis set, 6-311++G(d,p), was employed for geometry optimization. The effect of continuum solvation was incorporated by using the polarizable continuum model (PCM). Enthalpies and Gibbs free energies were obtained by adding unscaled zero-point vibrational energy corrections (ZPVE) and thermal contributions to the energies.

4.2. Synthesis of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 5a-e

4.2.1. 4-[(3-Oxo-1,3-diphenyl)prop-1-yl]thiosemicarbazide (5a). To a stirred suspension of isothiocyanatoketone 4a (1.51 g, 5.66 mmol) in EtOH (20 mL) was added a solution of N₂H₄·H₂O (0.290 g, 5.80 mmol) in EtOH (5 mL) over 1 min. The resulting mixture was stirred at room temperature for 1 h and the solvent was removed in vacuum. The obtained solid residue was triturated with H₂O and the suspension was cooled. The precipitate was filtered, washed with ice-cold H₂O, petroleum ether, and dried to give product (1.68 g, 99%) as a 89:11 mixture of thiosemicarbazide 5a and 1-amino-6-hydroxy-4,6-diphenylhexahydropyrimidine-2-thione (6a) (two diastereomers in a ratio of 69:31). After crystallization from EtOH the isomeric ratio did not change. Mp 151–152 °C (dec, EtOH) (lit.²⁴ 153 °C); IR (Nujol) v, cm⁻¹: 3340 (s), 3316 (m), 3293 (br s), 3173 (br s), 3148 (sh) (v NH), 3085 (w), 3061 (w), 3055 (sh), 3030 (w) (v CH_{arom}), 1662 (s) (v C=O), 1632 (m) (δ NH₂), 1597 (m), 1578 (m) (v CC_{arom}), 1519 (s) (thioamide-II), 1494 (m), 1485 (m) (v CC_{arom}), 744 (s), 699 (m) (δ CH_{arom}); ¹H NMR of thiosemicarbazide **5a** (300.13 MHz, DMSO-d₆) δ : 8.80 (1H, br s, NHNH₂), 8.40 (1H, br d, ³J = 9.5 Hz, NHCH), 7.93–7.99 (2H, m, ArH), 7.59–7.66 (1H, m, ArH), 7.47–7.55 (2H, m,

ArH), 7.16–7.43 (5H, m, ArH), 6.02 (1H, ddd, ${}^{3}J = 9.5$, ${}^{3}J = 6.5$, ${}^{3}J = 6.1$ Hz, CHN), 4.55 (2H, br s, NH₂), 3.89 (1H, dd, ${}^{2}J = 17.3$, ${}^{3}J = 6.1$ Hz, H_A in CH₂), 3.61 (1H, dd, ${}^{2}J = 17.3$, ${}^{3}J = 6.5$ Hz, H_B in CH₂); ¹H NMR of the major isomer of pyrimidine **6a** (300.13 MHz, DMSO-*d*₆) δ : 8.71 (1H, br d, ${}^{4}J = 2.0$ Hz, N₍₃₎H), 6.97 (1H, d, ${}^{4}J = 1.5$ Hz, OH), 4.73 (2H, br s, NH₂), 4.72 (1H, dd, ${}^{3}J = 11.8$, ${}^{3}J = 4.2$ Hz, H-4), 2.18 (1H, ddd, ${}^{2}J = 13.6$, ${}^{3}J = 11.8$, ${}^{4}J = 1.5$ Hz, H_{ax}-5), 2.08 (1H, ddd, ${}^{2}J = 13.6$, ${}^{3}J = 4.2$, ${}^{4}J = 2.0$ Hz, H_{eq}-5), signals of aromatic protons overlap with proton signals of the acyclic isomer; ¹H NMR of the minor isomer of pyrimidine **6a** (300.13 MHz, DMSO-*d*₆) δ : 6.80 (1H, s, OH), 5.14 (2H, br s, NH₂), 3.98 (1H, dd, ${}^{3}J = 11.6$, ${}^{3}J = 4.2$ Hz, H-4), 2.46 (1H, dd, ${}^{2}J = 13.8$, ${}^{3}J = 11.6$ Hz, H_{ax}-5, signals partly overlap with residual proton signals in DMSO), 2.29 (1H, ddd, ${}^{2}J = 13.8$, ${}^{3}J = 4.2$, ${}^{4}J = 1.8$ Hz, H_{eq}-5), signals of other protons overlap with proton signals of the acyclic isomer; 13C NMR of thiosemicarbazide **5a** (75.48 MHz, DMSO-*d*₆) δ : 198.0 (C=O), 180.6 (C=S), 142.5 (C), 136.6 (C), 133.4 (CH), 128.7 (2CH), 128.1 (2CH), 128.0 (2CH), 126.8 (2CH), 126.7 (CH), 52.7 (CHN), 43.6 (CH₂). Anal. Calcd for C₁₆H₁₇N₃OS: C, 64.19; H, 5.72; N, 14.04. Found: C, 64.38; H, 5.88; N, 14.17.

4.2.2. 4-{[1,3-Di(4-methylphenyl)-3-oxo]prop-1-yl}thiosemicarbazide (5b). The reaction of isothiocyanatoketone 4g (0.989 g, 3.35 mmol) with N_2H_4 · H_2O (0.172 g, 3.43 mmol) in EtOH (25 mL) (rt, 1 h) to give product (1.08 g, 98%) as a 95:5 mixture of thiosemicarbazide **5b** and 1-amino-6hydroxy-4,6-[di(4-methylphenyl)]hexahydropyrimidine-2-thione (6b) (two diastereomers in a ratio of 67:33) was performed as described for the synthesis of **5a**. Crystallization of the crude product from EtOH afforded a 94:6 mixture of thiosemicarbazide **5b** and pyrimidine **6b** (two isomers, 67:33). Mp 162.5–163.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3331 (m), 3313 (s), 3249 (br s), 3179 (br s) (v NH), 3098 (w), 3055 (w), 3024 (w) (v CH_{arom}), 1669 (s) (v C=O), 1626 (s) (\delta NH₂), 1606 (s), 1571 (sh) (v CC_{arom}), 1528 (br s) (thioamide-II), 818 (s), 805 (s) (δ CH_{arom}); ¹H NMR of thiosemicarbazide **5b** $(300.13 \text{ MHz}, \text{DMSO-}d_6) \delta$: 8.77 (1H, br s, NHNH₂), 8.34 (1H, br d, ³J = 8.7 Hz, NHCH), 7.83–7.88 (2H, m, ArH), 7.23–7.34 (4H, m, ArH), 7.05–7.11 (2H, m, ArH), 5.95 (1H, ddd, ${}^{3}J = 8.7$, ${}^{3}J = 6.8$, ${}^{3}J = 6.8$ 5.8 Hz, CHN), 4.53 (2H, br s, NH₂), 3.81 (1H, dd, ${}^{2}J = 17.1$, ${}^{3}J = 5.8$ Hz, H_A in CH₂), 3.54 (1H, dd, ${}^{2}J$ = 17.1, ${}^{3}J = 6.8$ Hz, H_B in CH₂), 2.36 (3H, s, CH₃), 2.24 (3H, s, CH₃); ¹H NMR of the major isomer of pyrimidine **6b** (300.13 MHz, DMSO- d_6) δ : 8.59 (1H, br d, ${}^4J = 2.0$ Hz, N₍₃₎H), 6.89 (1H, d, ${}^4J = 1.5$ Hz, OH), 4.70 (2H, br s, NH₂), 4.67 (1H, dd, ${}^{3}J = 12.1$, ${}^{3}J = 3.8$ Hz, H-4), 2.16 (1H, ddd, ${}^{2}J = 13.4$, ${}^{3}J = 12.1$, ${}^{3}J = 3.8$ Hz, H-4), 2.16 (1H, ddd, ${}^{2}J = 13.4$, ${}^{3}J = 12.1$ 12.1, ${}^{4}J = 1.5$ Hz, H_{ax}-5), 2.01 (1H, ddd, ${}^{2}J = 13.4$, ${}^{3}J = 3.8$, ${}^{4}J = 2.0$ Hz, H_{eq}-5), 2.27 (6H, s, two CH₃), signals of aromatic protons overlap with proton signals of the acyclic isomer; ¹H NMR of the minor isomer of pyrimidine **6b** (300.13 MHz, DMSO-*d*₆) δ: 6.71 (1H, s, OH), 5.10 (2H, br s, NH₂), 3.94 (1H, dd, ${}^{3}J = 12.0$, ${}^{3}J = 4.0$ Hz, H-4), 2.33 (3H, s, CH₃), 2.26 (3H, s, CH₃), signals of other protons overlap with proton signals of the acyclic isomer; 13 C NMR of thiosemicarbazide **5b** (75.48 MHz, DMSO- d_6) δ: 197.5 (C=O), 180.5 (C=S), 143.7 (C), 139.4 (C), 135.8 (C), 134.1 (C), 129.2 (2CH), 128.6 (2CH),

128.1 (2CH), 126.7 (2CH), 52.6 (CHN), 43.4 (CH₂), 21.1 (CH₃), 20.6 (CH₃). Anal. Calcd for C₁₈H₂₁N₃OS: C, 66.03; H, 6.46; N, 12.83. Found: C, 66.07; H, 6.60; N, 12.93.

4.2.3. 2-*Methyl*-4-[(3-oxo-1,3-diphenyl)prop-1-yl]thiosemicarbazide (5c). Compound 5c (1.29 g, 99%) was prepared from isothiocyanatoketone 4a (1.10 g, 4.13 mmol) and methyl hydrazine (0.197 g, 4.27 mmol) in EtOH (25 mL) (rt, 1 h) as described for 5a. Mp 167–168 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3346 (s), 3245 (s), 3171 (m), 3142 (m) (v NH), 3083 (w), 3062 (w), 3052 (w), 3030 (w) (v CH_{arom}), 1680 (s) (v C=O), 1642 (m) (δ NH₂), 1599 (w), 1579 (w) (v CC_{arom}), 1523 (s) (thioamide-II), 1496 (w) (v CC_{arom}), 744 (m), 697 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 8.76 (1H, br d, ³*J* = 9.0 Hz, NH), 7.93–7.98 (2H, m, ArH), 7.59–7.66 (1H, m, ArH), 7.47–7.54 (2H, m, ArH), 7.35–7.41 (2H, m, ArH), 7.24–7.31 (2H, m, ArH), 7.15–7.22 (1H, m, ArH), 5.93 (1H, ddd, ³*J* = 9.0, ³*J* = 6.5, ³*J* = 6.1 Hz, CHN), 4.95 (2H, br s, NH₂), 3.88 (1H, dd, ²*J* = 17.3, ³*J* = 6.1 Hz, H_A in CH₂), 3.59 (1H, dd, ²*J* = 17.3, ³*J* = 6.5 Hz, H_B in CH₂), 3.44 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 198.0 (C=O), 180.2 (C=S), 142.6 (C), 136.6 (C), 133.4 (CH), 128.7 (2CH), 128.1 (2CH), 128.0 (2CH), 126.8 (2CH), 126.7 (CH), 54.2 (CHN), 43.7 (CH₂), 42.5 (CH₃). Anal. Calcd for C₁₇H₁₉N₃OS: C, 65.15; H, 6.11; N, 13.41. Found: C, 65.22; H, 6.31; N, 13.46.

4.2.4. 2-*Methyl*-4-{[1-(4-*methylphenyl*)-3-oxo-3-phenyl]prop-1-yl]thiosemicarbazide (5*d*). Compound 5d (0.913 g, 98%) was prepared from isothiocyanatoketone 4b (0.803 g, 2.85 mmol) and methyl hydrazine (0.139 g, 3.01 mmol) in EtOH (20 mL) (rt, 1 h) as described for 5a. Mp 145–146 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3340 (s), 3287 (m), 3261 (m), 3155 (s), 3127 (s) (v NH), 3083 (w), 3051 (w), 3026 (w) (v CH_{arom}), 1682 (s) (v C=O), 1626 (m) (δ NH₂), 1595 (m), 1579 (w) (v CC_{arom}), 1512 (br s) (thioamide-II), 822 (m), 746 (s), 686 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 8.68 (1H, br d, ³J = 8.9 Hz, NH), 7.92–7.98 (2H, m, ArH), 7.59–7.66 (1H, m, ArH), 7.47–7.54 (2H, m, ArH), 7.23–7.29 (2H, m, ArH), 7.05–7.11 (2H, m, ArH), 5.88 (1H, ddd, ³J = 8.9, ³J = 6.8, ³J = 5.9 Hz, CHN), 4.92 (2H, br s, NH₂), 3.83 (1H, dd, ²J = 17.1, ³J = 5.9 Hz, H_A in CH₂), 3.57 (1H, dd, ²J = 17.1, ³J = 6.8 Hz, H_B in CH₂), 3.44 (3H, s, NCH₃), 2.24 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 198.0 (C=O), 180.1 (C=S), 139.4 (C), 136.6 (C), 135.7 (C), 133.2 (CH), 128.62 (2CH), 128.58 (2CH), 127.9 (2CH), 126.6 (2CH), 53.9 (CHN), 43.6 (CH₂), 42.4 (NCH₃), 20.5 (CH₃). Anal. Calcd for C₁₈H₂₁N₃OS: C, 66.03; H, 6.46; N, 12.83. Found: C, 66.00; H, 6.75; N, 12.79.

4.2.5. 2-Methyl-4-{[1,3-di(4-methylphenyl)-3-oxo]prop-1-yl}thiosemicarbazide (5e). Compound 5e (1.11 g, 98%) was prepared from isothiocyanatoketone 4g (0.977 g, 3.31 mmol) and methyl hydrazine (0.157 g, 3.41 mmol) in EtOH (25 mL) (rt, 1 h) as described for 5a. Mp 166–167.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3326 (s), 3294 (s), 3258 (m), 3167 (s), 3131 (w) (v NH), 3090 (w), 3071 (w), 3050 (w),

3023 (w) (v CH_{arom}), 1669 (s) (v C=O), 1630 (s) (δ NH₂), 1605 (s), 1574 (w) (v CC_{arom}), 1514 (br s) (thioamide-II), 815 (s), 804 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 8.69 (1H, br d, ³*J* = 8.9 Hz, NH), 7.82–7.88 (2H, m, ArH), 7.28–7.33 (2H, m, ArH), 7.22–7.27 (2H, m, ArH), 7.04–7.10 (2H, m, ArH), 5.86 (1H, ddd, ³*J* = 8.9, ³*J* = 6.9, ³*J* = 5.8 Hz, CHN), 4.91 (2H, br s, NH₂), 3.79 (1H, dd, ²*J* = 17.0, ³*J* = 5.8 Hz, H_a in CH₂), 3.51 (1H, dd, ²*J* = 17.0, ³*J* = 6.9 Hz, H_B in CH₂), 3.44 (3H, s, NCH₃), 2.36 (3H, s, CH₃), 2.23 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 197.5 (C=O), 180.1 (C=S), 143.6 (C), 139.4 (C), 135.7 (C), 134.1 (C), 129.2 (2CH), 128.6 (2CH), 128.1 (2CH), 126.6 (2CH), 54.0 (CHN), 43.4 (CH₂), 42.4 (NCH₃), 21.1 (CH₃), 20.5 (CH₃). Anal. Calcd for C₁₉H₂₃N₃OS: C, 66.83; H 6.79; N, 12.31. Found: C, 66.97; H, 7.02; N, 12.39.

4.3. Synthesis of hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 7a-k

4.3.1. Hydrazone of 4-[(3-oxo-1,3-diphenyl)prop-1-yl]thiosemicarbazide (7a). A solution of isothiocyanatoketone 4a (2.05 g, 7.67 mmol) and N_2H_4 · H_2O (7.69 g, 153.6 mmol) in EtOH (35 mL) was stirred under reflux for 3 h, and the liquids were removed in vacuum (temperature of bath about 50–55 °C). The residue was co-evaporated with toluene (4×15 mL), the resulting oily solid was triturated with ether until crystallization was completed. The suspension was cooled (-15 °C). The precipitate was filtered, and washed with cold (-15 °C) ether (3 × 10 mL). Ether was removed from solid by passing the air through the filter, and then the solid was washed with ice-cold H_2O (4 × 10 mL), petroleum ether, and dried to give hydrazone 7a (2.22 g, 92%) as a 87:13 mixture of geometric isomers. After crystallization from MeCN the isomeric ratio changed to 98:2, respectively. Mp 172.5–173.5 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3433 (m), 3416 (m), 3309 (s), 3258 (sh), 3224 (s), 3192 (br s) (v NH), 3107 (w), 3084 (w), 3065 (w), 3053 (w), 3027 (w) (v CH_{aron}), 1629 (s) (v C=N, δ NH₂), 1588 (m) (ν CC_{arom}), 1529 (br s) (thioamide-II), 1493 (s) (ν CC_{arom}), 756 (s), 695 (s) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO- d_6) δ : 8.77 (1H, br s, NHNH₂), 8.29 (1H, br d, ³J = 7.9 Hz, NHCH), 7.49-7.55 (2H, m, ArH), 7.31-7.37 (2H, m, ArH), 7.12-7.29 (6H, m, ArH), 6.67 (2H, br s, NH₂N=C), 5.72 (1H, ddd, ${}^{3}J = 8.0$, ${}^{3}J = 7.9$, ${}^{3}J = 7.7$ Hz, CHN), 4.49 (2H, br s, NH₂NH), 3.29 $(1H, dd, {}^{2}J = 14.3, {}^{3}J = 7.7 Hz, H_{A} \text{ in CH}_{2}), 3.11 (1H, dd, {}^{2}J = 14.3, {}^{3}J = 8.0 Hz, H_{B} \text{ in CH}_{2}); {}^{1}H \text{ NMR}$ of the minor isomer (300.13 MHz, DMSO- d_6) δ : 8.68 (1H, br s, NHNH₂), 8.20 (1H, br d, ³J = 8.3 Hz, NHCH), 7.39–7.46 (2H, m, ArH), 5.66 (2H, br s, NH₂N=C), 5.49 (1H, ddd, ${}^{3}J = 8.3$, ${}^{3}J = 7.5$, ${}^{3}J = 6.9$ Hz, CHN), 2.99 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.5$ Hz, H_A in CH₂), 2.96 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 6.9$ Hz, H_B in CH₂), signals of other protons overlap with proton signals of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO-d₆) δ: 180.6 (C=S), 142.2 (C), 141.7 (C=N), 139.0 (C), 128.1 (2CH), 127.8 (2CH), 127.0 (CH), 126.8 (2CH), 126.7 (CH), 125.0 (2CH), 54.0 (CHN), 31.5 (CH₂). Anal. Calcd for C₁₆H₁₉N₅S: C, 61.32; H, 6.11; N, 22.35. Found: C, 61.30; H, 6.17; N, 22.35.

ACCEPTED MANUSCRIPT

4.3.2. Hydrazone of 4-{[1-(4-methylphenyl)-3-oxo-3-phenyl]prop-1-yl}thiosemicarbazide (7b). Compound **7b** (2.09 g, 91%) as a 83:17 mixture of geometric isomers was prepared from isothiocyanatoketone **4b** (1.96 g, 6.98 mmol) and $N_2H_4 \cdot H_2O$ (7.00 g, 139.8 mmol) in EtOH (30 mL) (reflux, 3 h) as described for 7a. After crystallization from EtOH the isomeric ratio changed to 90:10, respectively. Mp 163–163.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3432 (m), 3419 (sh), 3380 (w), 3312 (s), 3233 (br s), 3191 (br s) (v NH), 3102 (w), 3079 (w), 3051 (w), 3021 (w) (v CH_{arom}), 1626 (s) (v C=N, δ NH₂), 1589 (m) (v CC_{arom}), 1530 (br s) (thioamide-II), 1492 (s) (v CC_{arom}), 802 (s), 765 (s), 697 (s) (δ CH_{aron}); ¹H NMR of the major isomer (300.13 MHz, DMSO- d_6) δ : 8.75 (1H, br s, NHNH₂), 8.22 (1H, br d, ${}^{3}J = 8.5$ Hz, NHCH), 7.50–7.57 (2H, m, ArH), 7.03–7.27 (7H, m, ArH), 6.45 (2H, br s, NH₂N=C), 5.66 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 8.2$, ${}^{3}J = 7.6$ Hz, CHN), 4.48 (2H, br s, NH₂NH), 3.26 (1H, dd, $^{2}J = 14.3$, $^{3}J = 7.6$ Hz, H_A in CH₂), 3.09 (1H, dd, $^{2}J = 14.3$, $^{3}J = 8.2$ Hz, H_B in CH₂), 2.23 (3H, s, CH₃); ¹H NMR of the minor isomer (300.13 MHz, DMSO- d_6) δ : 8.65 (1H, br s, NHNH₂), 8.12 (1H, br d, ³J = 8.5 Hz, NHCH), 7.32–7.47 (3H, m, ArH), 5.64 (2H, br s, NH₂N=C), 5.42 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.5$, ${}^{3}J = 6.9$ Hz, CHN), 4.46 (2H, br s, NH₂NH), 2.97 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.5$ Hz, H_A in CH₂), 2.93 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 6.9$ Hz, H_B in CH₂), 2.26 (3H, s, CH₃), signals of six aromatic protons overlap with signals of aromatic protons of the major isomer; 13 C NMR of the major isomer (75.48 MHz, DMSO- d_6) δ: 180.5 (C=S), 141.7 (C=N), 139.1 (C), 139.0 (C), 136.0 (C), 128.7 (2CH), 127.8 (2CH), 126.7 (3CH), 125.0 (2CH), 53.8 (CHN), 31.5 (CH₂), 20.7 (CH₃). Anal. Calcd for C₁₇H₂₁N₅S: C, 62.36; H, 6.46; N, 21.39. Found: C, 62.22; H, 6.64; N, 21.44.

4.3.3. Hydrazone of 4-{[1-(4-methoxyphenyl)-3-oxo-3-phenyl]prop-1-yl]thiosemicarbazide (7c). Compound 7c (0.793 g, 94%) as a 84:16 mixture of geometric isomers was prepared from isothiocyanatoketone 4c (0.730 g, 2.46 mmol) and N₂H₄·H₂O (2.48 g, 49.5 mmol) in EtOH (12 mL) (reflux, 3 h) as described for 7a. Crystallization of the crude product from EtOH afforded a 97:3 mixture of isomers, and crystallization from MeCN gave the only major isomer. Mp 90.5–93 °C (dec, EtOH); mp 93–95 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3388 (br m), 3304 (m), 3258 (m), 3195 (br s), 3171 (sh) (v NH), 3064 (w), 3050 (w), 3033 (w) (v CH_{arom}), 1651 (m), 1638 (sh) (v C=N, δ NH₂), 1613 (m), 1586 (w) (v CC_{arom}), 1542 (s) (thioamide-II), 1516 (s), 1500 (w) (v CC_{arom}), 1254 (s), 1034 (m) (v C–O), 828 (m), 766 (m), 702 (m) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO-d₆) δ : 8.75 (1H, br s, NHNH₂), 8.19 (1H, br d, ³J = 7.9 Hz, NHCH), 7.49–7.55 (2H, m, ArH), 7.12–7.29 (5H, m, ArH), 6.77–6.83 (2H, m, ArH), 6.66 (2H, br s, NH₂N=C), 5.64 (1H, ddd, ³J = 8.4, ³J = 7.9, ³J = 7.3 Hz, CHN), 4.48 (2H, br s, NH₂NH), 3.69 (3H, s, OCH₃), 3.25 (1H, dd, ²J = 14.2, ³J = 7.3 Hz, H_A in CH₂), 3.10 (1H, dd, ²J = 14.2, ³J = 8.4 Hz, H_B in CH₂); ¹H NMR of the minor isomer (300.13 MHz, DMSO-d₆) δ : 8.59 (1H, br s, NHNH₂), 8.07 (1H, br d, ³J = 8.5 Hz, NHCH), 7.39–7.46 (2H, m, ArH),

7.32–7.39 (1H, m, ArH), 5.62 (2H, br s, NH₂N=C), 5.42 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.5$, ${}^{3}J = 7.1$ Hz,

CHN), 4.43 (2H, br s, N*H*₂NH), 3.72 (3H, s, OCH₃), 2.99 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.5$ Hz, H_A in CH₂), 2.93 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.1$ Hz, H_B in CH₂), signals of other protons overlap with proton signals of the major isomer; 13 C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ : 180.4 (C=S), 158.3 (C), 141.7 (C=N), 139.0 (C), 134.0 (C), 128.0 (2CH), 127.8 (2CH), 126.7 (CH), 125.0 (2CH), 113.5 (2CH), 55.0 (OCH₃), 53.5 (CHN), 31.5 (CH₂). Anal. Calcd for C₁₇H₂₁N₅OS: C, 59.45; H, 6.16; N, 20.39. Found: C, 59.27; H, 6.30; N, 20.36.

4.3.4. Hydrazone of 4-{[1-(3,4-dimethoxyphenyl)-3-oxo-3-phenyl]prop-1-yl}thiosemicarbazide (7d). Compound 7d (0.964 g, 89%) as a 84:16 mixture of geometric isomers was prepared from isothiocyanatoketone 4d (0.946 g, 2.89 mmol) and N_2H_4 · H_2O (2.48 g, 57.9 mmol) in EtOH (14 mL) (reflux, 3 h) as described for 7a. After crystallization from MeCN the isomeric ratio changed to 95:5, respectively. Mp 177.5–178 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3326 (s), 3303 (s), 3193 (br s), 3131 (w) (v NH), 3085 (w), 3044 (w) (v CH_{arom}), 1649 (m) (v C=N, δ NH₂), 1593 (m) (v CC_{arom}), 1536 (s) (thioamide-II), 1514 (s), 1496 (m) (v CC_{arom}), 1260 (s), 1020 (s) (v C–O), 833 (m), 768 (w), 696 (m) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO-*d*₆) δ: 8.71 (1H, br s, N*H*NH₂), 8.15 (1H, br d, ³*J* = 7.5 Hz, N*H*CH), 7.50–7.56 (2H, m, ArH), 7.12–7.26 (3H, m, ArH), 6.94–6.99 (1H, m, ArH), 6.75–6.84 (2H, m, ArH), 6.64 (2H, br s, NH₂N=C), 5.64 (1H, ddd, ${}^{3}J = 8.7$, ${}^{3}J = 7.5$, ${}^{3}J = 7.1$ Hz, CHN), 4.47 (2H, br s, NH₂NH), 3.68 (3H, s, OCH₃), 3.67 (3H, s, OCH₃), 3.24 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J =$ 7.1 Hz, H_A in CH₂), 3.17 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 8.7$ Hz, H_B in CH₂); ¹H NMR of the minor isomer $(300.13 \text{ MHz}, \text{DMSO-}d_6) \delta$: 8.58 (1H, br s, NHNH₂), 8.07 (1H, br d, 3J = 8.9 Hz, NHCH), 7.32–7.46 (3H, m, ArH), 6.82–6.88 (2H, m, ArH), 5.63 (2H, br s, NH₂N=C), 5.42 (1H, ddd, ${}^{3}J = 8.9$, ${}^{3}J = 7.4$, ${}^{3}J = 7.4$ 7.0 Hz, CHN), 4.42 (2H, br s, NH₂NH), 3.71 (3H, s, OCH₃), 3.70 (3H, s, OCH₃), 3.02 (1H, dd, ${}^{2}J =$ 14.4, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.94 (1H, dd, ${}^{2}J = 14.4$, ${}^{3}J = 7.0$ Hz, H_B in CH₂), signals of other aromatic protons overlap with signals of aromatic protons of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ: 180.3 (C=S), 148.4 (C), 147.9 (C), 141.8 (C=N), 139.1 (C), 134.2 (C), 127.8 (2CH), 126.6 (CH), 125.1 (2CH), 119.2 (CH), 111.4 (CH), 110.9 (CH), 55.48 (OCH₃), 55.46 (OCH₃), 53.8 (CHN), 31.3 (CH₂). Anal. Calcd for C₁₈H₂₃N₅O₂S: C, 57.89; H, 6.21; N, 18.75. Found: C, 57.90; H, 6.42; N, 19.08.

4.3.5. Hydrazone 4-{[1-(4-tert-butylphenyl)-3-oxo-3-phenyl]prop-1-yl}thiosemicarbazide (7e). Compound 7e (1.89 g, 89%) as a 90:10 mixture of geometric isomers was prepared from isothiocyanatoketone 4e (1.86 g, 5.75 mmol) and N₂H₄·H₂O (5.76 g, 115.1 mmol) in EtOH (28 mL) (reflux, 3 h) as described for 7a. After crystallization from EtOH the isomeric ratio changed to 95:5, respectively. Mp 157.5–158.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3378 (m), 3301 (s), 3199 (br s), 3159 (s) (v NH), 3089 (w), 3054 (w), 3027 (w) (v CH_{aron}), 1626 (m) (v C=N, δ NH₂), 1587 (w) (v CC_{arom}), 1535 (s) (thioamide-II), 1503 (m) (v CC_{arom}), 819 (m), 754 (m), 693 (m) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO-*d*₆) δ : 8.70 (1H, br s, N*H*NH₂), 8.23 (1H, br d, ³*J* = 8.1 Hz, N*H*CH), 7.45–7.50 (2H, m, ArH), 7.24–7.31 (4H, m, ArH), 7.10–7.24 (3H, m, ArH), 6.67 (2H, br s, NH₂N=C), 5.67 (1H, ddd, ³*J* = 8.1, ³*J* = 7.7 Hz, CHN), 4.45 (2H, br s, N*H*₂NH), 3.31 (1H, dd, ²*J* = 14.2, ³*J* = 7.7 Hz, H_A in CH₂), 3.04 (1H, dd, ²*J* = 14.2, ³*J* = 7.8 Hz, H_B in CH₂), 1.24 (9H, s, 3×CH₃ in *t*-Bu); ¹H NMR of the minor isomer (300.13 MHz, DMSO-*d*₆) δ : 8.61 (1H, br s, N*H*NH₂), 8.12 (1H, br d, ³*J* = 8.6 Hz, N*H*CH), 7.31–7.45 (3H, m, ArH), 5.64 (2H, br s, NH₂N=C), 5.47 (1H, ddd, ³*J* = 8.6, ³*J* = 7.6, ³*J* = 6.7 Hz, CHN), 2.97 (1H, dd, ²*J* = 14.6, ³*J* = 7.6 Hz, H_A in CH₂), 2.93 (1H, dd, ²*J* = 14.6, ³*J* = 6.7 Hz, H_B in CH₂), 1.26 (9H, s, 3×CH₃ in *t*-Bu), signals of other protons overlap with proton signals of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ : 180.6 (C=S), 149.3 (C), 141.9 (C=N), 139.2 (C), 139.0 (C), 127.6 (2CH), 126.5 (CH), 126.4 (2CH), 125.0 (2CH), 124.8 (2CH), 53.7 (CHN), 34.1 (*C*Me₃), 31.7 (CH₂), 31.1 (3×CH₃ in *t*-Bu). Anal. Calcd for C₂₀H₂₇N₅S: C, 65.01; H, 7.36; N, 18.95. Found: C, 65.02; H, 7.43; N, 19.20.

4.3.6. Hydrazone of 4-{[3-(4-methylphenyl)-3-oxo-1-phenyl]prop-1-yl}thiosemicarbazide (7f). Compound **7f** (2.97 g, 93%) as a 97:3 mixture of geometric isomers was prepared from isothiocyanatoketone **4f** (2.76 g, 9.79 mmol) and N_2H_4 · H_2O (9.82 g, 196.2 mmol) in EtOH (55 mL) (reflux, 3 h) as described for 7a. After crystallization from EtOH the isomeric ratio changed to 98:2, respectively. Mp 156.5–157 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3402 (m), 3349 (m), 3305 (m), 3276 (m), 3191 (br s) (v NH), 3086 (w), 3061 (w), 3032 (w) (v CH_{arom}), 1637 (sh), 1608 (m) (v C=N, δ NH₂), 1583 (w), 1559 (w) (v CC_{arom}), 1523 (s) (thioamide-II), 1495 (m) (v CC_{arom}), 815 (m), 755 (m), 702 (m) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO-*d*₆) δ: 8.71 (1H, br s, N*H*NH₂), 8.27 (1H, br d, ${}^{3}J = 8.4$ Hz, NHCH), 7.39–7.45 (2H, m, ArH), 7.31–7.37 (2H, m, ArH), 7.22–7.29 (2H, m, ArH), 7.15–7.22 (1H, m, ArH), 7.01–7.06 (2H, m, ArH), 6.52 (2H, br s, NH₂N=C), 5.71 (1H, ddd, ${}^{3}J =$ 8.4, ${}^{3}J = 8.1$, ${}^{3}J = 7.6$ Hz, CHN), 4.47 (2H, br s, NH₂NH), 3.26 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 7.6$ Hz, H_A in CH₂), 3.09 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 8.1$ Hz, H_B in CH₂), 2.25 (3H, s, CH₃); ¹H NMR of the minor isomer $(300.13 \text{ MHz}, \text{DMSO-}d_6) \delta$: 8.63 (1H, br s, NHNH₂), 8.17 (1H, br d, ³J = 8.5 Hz, NHCH), 5.62 (2H, br s, NH₂N=C), 5.47 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.3$, ${}^{3}J = 6.8$ Hz, CHN), 2.96 (1H, dd, ${}^{2}J = 14.4$, ${}^{3}J = 7.3$ Hz, H_A in CH₂), 2.93 (1H, dd, ²J = 14.4, ³J = 6.8 Hz, H_B in CH₂), 2.32 (3H, s, CH₃), signals of other protons overlap with proton signals of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ: 180.6 (C=S), 142.2 (C), 142.0 (C=N), 136.2 (C), 135.8 (C), 128.4 (2CH), 128.0 (2CH), 126.9 (CH), 126.7 (2CH), 124.9 (2CH), 54.0 (CHN), 31.5 (CH₂), 20.6 (CH₃). Anal. Calcd for C₁₇H₂₁N₅S: C, 62.36; H, 6.46; N, 21.39. Found: C, 62.24; H, 6.66; N, 21.48.

4.3.7. Hydrazone of 4-{[1,3-di(4-methylphenyl]-3-oxo]prop-1-yl]thiosemicarbazide (7g). Compound 7g (1.30 g, 89%) as a 83:17 mixture of geometric isomers was prepared from isothiocyanatoketone 4g (1.26 g, 4.27 mmol) and N₂H₄·H₂O (4.30 g, 85.9 mmol) in EtOH (21 mL) (reflux, 3 h) as described for 7a. After crystallization from EtOH the isomeric ratio changed to 96:4, respectively. Mp 149–149.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3408 (m), 3325 (s), 3195 (br s), 3119 (w) (v NH), 3050 (w), 3027 (w) (v CH_{arom}), 1628 (s) (v C=N, δ NH₂), 1586 (m) (v CC_{arom}), 1543 (s) (thioamide-II), 1514 (s) (v CC_{arom}), 818 (s), 797 (s) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO- d_6) δ : 8.73 (1H, br s, NHNH₂), 8.22 (1H, br d, ³J = 8.5 Hz, NHCH), 7.41–7.47 (2H, m, ArH), 7.19–7.24 (2H, m, ArH), 7.02– 7.09 (4H, m, ArH), 6.52 (2H, br s, NH₂N=C), 5.65 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 8.1$, ${}^{3}J = 7.6$ Hz, CHN), 4.48 (2H, br s, NH₂NH), 3.23 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 7.6$ Hz, H_A in CH₂), 3.07 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 8.1$ Hz, H_B in CH₂), 2.25 (3H, s, CH₃), 2.24 (3H, s, CH₃); ¹H NMR of the minor isomer (300.13 MHz, DMSO- d_6) δ : 8.65 (1H, br s, NHNH₂), 8.11 (1H, br d, ${}^{3}J = 8.5$ Hz, NHCH), 5.61 (2H, br s, NH₂N=C), 5.39 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.4$, ${}^{3}J = 7.0$ Hz, CHN), 2.95 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.91 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.0$ Hz, H_B in CH₂), 2.32 (3H, s, CH₃), signals of other protons overlap with proton signals of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO- d_6) δ : 180.5 (C=S), 142.0 (C=N), 139.2 (C), 136.2 (C), 136.0 (C), 135.8 (C), 128.7 (2CH), 128.5 (2CH), 126.7 (2CH), 125.0 (2CH), 53.8 (CHN), 31.5 (CH₂), 20.67 (CH₃), 20.66 (CH₃). Anal. Calcd for C₁₈H₂₃N₅S: C, 63.31; H, 6.79; N, 20.51. Found: C, 63.07; H, 7.13; N, 20.45.

4.3.8. Hydrazone of 4-{[1-(4-methoxyphenyl)-3-(4-methylphenyl)-3-oxo]prop-1-yl}thiosemicarbazide (7h). Compound 7h (0.582 g, 89%) as a 88:12 mixture of geometric isomers was prepared from isothiocyanatoketone 4h (0.571 g, 1.83 mmol) and N₂H₄·H₂O (1.84 g, 36.8 mmol) in EtOH (8 mL) (reflux, 3 h) as described for 7a. Two crystallization of the crude product from EtOH afforded a 97:3 mixture of isomers, and single crystallization from MeCN gave the only major isomer. Mp 100-103 °C (dec, EtOH); mp 99.5–102.5 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3375 (br m), 3310 (m), 3276 (m), 3197 (br s) (v NH), 3081 (w), 3065 (w) (v CH_{arom}), 1650 (m), 1631 (w) (v C=N, \delta NH₂), 1612 (s), 1587 (m) (v CC_{arom}), 1541 (s) (thioamide-II), 1514 (s) (v CC_{arom}), 1254 (s), 1034 (s) (v C–O), 824 (s) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO-*d*₆) δ: 8.68 (1H, br s, N*H*NH₂), 8.18 (1H, br d, ³J = 8.4 Hz, NHCH), 7.40–7.45 (2H, m, ArH), 7.22–7.28 (2H, m, ArH), 7.01–7.06 (2H, m, ArH), 6.78–6.84 (2H, m, ArH), 6.50 (2H, br s, NH₂N=C), 5.64 (1H, ddd, ${}^{3}J = 8.4$, ${}^{3}J = 8.4$, ${}^{3}J = 7.3$ Hz, CHN), 4.46 (2H, br s, NH₂NH), 3.70 (3H, s, OCH₃), 3.23 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 7.3$ Hz, H_A in CH₂), 3.08 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 8.4$ Hz, H_B in CH₂), 2.25 (3H, s, CH₃); ¹H NMR of the minor isomer $(300.13 \text{ MHz}, \text{DMSO-}d_6) \delta$: 8.58 (1H, br s, NHNH₂), 8.06 (1H, br d, 3J = 8.5 Hz, NHCH), 7.14–7.20 (2H, m, ArH), 7.05–7.10 (2H, m, ArH), 5.59 (2H, br s, NH₂N=C), 5.39 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.4$, ${}^{3}J = 7.4$ 7.1 Hz, CHN), 3.72 (3H, s, OCH₃), 2.97 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.5$, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$ Hz, H_A in CH₂), 2.90 (1H, dd, {}^{3}J = 14.5, ${}^{3}J = 7.4$, ${}^{3}J = 7.4$

14.5, ${}^{3}J = 7.1$ Hz, H_B in CH₂), 2.32 (3H, s, CH₃), signals of other protons overlap with proton signals of the major isomer; 13 C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ : 180.4 (C=S), 158.2 (C), 142.1 (C=N), 136.2 (C), 135.8 (C), 134.0 (C), 128.4 (2CH), 127.9 (2CH), 125.0 (2CH), 113.4 (2CH), 55.0 (OCH₃), 53.5 (CHN), 31.6 (CH₂), 20.6 (CH₃). Anal. Calcd for C₁₈H₂₃N₅OS·0.15C₂H₅OH: C, 60.32; H, 6.61; N, 19.22. Found: C, 59.92; H, 6.67; N, 19.35.³⁵

4.3.9. Hydrazone of 4-{[1-(3,4-dimethoxyphenyl)-3-(4-methylphenyl)-3-oxo]prop-1-

yl}thiosemicarbazide (7i). Compound 7i (1.66 g, 92%) as a 83:17 mixture of geometric isomers was prepared from isothiocyanatoketone 4i (1.59 g, 4.65 mmol) and N₂H₄·H₂O (4.69 g, 93.7 mmol) in EtOH (24 mL) (reflux, 3 h) as described for 7a. After crystallization from EtOH the isomeric ratio changed to 88:12, respectively. Mp 131–133 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3332 (s), 3309 (s), 3199 (br s), 3133 (w) (v NH), 3024 (w) (v CH_{arom}), 1650 (m), 1626 (w) (v C=N, δ NH₂), 1604 (w), 1591 (m) (v CC_{arom}), 1534 (s) (thioamide-II), 1513 (s), 1496 (m) (v CC_{arom}), 1257 (s), 1021 (s) (v C-O), 854 (m), 819 (m) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO- d_6) δ : 8.76 (1H, br s, NHNH₂), 8.18 (1H, br d, ³J = 8.5 Hz, NHCH), 7.41–7.47 (2H, m, ArH), 7.01–7.07 (2H, m, ArH), 6.98– 7.01 (1H, m, ArH), 6.75–6.82 (2H, m, ArH), 6.55 (2H, br s, NH₂N=C), 5.62 (1H, ddd, ${}^{3}J = 8.6$, ${}^{3}J =$ 8.5, ${}^{3}J = 7.2$ Hz, CHN), 4.49 (2H, br s, NH₂NH), 3.683 (3H, s, OCH₃), 3.680 (3H, s, OCH₃), 3.21 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 7.2$ Hz, H_A in CH₂), 3.14 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 8.6$ Hz, H_B in CH₂), 2.25 (3H, s, CH₃); ¹H NMR of the minor isomer (300.13 MHz, DMSO- d_6) δ : 8.64 (1H, br s, NHNH₂), 8.09 (1H, br d, ³*J* = 8.5 Hz, N*H*CH), 7.21–7.26 (2H, m, ArH), 7.06–7.11 (2H, m, ArH), 6.85–6.87 (1H, m, ArH), 6.81–6.85 (1H, m, ArH), 6.73–6.77 (1H, m, ArH, signals partly overlap with signals of aromatic protons of the major isomer), 5.62 (2H, br s, NH₂N=C), 5.38 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.4$, ${}^{3}J = 7.2$ Hz, CHN), 4.46 (2H, br s, NH₂NH), 3.71 (3H, s, OCH₃), 3.69 (3H, s, OCH₃), 2.99 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J =$ 7.4 Hz, H_A in CH₂), 2.91 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 7.2$ Hz, H_B in CH₂), 2.32 (3H, s, CH₃); ${}^{13}C$ NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ: 180.4 (C=S), 148.4 (C), 147.9 (C), 142.1 (C=N), 136.3 (C), 135.7 (C), 134.3 (C), 128.4 (2CH), 125.0 (2CH), 119.1 (CH), 111.5 (CH), 110.9 (CH), 55.48 (OCH₃), 55.46 (OCH₃), 53.8 (CHN), 31.4 (CH₂), 20.6 (CH₃). Anal. Calcd for C₁₉H₂₅N₅O₂S: C, 58.89; H, 6.50; N, 18.07. Found: C, 58.78; H, 6.62; N, 18.19.

4.3.10. Hydrazone of 2-methyl-4-[(3-oxo-1,3-diphenyl)prop-1-yl]thiosemicarbazide (**7***j*). A solution of thiosemicarbazide **5c** (0.716 g, 2.28 mmol) and N₂H₄·H₂O (2.31 g, 46.2 mmol) in EtOH (18 mL) was stirred under reflux for 3 h, and the liquids were removed in vacuum (temperature of bath about 50–55 °C). The residue was co-evaporated with toluene (4×10 mL), the resulting oily solid was triturated upon cooling with H₂O (10 mL) and petroleum ether (10 mL) until crystallization was completed. The suspension was cooled. The precipitate was filtered, and washed with ice-cold H₂O, petroleum ether,

and dried to give product (0.698 g, 94%) as a 95:5 mixture of hydrazone 7j (two geometric isomers in a ratio of 78:22) and hydrazone 7a. Crystallization of the crude product from EtOH afforded practically pure hydrazone 7j (two isomers, 98:2) containing only 1 mol% of hydrazone 7a as an admixture. Mp 142–143.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3415 (m), 3279 (br s), 3171 (m) (v NH), 3086 (w), 3062 (w), 3033 (w) (v CH_{arom}), 1626 (s) (v C=N, δ NH₂), 1584 (w), 1561 (w) (v CC_{arom}), 1528 (s) (thioamide-II), 1495 (w) (v CC_{arom}), 764 (m), 754 (m), 691 (s) (δ CH_{arom}); ¹H NMR of the major isomer $(300.13 \text{ MHz}, \text{DMSO-}d_6) \delta$: 8.66 (1H, br d, ${}^{3}J$ = 8.5 Hz, NHCH), 7.48–7.54 (2H, m, ArH), 7.29–7.35 (2H, m, ArH), 7.12–7.28 (6H, m, ArH), 6.67 (2H, br s, NH₂N=C), 5.62 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 8.0$, ${}^{3}J = 8.0$ 7.7 Hz, CHN), 4.89 (2H, br s, NH₂N), 3.40 (3H, s, NCH₃), 3.27 (1H, dd, ${}^{2}J = 14.3$, ${}^{3}J = 7.7$ Hz, H_A in CH₂), 3.08 (1H, dd, ${}^{2}J = 14.3$, ${}^{3}J = 8.0$ Hz, H_B in CH₂); ¹H NMR of the minor isomer (300.13 MHz, DMSO- d_6) δ : 8.57 (1H, br d, ${}^{3}J$ = 8.5 Hz, NHCH), 7.39–7.47 (2H, m, ArH), 5.67 (2H, br s, NH₂N=C), 5.38 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.6$, ${}^{3}J = 6.8$ Hz, CHN), 4.88 (2H, br s, NH₂N), 3.41 (3H, s, NCH₃), 2.96 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 7.6$ Hz, H_A in CH₂), 2.93 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 6.8$ Hz, H_B in CH₂), signals of other protons overlap with proton signals of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO-d₆) δ: 180.1 (C=S), 142.4 (C), 141.7 (C=N), 139.0 (C), 128.1 (2CH), 127.8 (2CH), 126.9 (CH), 126.74 (2CH), 126.69 (CH), 125.0 (2CH), 55.3 (CHN), 42.4 (NCH₃), 31.6 (CH₂). Anal. Calcd for C₁₇H₂₁N₅S: C, 62.36; H, 6.46; N, 21.39. Found: C, 62.56; H, 6.60; N, 21.55.

4.3.11. Hydrazone of 2-methyl-4-{[1-(4-methylphenyl)-3-oxo-3-phenyl]prop-1-yl}thiosemicarbazide (7k). The reaction of thiosemicarbazide 5d (1.10 g, 3.37 mmol) with N_2H_4 · H_2O (3.41 g, 68.1 mmol) in EtOH (25 mL) (reflux, 3 h) to give product (1.11 g, 97%) as a 95:5 mixture of hydrazone 7k (two geometric isomers in a ratio of 78:22) and hydrazone **7b** was performed as described for the synthesis of 7j. Crystallization of the crude product from EtOH afforded practically pure hydrazone 7k (two isomers, 99:1) containing only 2 mol% of hydrazone 7b as an admixture. Mp 147.5–149.5 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3420 (m), 3284 (br s), 3175 (m), 3131 (w) (v NH), 3088 (w), 3060 (w), 3021 (w) (v CH_{arom}), 1625 (s) (v C=N, δ NH₂), 1583 (m), 1560 (w) (v CC_{arom}), 1526 (s) (thioamide-II), 1496 (w) (v CC_{arom}), 826 (m), 762 (s), 694 (s) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO- d_6) δ : 8.59 (1H, br d, ${}^{3}J$ = 8.5 Hz, NHCH), 7.50–7.56 (2H, m, ArH), 7.13–7.27 (5H, m, ArH), 7.02–7.08 (2H, m, ArH), 6.65 (2H, br s, NH₂N=C), 5.57 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 8.2$, ${}^{3}J = 7.6$ Hz, CHN), 4.88 (2H, br s, NH₂N), 3.40 (3H, s, NCH₃), 3.25 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 7.6$ Hz, H_A in CH₂), 3.07 (1H, dd, ${}^{2}J = 14.2$, ${}^{3}J = 8.2$ Hz, H_B in CH₂), 2.23 (3H, s, CH₃); ¹H NMR of the minor isomer $(300.13 \text{ MHz}, \text{DMSO-}d_6) \delta$: 8.48 (1H, br d, ${}^{3}J$ = 8.5 Hz, NHCH), 7.39–7.47 (2H, m, ArH), 7.32–7.39 (1H, m, ArH), 5.64 (2H, br s, NH₂N=C), 5.32 (1H, ddd, ${}^{3}J = 8.5$, ${}^{3}J = 7.7$, ${}^{3}J = 6.8$ Hz, CHN), 4.85 (2H, br s, NH₂N), 3.40 (3H, s, NCH₃), 2.95 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 7.7$ Hz, H_A in CH₂), 2.90 (1H, dd, ${}^{2}J = 14.6$ 14.6, ${}^{3}J = 6.8$ Hz, H_B in CH₂), 2.25 (3H, s, CH₃), signals of other protons overlap with proton signals of the major isomer; ¹³C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ: 180.1 (C=S), 141.7 (C=N), 139.3 (C), 139.0 (C), 136.0 (C), 128.6 (2CH), 127.8 (2CH), 126.69 (CH), 126.65 (2CH), 125.0 (2CH), 55.1 (CHN), 42.4 (NCH₃), 31.5 (CH₂), 20.7 (CH₃). Anal. Calcd for C₁₈H₂₃N₅S: C, 63.31; H, 6.79; N, 20.51. Found: C, 63.28; H, 7.05; N, 20.80.

4.4. Synthesis of 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones 8a-l

4.4.1. 5,7-Diphenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8a). Method A: A solution of hydrazone 7a (1.18 g, 3.77 mmol) and TsOH·H₂O (0.794 g, 4.17 mmol) in EtOH (39 mL) was stirred under reflux for 1.5 h, and the solvent was removed in vacuum. The residue was triturated with saturated aqueous NaHCO₃ (10 mL) upon cooling until crystallization was completed, and the obtained suspension was cooled. The precipitate was filtered, washed with ice-cold H₂O, petroleum ether, and dried. The crude product was purified using column chromatography on aluminium oxide (20.49 g) eluting with petroleum ether-CHCl₃ (from 3:1 to 1:3). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine **8a** (0.807 g, 76%) as a very light yellow solid. Analytically pure sample (white crystals) was obtained by crystallization from MeCN. Mp 168.5–170 °C (dec, MeCN) (lit.^{8c} 166–168 °C); IR (Nujol) v, cm⁻¹: 3361 (w), 3181 (br vs), 3089 (m) (v NH), 3060 (w) (v CH_{arom}), 1627 (m) (v C=N), 1555 (s) (thioamide-II), 1180 (vs) (δ NH + v CN), 766 (s), 697 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO d_6) δ : 10.86 (1H, br d, ${}^4J = 2.0$ Hz, N₍₂₎H), 9.05 (1H, br dd, ${}^3J = 4.9$, ${}^4J = 2.0$ Hz, N₍₄₎H), 7.35–7.41 (2H, m, ArH), 7.12–7.32 (8H, m, ArH), 4.96 (1H, ddd, ${}^{3}J = 6.2$, ${}^{3}J = 4.9$, ${}^{3}J = 2.7$ Hz, H-5), 3.54 (1H, ddd, ${}^{2}J$ = 14.7, ${}^{3}J$ = 6.2, ${}^{4}J$ = 1.0 Hz, H_A-6), 3.24 (1H, dd, ${}^{2}J$ = 14.7, ${}^{3}J$ = 2.7 Hz, H_B-6); ${}^{13}C$ NMR (75.48 MHz, DMSO-*d*₆) δ: 177.1 (C-3), 158.3 (C-7), 142.0 (C), 137.2 (C), 129.2 (CH), 128.1 (2CH), 128.0 (2CH), 127.2 (CH), 125.8 (4CH), 59.0 (C-5), 36.8 (C-6). Anal. Calcd for C₁₆H₁₅N₃S: C, 68.30; H, 5.37; N, 14.93. Found: C, 67.97; H, 5.60; N, 15.08.

Method B: A solution of thiosemicarbazide **5a** (0.594 g, 1.98 mmol) and AcOH (0.47 mL, 8.12 mmol) in EtOH (20 mL) was stirred under reflux for 3 h, and the solvent was removed in vacuum. The residue was triturated with saturated aqueous NaHCO₃ (5 mL) upon cooling until crystallization was completed, and the obtained suspension was cooled. The precipitate was filtered, washed with ice-cold H₂O, petroleum ether, and dried. The crude product was purified using column chromatography on silica gel (17.06 g) eluting with petroleum ether–CHCl₃ (from 3:2 to 2:3). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with ether, the obtained suspension was cooled (–15 °C), the precipitate was filtered on cold (–15 °C) filter , washed with cold (–15 °C) ether (3 × 5 mL), and dried to give

triazepine **8a** (0.461 g, 83%) as a very light yellow solid. Analytically pure sample (white crystals) was obtained by crystallization from MeCN.

4.4.2. 5-(4-Methylphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8b). Compound **8b** (0.837 g, 76%, very light yellow solid) was obtained from hydrazone **7b** (1.22 g, 3.72 mmol) and TsOH·H₂O (0.781 g, 4.11 mmol) in EtOH (39 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (20.03 g) eluting with petroleum ether-CHCl₃ (from 3:1 to 1:4). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine **8b**. The analytically pure sample (very light yellow solid) was obtained by crystallization from MeCN. Mp 200.5–202 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3195 (br vs), 3104 (m) (v NH), 3057 (w), 3022 (w) (v CH_{arom}), 1619 (m) (v C=N), 1573 (m) (v CC_{arom}), 1548 (s) (thioamide-II), 1513 (m) (v CC_{arom}), 1178 (vs) (δ NH + v CN), 816 (m), 766 (s), 702 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ: 10.87 (1H, br d, ${}^{4}J = 2.0$ Hz, N₍₂₎H), 9.06 (1H, br dd, ${}^{3}J = 5.0$, ${}^{4}J = 2.0$ Hz, N₍₄₎H), 7.37–7.44 (2H, m, ArH), 7.22–7.34 (3H, m, ArH), 7.03–7.13 (4H, m, ArH), 4.90 (1H, ddd, ${}^{3}J = 6.2$, ${}^{3}J = 5.0$, ${}^{3}J = 2.6$ Hz, H-5), 3.53 (1H, ddd, ${}^{2}J = 14.8$, ${}^{3}J = 6.2$, ${}^{4}J = 0.9$ Hz, H_A-6), 3.20 (1H, dd, ${}^{2}J = 14.8$, ${}^{3}J = 2.6$ Hz, H_B-6), 2.19 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ: 177.0 (C-3), 158.0 (C-7), 139.1 (C), 137.3 (C), 136.3 (C), 129.3 (CH), 128.7 (2CH), 128.2 (2CH), 125.9 (2CH), 125.8 (2CH), 58.7 (C-5), 36.9 (C-6), 20.6 (CH₃). Anal. Calcd for C₁₇H₁₇N₃S: C, 69.12; H, 5.80; N, 14.22. Found: C, 69.20; H, 6.13; N, 14.52.

4.4.3. 5-(4-Methoxyphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8c). Compound 8c (0.855 g, 75%, very light yellow solid) was obtained from hydrazone 7b (1.26 g, 3.67 mmol) and TsOH·H₂O (0.770 g, 4.05 mmol) in EtOH (37 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (33.26 g) eluting with petroleum ether–CHCl₃ (from 3:1 to 1:3). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine 8c. The analytically pure sample (white solid) was obtained by crystallization from EtOAc. Mp 166–167 °C (dec, AcOEt); IR (Nujol) v, cm⁻¹: 3183 (br vs), 3101 (m) (v NH), 1613 (m) (v C=N), 1578 (s) (thioamide-II), 1511 (s), 1487 (m) (v CC_{arom}), 1254 (s) (v C–O), 1177 (s) (δ NH + v CN), 1034 (m) (v C–O), 828 (m), 768 (s), 699 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-d₆) δ : 10.87 (1H, br d, ⁴J = 2.0 Hz, N₍₂₎H), 9.04 (1H, br dd, ³J = 5.0, ⁴J = 2.0 Hz, N₍₄₎H), 7.38–7.44 (2H, m, ArH), 7.22–7.34 (3H, m, ArH), 7.10–7.16 (2H, m, ArH), 6.78–6.85 (2H, m, ArH), 4.89 (1H, ddd, ³J = 6.3, ³J = 5.0, ³J = 2.6 Hz, H-5), 3.66 (3H, s, OCH₃), 3.50 (1H, ddd, ${}^{2}J = 14.7$, ${}^{3}J = 6.3$, ${}^{4}J = 0.9$ Hz, H_A-6), 3.20 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 2.6$ Hz, H_B-6); 13 C NMR (75.48 MHz, DMSO- d_{6}) δ : 176.9 (C-3), 158.4 (C), 158.2 (C-7), 137.3 (C), 134.2 (C), 129.3 (CH), 128.2 (2CH), 127.1 (2CH), 126.0 (2CH), 113.6 (2CH), 58.5 (C-5), 55.0 (OCH₃), 37.0 (C-6). Anal. Calcd for C₁₇H₁₇N₃OS: C, 65.57; H, 5.50; N, 13.49. Found: C, 65.58; H, 5.77; N, 13.43.

4.4.4. 5-(3,4-Dimethoxyphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8d). Compound 8d (0.455 g, 73%, very light yellow solid) was obtained from hydrazone 7d (0.689 g, 1.82 mmol) and TsOH·H₂O (0.399 g, 2.10 mmol) in EtOH (20 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (20.38) g) eluting with petroleum ether–CHCl₃ (from 3:1 to 1:2). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine 8d. The analytically pure sample (white solid) as a strong solvate with benzene $(8d/C_6H_6 = 2:1)$ was obtained after crystallization from C_6H_6 .³⁶ To remove benzene the solid was coevaporated with $CHCl_3$ (3 × 5 mL), the obtained foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried in high vacuum. Mp 90–91.5 °C; IR (Nujol) v. cm⁻¹: 3182 (br vs) (v NH), 3084 (w), 3061 (w) (v CH_{aron}), 1624 (m) (v C=N), 1594 (m) (CC_{aron}), 1550 (s) (thioamide-II), 1516 (s) (v CC_{arom}), 1263 (s) (v C–O), 1178 (s) (δ NH + v CN), 1024 (s) (v C– O), 807 (m), 764 (s), 694 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO- d_6) δ : 10.86 (1H, br d, ⁴J = 2.0 Hz, N₍₂₎H), 9.04 (1H, br dd, ${}^{3}J = 5.0$, ${}^{4}J = 2.0$ Hz, N₍₄₎H), 7.43–7.50 (2H, m, ArH), 7.24–7.35 (3H, m, ArH), 6.81–6.87 (2H, m, ArH), 6.65–6.70 (1H, m, ArH), 4.87 (1H, ddd, ${}^{3}J = 6.4$, ${}^{3}J = 5.0$, ${}^{3}J = 2.6$ Hz, H-5), 3.65 (3H, s, OCH₃), 3.61 (3H, s, OCH₃), 3.61 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 6.4$ Hz, H_A-6, signals partly overlap with signals of the OCH₃ groups), 3.18 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 2.6$ Hz, H_B-6); ${}^{13}C$ NMR (75.48) MHz, DMSO-*d*₆) δ: 177.0 (C-3), 158.2 (C-7), 148.4 (C), 147.9 (C), 137.3 (C), 134.4 (C), 129.3 (CH), 128.1 (2CH), 125.9 (2CH), 118.1 (CH), 111.5 (CH), 110.2 (CH), 58.6 (C-5), 55.5 (OCH₃), 55.4 (OCH₃), 36.6 (C-6). Anal. Calcd for C₁₈H₁₉N₃O₂S·0.05CHCl₃: C, 62.41; H, 5.53; N, 12.10. Found: C, 62.18; H, 5.74; N, 12.21.³⁷

4.4.5. 5-(4-tert-Butylphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8e). Compound 8e (0.882 g, 78%) was obtained from hydrazone 7e (1.24 g, 3.35 mmol) and TsOH·H₂O (0.711 g, 3.74 mmol) in EtOH (35 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (34.85 g) eluting with petroleum ether– CHCl₃ (from 3:1 to 0:1). The main fraction was concentrated. The residue was dried in vacuum (water pump), triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine **8e**. Mp 224–225 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3331 (s), 3206 (br s), 3062 (m) (v NH), 1625 (m) (v C=N), 1596 (w), 1575 (w) (v CC_{arom}), 1552 (s) (thioamide-II), 1511 (w) (v CC_{arom}), 1182 (vs) (δ NH + v CN), 832 (m), 763 (m), 693 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 10.86 (1H, br d, ⁴*J* = 2.0 Hz, N₍₂₎H), 9.00 (1H, br dd, ³*J* = 4.8, ⁴*J* = 2.0 Hz, N₍₄₎H), 7.20–7.38 (7H, m, ArH), 7.10–7.16 (2H, m, ArH), 4.90 (1H, ddd, ³*J* = 6.4, ³*J* = 4.8, ³*J* = 2.7 Hz, H-5), 3.45 (1H, ddd, ²*J* = 14.7, ³*J* = 6.4, ⁴*J* = 0.9 Hz, H_A-6), 3.23 (1H, dd, ²*J* = 14.7, ³*J* = 2.7 Hz, H_B-6), 1.19 (9H, s, 3×CH₃ in *t*-Bu); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 177.1 (C-3), 158.8 (C-7), 149.8 (C), 139.2 (C), 137.3 (C), 129.3 (CH), 128.1 (2CH), 126.0 (2CH), 125.6 (2CH), 124.9 (2CH), 58.9 (C-5), 37.1 (C-6), 34.1 (*C*Me₃), 31.0 (3×CH₃ in *t*-Bu). Anal. Calcd for C₂₀H₂₃N₃S: C, 71.18; H, 6.87; N, 12.45. Found: C, 71.12; H, 6.92; N, 12.61.

4.4.6. 7-(4-Methylphenyl)-5-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8f). Compound 8f (0.994 g, 81%, very light yellow solid) was obtained from hydrazone **7f** (1.36 g, 4.16 mmol) and TsOH·H₂O (0.884 g,4.65 mmol) in EtOH (42 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (42.86 g) eluting with petroleum ether-CHCl₃ (from 3:1 to 1:5). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine 8d. Analytically pure sample (very light yellow solid) was obtained by crystallization from MeCN. Mp 189.5–191 °C (MeCN); IR (Nujol) v, cm⁻¹: 3407 (s), 3178 (br s), 3103 (br s) (v NH), 3053 (w) (v CH_{arom}), 1622 (w) (v C=N), 1604 (m) (v CC_{arom}), 1571 (s) (thioamide-II), 1507 (w) (v CC_{arom}), 1179 (vs) (δ NH + v CN), 817 (s), 759 (s), 697 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO- d_6) δ : 10.84 (1H, br d, ${}^{4}J = 2.0$ Hz, N₍₂₎H), 9.02 (1H, br dd, ${}^{3}J = 4.9$, ${}^{4}J = 2.0$ Hz, N₍₄₎H), 7.12–7.31 (7H, m, ArH), 7.01–7.07 (2H, m, ArH), 4.94 (1H, ddd, ${}^{3}J = 6.3$, ${}^{3}J = 4.9$, ${}^{3}J = 2.7$ Hz, H-5), 3.51 (1H, ddd, ${}^{2}J = 14.6$, ${}^{3}J = 6.3$, ${}^{4}J = 1.0$ Hz, H_A-6), 3.21 (1H, dd, ${}^{2}J = 14.6$, ${}^{3}J = 2.7$ Hz, H_B-6), 2.23 (3H, s, CH₃); ${}^{13}C$ NMR (75.48 MHz, DMSO-*d*₆) δ: 177.0 (C-3), 158.5 (C-7), 142.1 (C), 139.0 (C), 134.3 (C), 128.7 (2CH), 128.2 (2CH), 127.2 (CH), 125.9 (2CH), 125.8 (2CH), 59.2 (C-5), 36.6 (C-6), 20.7 (CH₃). Anal. Calcd for C₁₇H₁₇N₃S: C, 69.12; H, 5.80; N, 14.22. Found: C, 69.01; H, 6.12; N, 14.46.

4.4.7. 5,7-Di(4-methylphenyl)-2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thione (**8g**). *Method A*: Compound **8g** (0.885 g, 76%, light yellow solid) was obtained from hydrazone **7g** (1.29 g, 3.77 mmol) and TsOH·H₂O (0.794 g, 4.17 mmol) in EtOH (39 mL) (reflux, 1.5 h) as described for **8a** in Method A. The crude product was purified using column chromatography on aluminium oxide (30.66 g) eluting with petroleum ether–CHCl₃ (from 3:1 to 1:3). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine **8g**. Analytically pure sample (very light yellow solid) was obtained by crystallization from MeCN. Mp 192.5–194 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3388 (s), 3185 (br s), 3097 (br m) (v NH), 3045 (w) (v CH_{arom}), 1618 (w) (v C=N), 1604 (m) (v CC_{arom}), 1570 (s) (thioamide-II), 1512 (m) (v CC_{arom}), 1173 (vs) (δ NH + v CN), 816 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 10.81 (1H, br d, ⁴*J* = 2.0 Hz, N₍₂₎H), 9.00 (1H, br dd, ³*J* = 5.0, ⁴*J* = 2.0 Hz, N₍₄₎H), 7.29–7.34 (2H, m, ArH), 7.03–7.12 (6H, m, ArH), 4.88 (1H, ddd, ³*J* = 6.3, ³*J* = 5.0, ³*J* = 2.7 Hz, H-5), 3.50 (1H, ddd, ²*J* = 14.7, ³*J* = 6.3, ⁴*J* = 0.9 Hz, H_A-6), 3.17 (1H, dd, ²*J* = 14.7, ³*J* = 2.7 Hz, H_B-6), 2.24 (3H, s, CH₃), 2.19 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 176.9 (C-3), 158.1 (C-7), 139.2 (C), 139.0 (C), 136.3 (C), 134.5 (C), 128.8 (2CH), 128.7 (2CH), 125.9 (2CH), 125.8 (2CH), 58.8 (C-5), 36.6 (C-6), 20.7 (CH₃ in 7-Ar), 20.6 (CH₃ in 5-Ar). Anal. Calcd for C₁₈H₁₉N₃S: C, 69.87; H, 6.19; N, 13.58. Found: C, 69.75; H, 6.25; N, 13.78.

Method B: Compound **8g** (0.619 g, 79%, very light yellow solid) was obtained from semicarbazide **5b** (0.830 g, 2.54 mmol) and AcOH (0.60 mL, 10.48 mmol) in EtOH (35 mL) (reflux, 3 h) as described for **8a** in Method B. The crude product was purified using column chromatography on silica gel (30.29 g) eluting with petroleum ether–CHCl₃ (from 3:1 to 1:2). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with ether, the obtained suspension was cooled (–15 °C), the precipitate was filtered on cold (–15 °C) filter , washed with cold (–15 °C) ether (3 × 5 mL), and dried to give triazepine **8g**.

4.4.8. 7-(4-*Methylphenyl*)-5-(4-*methoxyphenyl*)-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8h). Compound 8h (0.851 g, 81%, very light yellow solid) was obtained from hydrazone 7h (1.16 g, 3.23 mmol) and TsOH·H₂O (0.687 g, 3.61 mmol) in EtOH (34 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (43.21 g) eluting with petroleum ether–CHCl₃ (from 3:1 to 1:4). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine 8h.³⁸ Mp 88–91 °C; IR (Nujol) v, cm⁻¹: 3354 (w), 3178 (br s) (v NH), 3082 (w), 3067 (w) (v CH_{arom}), 1609 (s) (v C=N), 1566 (w), 1549 (s) (thioamide-II), 1512 (s) (v CC_{arom}), 1251 (s) (v C–O), 1176 (vs) (δ NH + v CN), 1034 (s) (v C–O), 822 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-d₆) δ : 10.81 (1H, br d, ⁴*J* = 2.0 Hz, N₍₂₎H), 8.97 (1H, br dd, ³*J* = 4.8, ⁴*J* = 2.0 Hz, N₍₄₎H), 7.29–7.35 (2H, m, ArH), 7.04–7.16 (4H, m, ArH), 6.78–6.85 (2H, m, ArH), 4.87 (1H, ddd, ³*J* = 6.3, ³*J* = 4.8, ³*J* = 2.6 Hz, H₂-6), 2.24 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-d₆) δ : 176.8 (C-3), 158.3 (C), 158.3 (C-7), 139.0 (C), 134.4 (C), 134.2 (C), 128.8 (2CH), 127.1 (2CH), 125.9 (2CH), 113.6

(2CH), 58.6 (C-5), 55.0 (OCH₃), 36.8 (C-6), 20.7 (CH₃). Anal. Calcd for C₁₈H₁₉N₃OS: C, 66.43; H, 5.88; N, 12.91. Found: C, 66.29; H, 5.93; N, 12.83.

4.4.9. 7-(4-Methylphenyl)-5-(3,4-dimethoxyphenyl)-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8i). Compound 8i (1.01 g, 82%, very light yellow solid) was obtained from hydrazone 7i (1.34 g, 3.45 mmol) and TsOH·H₂O (0.729 g, 3.83 mmol) in EtOH (35 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on aluminium oxide (43.03 g) eluting with petroleum ether–CHCl₃ (from 3:1 to 1:4). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The resulting foam was triturated with H₂O, the obtained precipitate was filtered, washed with H₂O, petroleum ether, and dried to give triazepine 8i. Analytically pure sample (white crystals) was obtained by crystallization from petroleum ether–EtOAc (1:3, v/v). Mp 159–160.5 °C (dec, AcOEt–petroleum ether, 3:1); IR (Nujol) v, cm⁻¹: 3306 (br vs) (v NH), 3061 (w), 3022 (w) (v CH_{arom}), 1600 (m) (v C=N, v CC_{arom}), 1564 (w) (v CC_{arom}), 1531 (sh), 1518 (s) (thioamide-II, v CC_{arom}), 1256 (s) (v C–O), 1173 (vs) (\delta NH + v CN), 1022 (s) (v C–O), 848 (s), 814 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO- d_6) δ : 10.80 (1H, br d, ⁴J = 2.0 Hz, N₍₂₎H), 8.98 (1H, br dd, ${}^{3}J = 4.9$, ${}^{4}J = 2.0$ Hz, N₍₄₎H), 7.35–7.41 (2H, m, ArH), 7.06–7.11 (2H, m, ArH), 6.86–6.88 (1H, m, ArH), 6.80–6.85 (1H, m, ArH), 6.64–6.70 (1H, m, ArH), 4.85 (1H, ddd, ${}^{3}J =$ 6.3, ${}^{3}J = 4.9$, ${}^{3}J = 2.6$ Hz, H-5), 3.65 (3H, s, OCH₃), 3.62 (3H, s, OCH₃), 3.58 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 14.7$ 6.3 Hz, H_A-6), 3.15 (1H, dd, ${}^{2}J = 14.7$, ${}^{3}J = 2.6$ Hz, H_B-6), 2.25 (3H, s, CH₃); ${}^{13}C$ NMR (75.48 MHz, DMSO-*d*₆) δ: 176.9 (C-3), 158.3 (C-7), 148.3 (C), 147.9 (C), 139.1 (C), 134.5 (C), 134.4 (C), 128.8 (2CH), 125.9 (2CH), 118.1 (CH), 111.3 (CH), 110.1 (CH), 58.7 (C-5), 55.43 (OCH₃), 55.41 (OCH₃), 36.4 (C-6), 20.8 (CH₃). Anal. Calcd for C₁₉H₂₁N₃O₂S: C, 64.20; H, 5.96; N, 11.82. Found: C, 64.12; H, 6.10; N, 11.89.

4.4.11. 2-Methyl-5,7-diphenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (**8j**). Method A: Compound **8j** (0.690 g, 72%, very light yellow solid) was obtained from hydrazone **7j** (1.07 g, 3.28 mmol) and TsOH·H₂O (0.693 g, 3.65 mmol) in MeCN (33 mL) (reflux, 1.5 h) as described for **7a** in Method A. The crude product was purified using column chromatography on aluminium oxide (44.40 g) eluting with petroleum ether–CHCl₃ (from 12:1 to 4:1). The main fraction was concentrated. The residue was dried in vacuum (water pump), and triturated with ether. The obtained suspension was cooled (-15 °C), the precipitate was filtered on cold (-15 °C) filter, washed with cold (-15 °C) ether (3 × 5 mL), and dried to give triazepine **8j**. Analytically pure sample (white crystals) was obtained by crystallization from EtOH. Mp 176.5–177.5 °C (EtOH); IR (Nujol) v, cm⁻¹: 3216 (br vs) (v NH), 3083 (w), 3060 (w), 3047 (w) (v CH_{arom}), 1604 (w) (v C=N), 1572 (w) (v CC_{arom}), 1516 (s) (thioamide-II), 1493 (w) (v CC_{arom}), 1274 (s) (δ NH + v CN), 760 (s), 698 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO- d_6) & 8.18 (1H, br d, ${}^{3}J = 2.5$ Hz, NH), 7.66–7.72 (2H, m, ArH), 7.28–7.48 (7H, m, ArH), 7.20–7.27 (1H, m, ArH), 4.94 (1H, ddd, ${}^{3}J = 9.0$, ${}^{3}J = 4.4$, ${}^{3}J = 2.5$ Hz, H-5), 3.64 (3H, s, NCH₃), 3.33 (1H, ddd, ${}^{2}J = 13.6$, ${}^{3}J = 4.4$, ${}^{4}J = 0.9$ Hz, H_A-6), 3.25 (1H, dd, ${}^{2}J = 13.6$, ${}^{3}J = 9.0$ Hz, H_B-6); 13 C NMR (75.48 MHz, DMSO- d_6) & 179.9 (C-3), 165.3 (C-7), 143.3 (C), 135.0 (C), 130.6 (CH), 128.5 (2CH), 128.3 (2CH), 127.5 (CH), 126.6 (2CH), 126.1 (2CH), 63.6 (C-5), 45.2 (CH₃), 35.1 (C-6). Anal. Calcd for C₁₇H₁₇N₃S: C, 69.12; H, 5.80; N, 14.22. Found: C, 68.98; H, 5.91; N, 13.93.

Method B: Compound **8j** (0.486 g, 89%, white solid) was obtained from thiosemicarbazide **5c** (0.606 g, 1.93 mmol) and AcOH (1.15 mL, 20.09 mmol) in EtOH (21 mL) (reflux, 8 h) as described for **8a** in Method B. The crude product was purified using column chromatography on silica gel (20.12 g) eluting with petroleum ether–CHCl₃ (from 3:1 to 2:1). The main fraction was concentrated. The residue was dried in vacuum (water pump), and triturated with ether. The obtained suspension was cooled (–15 °C), the precipitate was filtered on cold (–15 °C) filter, washed with cold (–15 °C) ether (3 × 5 mL), and dried to give triazepine **8j**.

4.4.12. 2-Methyl-5-(4-methylphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (8k). Method A: Compound 8k (0.342 g, 48%, light yellow solid) was obtained from hydrazone 7k (0.785 g, 2.30 mmol) and TsOH·H₂O (0.489 g, 2.57 mmol) in MeCN (25 mL) (reflux, 1.5 h) as described for 8a in Method A. The crude product was purified using column chromatography on silica gel (20.41 g) eluting with petroleum ether-CHCl₃ (from 3:2 to 2:1). The main fraction was concentrated. The residue was dried in vacuum (water pump)) until the stable foam formed. The foam was dissolved in EtOAc (3 mL) upon heating, then petroleum ether (9 mL) was added. The solution was cooled (5 °C), crystallization was caused by triturating with spatula, and the obtained suspension was left overnight at 5 °C. The precipitated was filtered, washed with cold petroleum ether–EtOAc (3:1, v/v) (3×3 mL), and dried to give triazepine **5b**. The analytically pure sample (very light yellow solid) was obtained by crystallization from EtOH. Mp 115–116 °C (EtOH); IR (Nujol) v, cm⁻¹: 3368 (s) (v NH), 3048 (w), 3029 (w) (v CH_{arom}), 1609 (m) (v C=N), 1571 (m), 1509 (w) (v CC_{arom}), 1488 (s) (thioamide-II), 1249 (s) $(\delta \text{ NH} + \nu \text{ CN})$, 819 (s), 764 (s), 693 (m) $(\delta \text{ CH}_{\text{arom}})$; ¹H NMR (300.13 MHz, DMSO- d_6) δ : 8.11 ArH), 7.10–7.16 (2H, m, ArH), 4.88 (1H, ddd, ${}^{3}J = 9.0$, ${}^{3}J = 4.6$, ${}^{3}J = 2.4$ Hz, H-5), 3.63 (3H, s, NCH₃), 3.28 (1H, ddd, ${}^{2}J = 13.6$, ${}^{3}J = 4.6$, ${}^{4}J = 1.0$ Hz, H_A-6), 3.23 (1H, dd, ${}^{2}J = 13.6$, ${}^{3}J = 9.0$ Hz, H_B-6), 2.25 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ: 179.9 (C-3), 165.1 (C-7), 140.4 (C), 136.6 (C), 135.0 (C), 130.6 (CH), 128.8 (2CH), 128.5 (2CH), 126.6 (2CH), 126.0 (2CH), 63.4 (C-5), 45.2 (NCH₃), 35.2 (C-6), 20.7 (CH₃). Anal. Calcd for C₁₈H₁₉N₃S: C, 69.87; H, 6.19; N, 13.58. Found: C, 69.91; H, 6.23; N, 13.38.

Method B: Compound 8k (0.501 g, 82%, very light yellow solid) was obtained from

thiosemicarbazide **5d** (0.647 g, 1.98 mmol) and AcOH (1.20 mL, 20.97 mmol) in EtOH (22 mL) (reflux, 8 h) as described for **8a** in Method B. The crude product was purified using column chromatography on silica gel (20.12 g) eluting with petroleum ether–CHCl₃ (from 60:25 to 60:30). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The obtained foam was dissolved in EtOH (3 mL) upon heating. The solution was cooled to room temperature, crystallization was caused by triturating with spatula, and the solvent was removed in vacuum. The residual solid was dried in vacuum (water pump), and triturated with petroleum ether. The precipitate was filtered, washed with petroleum ether (4 × 3 mL), and dried to give triazepine **8k**.

4.4.13. 2-Methyl-5,7-di(4-methylphenyl)-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (81).

Compound 81 (0.679 g, 81%, very light yellow solid) was obtained from semicarbazide 5e (0.881 g, 2.58 mmol) and AcOH (1.50 mL, 26.21 mmol) in EtOH (25 mL) (reflux, 8 h) as described for 8a in Method B. The crude product was purified using column chromatography on silica gel (32.41 g) eluting with petroleum ether–CHCl₃ (from 60:25 to 60:30). The main fraction was concentrated. The residue was dried in vacuum (water pump) until the stable foam formed. The obtained foam was dissolved in EtOH (3 mL) upon heating. The solution was cooled to room temperature, crystallization was caused by triturating with spatula, and the solvent was removed in vacuum. The residual solid was dried in vacuum (water pump), and triturated with petroleum ether. The precipitate was filtered, washed with petroleum ether (4×3 mL), and dried to give triazepine 81. The analytically pure sample (white crystals) was obtained by crystallization from EtOH. Mp 140.5–141.5 °C (EtOH); IR (Nujol) v, cm⁻¹: 3381 (w), 3357 (s) (v NH), 1611 (sh) (v C=N), 1601 (m), 1558 (w), 1509 (sh) (v CC_{arom}), 1492 (s) (thioamide-II), 1256 (s) (δ NH + ν CN), 817 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO- d_6) δ : 8.01 (1H, br d, ${}^{3}J = 2.2$ Hz, NH), 7.59–7.64 (2H, m, ArH), 7.25–7.30 (2H, m, ArH), 7.18–7.23 (2H, m, ArH), 7.11–7.17 (2H, m, ArH), 4.84 (1H, ddd, ${}^{3}J = 9.3$, ${}^{3}J = 4.6$, ${}^{3}J = 2.2$ Hz, H-5), 3.62 (3H, s, NCH₃), 3.25 (1H, ddd, ${}^{2}J = 13.5$, ${}^{3}J = 4.6$, ${}^{4}J = 1.0$ Hz, H_A-6), 3.19 (1H, dd, ${}^{2}J = 13.5$, ${}^{3}J = 9.3$ Hz, H_B-6), 2.32 (3H, s, CH₃), 2.26 (3H, s, CH₃); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ: 179.9 (C-3), 165.1 (C-7), 140.52 (C), 140.50 (C), 136.6 (C), 132.1 (C), 129.1 (2CH), 128.8 (2CH), 126.5 (2CH), 126.0 (2CH), 63.5 (C-5), 45.1 (NCH₃), 35.0 (C-6), 20.9 (CH₃), 20.6 (CH₃). Anal. Calcd for C₁₉H₂₁N₃S: C, 70.55; H, 6.54; N, 12.99. Found: C, 70.29; H, 6.83; N, 13.09.

4.5. Synthesis of 5-unsubstituted 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione 15

4.5.1. 4-[(3-Oxo-3-phenyl)prop-1-yl]thiosemicarbazide (12). To a cooled in an ice-bath, stirred solution of isothiocyanatoketone 11^{25} (2.22 g, 79 mol% mixture with Ph₃PS, 8.24 mmol) in MeCN (9 mL) was

added a solution of N₂H₄·H₂O (0.522 g, 10.42 mmol) in MeCN (3 mL) and the resulting suspension was stirred in ice-bath for 10 min. The reaction mixture was cooled (-15 °C), the precipitate was filtered, washed with cold (-15 °C) MeCN (3×5 mL), cold (-15 °C) ether (2×5 mL), and dried to give product (1.84 g, 100%) as a 98:2 mixture of thiosemicarbazide 12 and 1-amino-6-hydroxy-6phenylhexahydropyrimidine-2-thione (13). After crystallization from MeCN the isomeric composition of the product did not change. Mp 168–169 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3326 (s), 3279 (s), 3174 (sh), 3155 (br s) (v NH), 3084 (w), 3065 (w), 3057 (w) (v CH_{arom}), 1682 (s) (v C=O), 1640 (s) (\delta NH₂), 1594 (m), 1578 (sh) (v CC_{arom}), 1562 (s) (thioamide-II), 1505 (m) (v CC_{arom}), 763 (s), 688 (s) (δ CH_{arom}): ¹H NMR of thiosemicarbazide **12** (300.13 MHz, DMSO-*d*₆) δ: 8.71 (1H, br s, NHNH₂), 7.96– 8.02 (2H, m, ArH), ≈7.96 (1H, br unresolved t, NHCH₂), 7.61–7.68 (2H, m, ArH), 7.49–7.57 (2H, m, ArH), 4.46 (2H, br s, NH₂), 3.81 (2H, dt, ${}^{3}J = 6.7$, ${}^{3}J = 6.0$ Hz, NCH₂), 3.32 (2H, t, ${}^{3}J = 6.7$ Hz, CH₂C=O); ¹H NMR of pyrimidine **13** (300.13 MHz, DMSO-*d*₆) δ: 8.44 (1H, br s, N₍₃₎H), 7.25–7.39 (5H, m, ArH), 6.70 (1H, s, OH), 4.73 (2H, br s, NH₂), signals of other protons overlap with proton signals of the acyclic isomer; ¹³C NMR of thiosemicarbazide **12** (75.48 MHz, DMSO- d_6) δ : 199.2 (C=O), 181.0 (C=S), 136.4 (C), 133.4 (CH), 128.8 (2CH), 127.9 (2CH), 38.4, 38.3 (CH₂CH₂). Anal. Calcd for C₁₀H₁₃N₃OS: C, 53.79; H, 5.87; N, 18.82. Found: C, 53.72; H, 5.91; N, 18.94.

4.5.2. Hydrazone of 4-[(3-oxo-3-phenyl)prop-1-yl]thiosemicarbazide (14). Compound 14 (0.529 g, 90%) as a 92:8 mixture of geometric isomers was prepared from thiosemicarbazide 12 (0.553 g, 2.48 mmol) and N₂H₄·H₂O (1.23 g, 24.5 mmol) in EtOH (17 mL) (reflux, 6 h 20 min) as described for 7j. After crystallization from MeCN the isomeric ratio changed to 97:3, respectively. Mp 131.5–132.5 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3393 (m), 3281 (sh), 3214 (br s), 3195 (br s) (v NH), 3079 (w), 3060 (w), 3037 (w), 3017 (w) (v CH_{arom}), 1627 (s) (v C=N, δ NH₂), 1591 (w) (v CC_{arom}), 1557 (br s) (thioamide-II), 1500 (s) (v CC_{arom}), 758 (s), 690 (s) (δ CH_{arom}); ¹H NMR of the major isomer (300.13 MHz, DMSO- d_6) δ : 8.77 (1H, br s, NHNH₂), 8.21 (1H, br unresolved t, ${}^{3}J \approx 6.2$ Hz, NHCH), 7.72–7.78 (2H, m, ArH), 7.28–7.35 (2H, m, ArH), 7.19–7.26 (1H, m, ArH), 6.84 (2H, br s, NH₂N=C), 4.51 (2H, br s, NH₂NH), 3.49–3.59 (2H, m, CH₂N), 2.76–2.85 (2H, m, CH₂C=N); ¹H NMR of the minor isomer (300.13 MHz, DMSO-d₆) δ: 8.60 (1H, br s, NHNH₂), 7.43–7.50 (2H, m, ArH), 5.74 (2H, br s, NH₂N=C), 4.42 (2H, br s, NH₂NH), 3.62 (2H, dt, ${}^{3}J = 7.0$, ${}^{3}J = 6.1$ Hz, CH₂N), 2.63 (2H, t, ${}^{3}J = 7.0$ Hz, CH₂C=N), signals of other protons overlap with signals of analogous protons of the major isomer; 13 C NMR of the major isomer (75.48 MHz, DMSO-*d*₆) δ: 180.9 (C=S), 141.2 (C=N), 138.9 (C), 128.1 (2CH), 126.9 (CH), 124.5 (2CH), 38.5 (CH₂N), 26.0 (CH₂C=N). Anal. Calcd for C₁₀H₁₅N₅S: C, 50.61; H, 6.37; N, 29.51. Found: C, 50.61; H, 6.57; N, 29.62.

4.5.3. 7-Phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thione (15). Compound **15** (0.616 g, 74%, very light yellow solid) was obtained from semicarbazide **12** (0.906 g, 4.06 mmol) and AcOH (0.95 mL, 16.60 mmol) in EtOH (40 mL) (reflux, 3 h) as described for **8a** in Method B. The crude product was purified using column chromatography on silica gel (31.24 g) eluting with petroleum ether–CHCl₃ (from 1:1 to 1:3). The main fraction was concentrated. The residue was dried in vacuum (water pump), the resulting solid was triturated with ether, the obtained suspension was cooled (-15 °C), the precipitate was filtered on cold (-15 °C) filter, washed with cold (-15 °C) ether (3 × 5 mL), and dried to give triazepine **15**. Analytically pure sample (white crystals) was obtained by crystallization from MeCN. Mp 152.5–153.5 °C (MeCN); IR (Nujol) v, cm⁻¹: 3374 (s), 3168 (br s), 3115 (m), 3081 (m) (v NH), 3060 (w) (v CH_{arom}), 1625 (m) (v C=N), 1577 (s) (thioamide-II), 1504 (m), 1486 (m) (v CC_{arom}), 1175 (vs) (δ NH + v CN), 768 (s), 695 (s) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 10.63 (1H, br d, ⁴*J* = 2.3 Hz, N₍₂₎H), 8.95 (1H, br dt, ³*J* = 4.3, ⁴*J* = 2.3 Hz, N₍₄H), 7.64–7.72 (2H, m, ArH), 7.35–7.45 (3H, m, ArH), 3.36–3.42 (2H, m, H-5), 3.04–3.09 (2H, m, H-6); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 178.3 (C-3), 156.6 (C-7), 137.7 (C), 129.3 (CH), 128.3 (2CH), 126.0 (2CH), 43.1 (C-5), 31.6 (C-6). Anal. Calcd for C₁₀H₁₁N₃S: C, 58.51; H, 5.40; N, 20.47. Found: C, 58.48; H, 5.52; N, 20.54.

4.6. Synthesis of 2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-ones 16a-e

4.6.1. 5,7-Diphenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-one (**16a**). To a stirred solution of KOH (0.195 g, 3.48 mmol) in H₂O (0.7 mL) were added triazepinethione **8a** (0.193 g, 0.69 mmol) and EtOH (3.5 mL). The resulting suspension was cooled (10–15 °C, cold water), H₂O₂ (0.49 mL, 7.11 mmol; d = 1.175 g/mL, 43%) was added over 1 min and cooling was removed. The reaction mixture was stirred at room temperature for 1.5 h, AcOH (0.18 mL, 3.06 mmol) was added, and the solvent was removed under vacuum (temperature of bath below 35 °C). To the residue was added saturated aqueous NaHCO₃ (3 mL), and the obtained suspension was cooled. The precipitate was filtered, washed with ice cold H₂O, petroleum ether, and dried to give triazepinone **16a** (0.162 g, 89%). Mp 204–205 °C (EtOH). ¹H and ¹³C NMR spectra of **16a** were identical to those in the literature.¹³

4.6.2. 5-(4-Methylphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-one (**16b**). Compound **16b** (0.232 g, 87%) was obtained from triazepinethione **8b** (0.264 g, 0.89 mmol), KOH (0.247 g, 4.40 mmol) and H_2O_2 (0.64 mL, 9.19 mmol; d = 1.175 g/mL, 43%) in EtOH (4.5 mL) and H_2O (1 mL) (rt, 2 h), then AcOH (0.23 mL, 4.02 mmol) as described for **16a**. Mp 189–191 °C (EtOH). ¹H and ¹³C NMR spectra of **16b** were identical to those in the literature.¹³

4.6.3. 5-(4-Methoxyphenyl)-7-phenyl-2,4,5,6-tetrahydro 3H-1,2,4-triazepin-3-one (16c). Compound 16c (0.258 g, 88%) was obtained from triazepinethione 8c (0.310 g, 0.99 mmol), KOH (0.284 g, 5.05 mmol) and H₂O₂ (0.70 mL, 10.05 mmol; d = 1.175 g/mL, 43%) in EtOH (5 mL) and H₂O (1 mL) (rt, 2 h), then AcOH (0.22 mL, 3.84 mmol) as described for 16a. Mp 188.5–189.5 °C (dec, MeCN); IR (Nujol) v, cm⁻¹: 3346 (w), 3240 (br s), 3226 (br s), 3100 (br s) (v NH), 3054 (w), 3029 (w), 3000 (w) (v CH_{arom}), 1685 (s) (amide-I), 1642 (m) (v C=N), 1613 (m), 1585 (m), 1511 (s) (v CC_{arom}), 1251 (s), 1035 (m) (v C–O), 823 (s), 766 (s), 707 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-d₆) δ : 9.54 (1H, br d, ⁴*J* = 2.0 Hz, N₍₂₎H), 7.19–7.47 (8H, m, ArH and N₍₄₎H), 6.81–6.87 (2H, m, ArH), 4.74 (1H, ddd, ³*J* = 7.0, ³*J* = 4.0, ³*J* = 3.1 Hz, H-5), 3.31 (1H, dd, ²*J* = 14.4, ³*J* = 7.0 Hz, H_A-6), 3.14 (1H, dd, ²*J* = 14.4, ³*J* = 3.1 Hz, H_B-6); ¹³C NMR (75.48 MHz, DMSO-d₆) δ : 158.3 (C), 155.5, 155.1 (C-3, C-7), 137.7 (C), 135.2 (C), 128.7 (CH), 128.1 (2CH), 127.0 (2CH), 125.6 (2CH), 113.6 (2CH), 55.2 (C-5), 55.0 (OCH₃), 36.3 (C-6). Anal. Calcd for C₁₇H₁₇N₃O₂: C, 69.14; H, 5.80; N, 14.23. Found: C, 69.09; H, 5.76; N, 14.42.

4.6.4. 5-(4-tert-Butylphenyl)-7-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-one (**16d**). Compound **16d** (0.331 g, 58%) was obtained from triazepinethione **8e** (0.594 g, 1.76 mmol), KOH (0.492 g, 8.77 mmol) and H₂O₂ (1.27 mL, 18.24 mmol; d = 1.175 g/mL, 43%) in EtOH (10 mL) and H₂O (2 mL) (rt, 2.5 h), then AcOH (0.39 mL, 6.81 mmol) as described for **16a**. The crude product was purified using column chromatography on silica gel (10.24 g) eluting with CHCl₃. Mp 232–233 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3347 (w), 3229 (br s), 3098 (br s) (v NH), 3060 (w), 3030 (w) (v CH_{arom}), 1686 (s) (amide-I), 1637 (m) (v C=N), 1574 (w), 1511 (m) (v CC_{arom}), 823 (s), 758 (m), 699 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 9.56 (1H, br d, ⁴J = 2.1 Hz, N₍₂₎H), 7.20–7.41 (10H, m, ArH and N₍₄₎H), 4.75 (1H, ddd, ³J = 7.0, ³J = 3.6, ³J = 3.4 Hz, H-5), 3.26 (1H, ddd, ²J = 14.4, ³J = 7.0, ⁴J = 0.7 Hz, H_A-6), 3.17 (1H, dd, ²J = 14.4, ³J = 3.4 Hz, H_B-6), 1.22 (9H, s, 3×CH₃ in *t*-Bu); ¹³C NMR (75.48 MHz, DMSO-*d*₆) δ : 155.8, 155.6 (C-3, C-7), 149.7 (C), 140.3 (C), 137.6 (C), 128.8 (CH), 128.1 (2CH), 125.74 (2CH), 125.7 (2CH), 125.0 (2CH), 55.8 (C-5), 36.4 (C-6), 34.2 (CMe₃), 31.1 (3×CH₃ in *t*-Bu). Anal. Calcd for C₂₀H₂₃N₃O: C, 74.74; H, 7.21; N, 13.07. Found: C, 74.83; H, 7.10; N, 13.10.

4.6.5. 7-(4-Methylphenyl)-5-phenyl-2,4,5,6-tetrahydro-3H-1,2,4-triazepin-3-one (**16e**). Compound **16e** (0.289 g, 93%) was obtained from triazepinethione **8f** (0.331 g, 1.12 mmol), KOH (0.315 g, 5.61 mmol) and H₂O₂ (0.78 mL, 11.20 mmol; d = 1.175 g/mL, 43%) in EtOH (5 mL) and H₂O (1 mL) (rt, 2 h), then AcOH (0.25 mL, 4.37 mmol) as described for **16a**. Mp 208–209 °C (dec, EtOH); IR (Nujol) v, cm⁻¹: 3369 (s), 3325 (m), 3223 (br s), 3109 (br s) (v NH), 3069 (w), 3032 (w) (v CH_{arom}), 1674 (vs) (amide-I), 1615 (m) (v C=N), 1509 (w) (v CC_{arom}), 814 (s), 752 (m), 706 (m) (δ CH_{arom}); ¹H NMR (300.13 MHz, DMSO-*d*₆) δ : 9.49 (1H, br d, ⁴*J* = 2.0 Hz, N₍₂₎H), 7.15–7.33 (8H, m, ArH and N₍₄₎H),

7.02–7.08 (2H, m, ArH), 4.79 (1H, ddd, ${}^{3}J = 6.9$, ${}^{3}J = 3.2$, ${}^{3}J = 3.0$ Hz, H-5), 3.31 (1H, ddd, ${}^{2}J = 14.3$, ${}^{3}J = 6.9$, ${}^{4}J = 1.0$ Hz, H_A-6), 3.16 (1H, dd, ${}^{2}J = 14.3$, ${}^{3}J = 3.2$ Hz, H_B-6), 2.24 (3H, s, CH₃); 13 C NMR (75.48 MHz, DMSO- d_{6}) δ : 155.6, 155.5 (C-3, C-7), 143.2 (C), 138.3 (C), 134.8 (C), 128.6 (2CH), 128.1 (2CH), 127.1 (CH), 125.9 (2CH), 125.5 (2CH), 56.0 (C-5), 35.9 (C-6), 20.6 (CH₃). Anal. Calcd for C₁₇H₁₇N₃O: C, 73.10; H, 6.13; N, 15.04. Found: C, 73.04; H, 6.07; N, 15.09.

Acknowledgments

This research was financially supported by the Russian Foundation for Basic Research (Grant No. 15-03-07564) and the Ministry of Education and Science of the Russian Federation (project part of government order, 4.1849.2014/K). X-ray diffraction experiments were carried out at CKP FMI IPCE RAS. We thank Dr. Pavel A. Soloviev for recording NMR spectra.

Supplementary data

Supplementary data (copies of IR, ¹H and ¹³C NMR spectra of synthesized compounds, results of X-ray analysis, computational details) associated with this article can be found, in the online version, at http://dx.doi.org/

References and Notes

- For reviews on 1,2,4-triazepines, see: (a) Sharp, J. T. Seven-membered Rings with Two or More Heteroatoms. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 7, pp 593–651; (b) Tsuchiya, T. Seven-membered Rings with Three Heteroatoms 1,2,4. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier: Oxford, 1996; Vol. 9, pp 309–331; (c) Yranzo, G. I.; Moyano, E. L. Seven-membered Rings with Three Heteroatoms 1,2,4. In *Comprehensive Heterocyclic Chemistry III*; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Amsterdam, 2008; Vol. 13, pp 399–430; (d) Peet, N. P. Monocyclic and Condensed Triazepines and Tetrazepines. In *The Chemistry of Heterocyclic Compounds*; Rosowsky, A., Ed.; John Wiley: New York, 1984; Vol. 43, Part 2, pp 719–842; (e) Léna, G.; Guichard, G. *Curr. Org. Chem.* 2008, *12*, 813–835; (f) Elattar, K. M.; Abozeid, M. A.; Mousa, I. A.; El-Mekabaty, A. *RSC Advances* 2015, *5*, 106710–106753.
- McDonald, I. M.; Austin, C.; Buck, I. M.; Dunstone, D. J.; Gaffen, J.; Griffin, E.; Harper, E. A.; Hull, R. A. D.; Kalindjian, S. B.; Linney, I. D.; Low, C. M. R.; Patel, D.; Pether, M. J.; Raynor,

M.; Roberts, S. P.; Shaxted, M. E.; Spencer, J.; Steel, K. I. M.; Sykes, D. A.; Wright, P. T.; Xun, W. J. Med. Chem. 2007, 50, 4789–4792.

- (a) McDonald, I. M.; Austin, C.; Buck, I. M.; Dunstone, D. J.; Griffin, E.; Harper, E. A.; Hull, R. A. D.; Kalindjian, S. B.; Linney, I. D.; Low, C. M. R.; Pether, M. J.; Spencer, J.; Wright, P. T.; Adatia, T.; Bashall, A. J. Med. Chem. 2006, 49, 2253–2261; (b) Kaur, K.; Talele, T. T. J. Mol. Graphics Modell. 2008, 27, 409–420.
- Sankaran, M.; Kumarasamy, C.; Chokkalingam, U.; Mohan, P. S. *Bioorg. Med. Chem. Lett.* 2010, 20, 7147–7151.
- (a) Ibrahim, S. M.; Abo-Kul, M.; Soltan, M. K.; Barakat, W.; Helal, A. S. *Med. Chem.* 2014, 4, 351–356; (b) Ibrahim, S. M.; Baraka, M. M.; El-Sabbagh, O. I.; Kothayer, H. *Med. Chem. Res.* 2013, 22, 1488–1496.
- (a) Zhao, C.; Sham, H. L.; Sun, M.; Stoll, V. S.; Stewart, K. D.; Lin, S.; Mo, H.; Vasavanonda, S.; Saldivar, A.; Park, C.; McDonald, E. J.; Marsh, K. C.; Klein, L. L.; Kempf, D. J.; Norbeck, D. W. *Bioorg. Med. Chem. Lett.* 2005, *15*, 5499–5503; (b) Sham, H. L.; Zhao, C.; Stewart, K. D.; Betebenner, D. A.; Lin, S.; Park, C. H.; Kong, X.-P.; Rosenbrook, W.; Herrin, T.; Madigan, D.; Vasavanonda, S.; Lyons, N.; Molla, A.; Saldivar, A.; Marsh, K. C.; McDonald, E.; Wideburg, N. E.; Denissen, J. F.; Robins, T.; Kempf, D. J.; Plattner, J. J.; Norbeck, D. W. *J. Med. Chem.* 1996, *39*, 392–397; (c) Hodge, C. N.; Fernandez, C. H.; Jadhav, P. K.; Lam, P. Y. WO 9422840, 1994; *Chem. Abs.*, 1994, *123*, 33104.
- (a) Lantzsch, R.; Arlt, D. Synthesis 1977, 756–757; (b) Mosher, W. A.; Toothill, R. B. J. Heterocycl. Chem. 1971, 8, 209–214.
- (a) Fesenko A. A., Shutalev A. D. *Tetrahedron* 2016, 72, 2560–2573; (b) Danilkina, N. A.; Mikhaylov, L. E.; Ivin, B. A. *Chem. Heterocycl. Compd.* 2011, 47, 886–900; (c) Rezessy, B.; Zubovics, Z.; Kovács, J.; Tóth, G. *Tetrahedron* 1999, 55, 5909–5922; (d) Richter, P.; Steiner, K. In *Studies in Organic Chemistry*; van der Plas, H. C., Ötvös, L., Simonyi, M., Eds.; Elsevier: Amsterdam, 1984; Vol. 18 (Bio-Organic Heterocycles), pp 217–220; (e) Neidlein, R.; Ober, W. D. *Monatsh. Chem.* 1976, *107*, 1251–1258; (f) Zigeuner, G.; Fuchsgruber, A.; Wede, F. *Monatsh. Chem.* 1975, *106*, 1495–1497.
- (a) Hassan, M. M.; Othman, E. S.; Abass, M. Res. Chem. Intermed. 2013, 39, 1209–122; (b) Chaudhary, A.; Joshi, S. C.; Singh, R. V. Main Group Met. Chem. 2004, 27, 59–70; (c) Ibrahim, S. S.; El-Gendy, Z. M.; Allimony, H. A.; Othman, E. S. Chem. Papers 1999, 53, 53–64; (d) Hasnaoui, A.; Lavergne, J.–P.; Viallefont, P. Recl. Trav. Chim. Pays-Bas 1980, 99, 301–306; (e) Hasnaoui, A.; Lavergne, J.–P.; Viallefont, P. J. Heterocycl. Chem., 1978, 15, 71–75; (f) Stanovnik, B.; Tišler, M. Naturwissenschaften 1965, 52, 207; (g) Losse, G.; Farr, W. J. Prakt. Chem. 1959, 8, 298–305; (i) Ebnöther, A.; Jucker, E.; Rissi, E.; Rutschmann, J.; Schreier, E.; Steiner, R.; Süess,

R.; Vogel, A. Helv. Chim. Acta 1959, 42, 918–955; (j) Losse, G.; Hessler, W.; Barth, A. Chem. Ber. 1958, 91, 150–157.

- 10. Seebacher, W.; Michl, G.; Weis, R. Tetrahedron Lett. 2002, 43, 7481–7483.
- 11. (a) Hassan, A. A.; Bebair, T. M.; El-Gamal, M. J. Chem. Res. 2014, 27–31; (b) Aly, A. A.; Hassan, A. A.; El-Sheref, E. M.; Mohamed, M. A.; Brown, A. B. J. Heterocycl. Chem. 2008, 45, 521-526; (c) El-Helby, A. A.; Amin, M. A.; El-Sawah, M. M.; Bayoni, A. H.; El-Azab, A. S.; Sherbiny, F. F. J. Saudi Chem. Soc. 2006, 10, 77–93; (d) Abdel-Ghany, H.; Khodairy A.; Moustafa H. M. Synth. Commun. 2000, 30, 1257–1268; (e) Kobayashi, M.; Tanaka, J.; Katori, T.; Marsuura, M.; Yamashita, M.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2409–2418.
- 12. Hosmane, R. S.; Bhadti, V. S.; Lim, B. B. Synthesis 1990, 1095-1100.
- 13. Fesenko A. A., Shutalev A. D. Tetrahedron 2015, 71, 9528–9543.
- 14. (a) Losse, G.; Uhlig, H. Chem. Ber. 1957, 90, 257–260; (b) Losse, G.; Wottgen, E.; Just, H. J. Prakt. Chem. 1958, 7, 28–37.
- Zelenin, K. N.; Solod, O. V.; Alekseev, V. V.; Pekhk, T. I.; Kuznetsova, O. B.; Terent'ev, P. B.; Kalandashvili, A. G. *Chem. Heterocycl. Compd.* **1990**, *26*, 1051–1060.
- 16. Fesenko, A. A.; Solovyev, P. A.; Shutalev A. D. Synth. Commun. 2016, 46, 678-684.
- 17. Previously³⁹ we proposed a convenient criterion for the determination of the substituent orientation at C-4 and C-6 in hexahydropyrimidine-2-thiones(ones), which was based on the values of vicinal coupling constants $J_{N(1)H,H-6}$ and $J_{N(3)H,H-4}$.
- The observation of long-range coupling constant ⁴J_{OH,5-H} in ¹H NMR spectra of 4hydroxyhexahydropyrimidine-2-thiones(ones,imines) indicates *trans*-diaxial orientation of the hydroxyl group and H-5 proton (a W-shaped arrangement of the protons).^{25,27b,c,e-g,40}
- The DFT B3LYP/6-311++G(d,p) optimized geometries of *E*-7a and *Z*-7a for the gas phase and DMSO solution using the PCM solvation model were considered in this analysis.
- 20. For example, the pKa values for the conjugated acids of semicarbazide and acetophenone hydrazone in water are 3.53^{41} (at 30 °C) and 4.70^{42} (at 22 °C), respectively.
- 21. The pKa value for PhSO₂OH in water is -2.8 (at 25 °C).⁴³
- 22. For example, the pKa values for the conjugated acids of thiosemicarbazide and acetophenone hydrazone in water are 1.50^{41} (at 30 °C) and 4.70^{42} (at 22 °C), respectively.
- 23. The most stable conformers of these anions around the amide bonds were taken into consideration (see Scheme 4; s-*trans*,s-*cis*-conformer for anion **A**, s-*cis*,s-*cis*-conformer for anion **B**).
- 24. Weber, F.G.; Pusch, U.; Brauer, B. Pharmazie 1979, 34, 443-444.
- Fesenko, A. A.; Dem'yachenko, E. A.; Fedorova, G. A.; Shutalev, A. D. Monatsh. Chem. 2013, 144, 351–359.

- 26. (a) Fesenko, A. A.; Tullberg, M. L.; Shutalev, A. D. *Tetrahedron* 2009, 65, 2344–2350; (b)
 Fesenko, A. A.; Trafimova, L. A.; Cheshkov, D. A.; Shutalev A.D. *Tetrahedron Lett.* 2010, 51, 5056–5059; (c) Fesenko, A. A.; Shutalev, A. D. *Tetrahedron* 2011, 67, 6876–6882; (d) Fesenko, A. A.; Trafimova, A. A.; Shutalev, A. D. *Org. Biomol. Chem.* 2012, 10, 447–462; (e) Fesenko, A. A.; Shutalev, A. D. *Tetrahedron Lett.* 2014, 55, 1416–1420; (f) Fesenko, A. A.; Trafimova, L. A.; Albov, D. V.; Shutalev, A. D. *Tetrahedron Lett.* 2015, 56, 1317–1321.
- 27. (a) Shutalev, A. D.; Kurochkin, N. N. *Mendeleev Commun.* 2005, *15*, 70–72; (b) Fesenko, A. A.; Shutalev, A. D. *Tetrahedron Lett.* 2007, *48*, 8420–8423; (c) Fesenko, A. A; Cheshkov, D. A.; Shutalev, A. D. *Mendeleev Commun.* 2008, *18*, 51–53; (d) Fesenko, A. A.; Solovyev, P. A.; Shutalev, A. D. *Tetrahedron* 2010, *66*, 940–946; (e) Fesenko, A. A.; Shutalev, A. D. *Tetrahedron* 2010, *66*, 940–946; (e) Fesenko, A. A.; Shutalev, A. D. *Tetrahedron Lett.* 2012, *53*, 6261–6264; (f) Fesenko, A. A.; Shutalev, A. D. *J. Org. Chem.* 2013, *78*, 1190–1207; (g) Fesenko, A. A.; Shutalev, A. D. *Tetrahedron* 2010, *6.*, *18*, 2012, *53*, 6261–6264; (f) Fesenko, A. D. *Tetrahedron* 2014, *70*, 5398–5414; (h) Solovyev, P. A.; Fesenko, A. A.; Shutalev, A. D. *J. Fluor. Chem.* 2016, *182*, 28–33.
- 28. Günter, H. *NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry*, 3rd ed.; John Wiley-VCH: Weinheim, Germany, 2013.
- 29. Crystallographic data for the structural analyses of **8b**, **8i**, and **8j** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC 1476878, 1476877, and 1476876, respectively. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].
- To the best of our knowledge, to date there is only one report on the crystal structure of monocyclic 1,2,4-triazepine-2-thiones/ones, namely 2-methyl-7-phenyl-2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3,5-dithione.⁴⁴
- 31. SAINT-Plus (Version 7.68); Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 32. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.
- 33. Sheldrick, G. M. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3-8.
- Gaussian 09, Revision D.01: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.

W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian, Inc., Wallingford CT, 2013.

- 35. After two crystallization from EtOH followed by prolonged drying under vacuum at 56 °C over P_2O_5 . Compound **7h** formed a strong solvate with EtOH (¹H NMR and elemental analysis data).
- 36. The presence of C_6H_6 in the analytical pure sample ($C_{18}H_{19}N_3O_2S \cdot 0.5C_6H_6$) was also confirmed by its ¹H NMR spectrum.
- 37. After prolonged drying under vacuum (0.1 mmHg) at 56 °C over P₂O₅. Compound **8d** formed a strong solvate with CHCl₃ (¹H NMR and elemental analysis data).
- 38. All our efforts to recrystallize this compound from various solvents or mixtures of solvents have not been successful. Only oily products separated from solutions obtained.
- Ignatova, L. A.; Shutalev, A. D.; Pagaev, M. T.; Unkovskii, B. V. Chem. Heterocycl. Compd. 1988, 24, 197–203.
- 40. Shutalev, A. D.; Fesenko, A. A. Tetrahedron 2011, 67, 6883–6888.
- 41. Goddard, D. R.; Lodam, B. D.; Ajayi, S. O.; Campbell, M. J. J. Chem. Soc. (A), 1969, 506-512.
- 42. Harnsberger, H. F.; Cochran, E. L.; Szmant, H. H. J. Amer. Chem. Soc. 1955, 77, 5048–5050.
- 43. Guthrie, J. P. Can. J. Chem. 1978, 56, 2342-2354.
- 44. Toledano, P.; Itto, M. Y. A; Hasnaoui, A. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, 51, 2066–2068.

Entry	4	R	\mathbb{R}^1	R ³	Product(s)	5/6 ratio ^b	Yield (%) ^c
1 2 3 4	4a 4g 4a 4b	H Me H H	H Me H Me	H H Me Me	5a+6a 5b+6b 5c 5d	89:11 ^d 95:5 ^e -	99 98 99 98
5	4g	Me	Me	Me	5e	-	98

Table 1. Reaction of isothiocyanato ketones 4a,b,g with hydrazine hydrate or methyl hydrazine.^a

^a 1:1 molar ratio of reagents, EtOH, rt, 1 h.
 ^b According to ¹H NMR spectroscopic data for the crude products.

^c Isolated yields.

^d Diastereomeric ratio for **6a** was 69:31.

^e Diastereomeric ratio for **6b** was 67:33.

Table 2. Synthesis of 4-(3-aryl-3-oxopropyl)thiosemicarbazide hydrazones 7a-k by reaction of isothiocyanates 4a-i or thiosemicarbazides 5c,d with excess hydrazine.

Entry	Starting compd	R	\mathbf{R}^1	R ²	R ³	Product	Isomer ratio ^b	Yield (%) ^c
1	4a	Н	Н	Н	Н	7a	87:13	92
2 ^d	4a	Н	Н	Н	Н	7a	100:0	84
3	4b	Н	Me	Н	Н	7b	83:17	91
4	4c	Н	OMe	Н	Н	7c	84:16	94
5	4d	Н	OMe	OMe	Н	7d	84:16	89
6	4 e	Н	t-Bu	Н	Н	7e	90:10	89
7	4f	Me	Н	Н	Н	7f	97:3	93
8	4g	Me	Me	Н	Н	7g	83:17	89
9	4h	Me	OMe	Н	Н	7h	88:12	89
10	4i	Me	OMe	OMe	Н	7i	83:17	92
11	5c	Н	Н	Н	Me	7j ^e	78:22	94
12	5d	Н	Me	Н	Me	7Ř	78:22	97

 a 20 equiv. of $N_2H_4{\cdot}H_2O,$ EtOH, reflux, 3 h.

^b According to ¹H NMR spectra of the crude products.

According to Travit spectra of the con-^c Isolated yields. ^d 20 equiv. of N₂H₄·H₂O, EtOH, rt, 24 h. ^e Along with 5 mol% of **7a**.

^f Along with 5 mol% of **7b**.

ACCEPTED MANUSCRIPT

Table 3. Acid-catalyzed cyclization of hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 7a-k into 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones 8a-k.

Entry	7 ^a	R	\mathbb{R}^1	R ²	R ³	Solvent	Acid (equiv.)	Conc. of 7 (mol/L)	Reaction conditions	8	Purity of 8 ^b (%)	Yield ^c (%)
1	7a	Н	Н	Н	н	EtOH	TsOH (1.05)	0.300	rt, 2 h	8a	37	_
2	7a	Н	Н	Н	Н	MeCN	TsOH (1.03)	0.300	rt, 2 h	8a	35	_
3	7a	Н	Н	Н	Н	EtOH	TsOH (1.05)	0.300	reflux, 1.5 h	8a	61	_
4	7a	Н	Н	Н	Н	EtOH	TsOH (1.10)	0.097	reflux, 1.5 h	8a	79	_
5	$7a^{d}$	Н	Н	Н	Н	EtOH	TsOH (1.11)	0.097	reflux, 1.5 h	8a	78	76
6	7a	Н	Н	Н	Н	EtOH	TsOH (1.52)	0.098	reflux, 1.5 h	8a	77	_
7	7a	Н	Н	Н	Н	EtOH	TsOH (1.07)	0.054	reflux, 1.5 h	8a	80	_
8	7a	Н	Н	Н	Н	EtOH	HCl (1.05)	0.107	reflux, 1.5 h	8a	72	_
9	7a	Н	Н	Н	Н	AcOH	AcOH	0.100	reflux, 1.67 h	8a	68	_
10	7b	Н	Me	Н	Н	EtOH	TsOH (1.10)	0.095	reflux, 1.5 h	8b	80	76
11	7c	Н	OMe	Н	Н	EtOH	TsOH (1.10)	0.098	reflux, 1.5 h	8c	75	75
12	7d	Н	OMe	OMe	Н	EtOH	TsOH (1.15)	0.091	reflux, 1.5 h	8d	74	73
13	7e	Н	t-Bu	Н	Н	EtOH	TsOH (1.12)	0.096	reflux, 1.5 h	8e	80	78
14	7f	Me	Н	Н	Н	EtOH	TsOH (1.12)	0.098	reflux, 1.5 h	8 f	84	81
15	7g	Me	Me	Н	Н	EtOH	TsOH (1.11)	0.097	reflux, 1.5 h	8g	81	76
16	7h	Me	OMe	Н	Н	EtOH	TsOH (1.12)	0.095	reflux, 1.5 h	8h	81	81
17	7i	Me	OMe	OMe	Н	EtOH	TsOH (1.11)	0.098	reflux, 1.5 h	8i	83	82
18	7j	Н	Н	Н	Me	MeCN	TsOH (1.12)	0.092	reflux, 1.5 h	8j	78	72
19	7j	Н	Н	Н	Me	MeOH	TsOH (1.11)	0.095	reflux, 1.5 h	8j	75	_
20	7j	Н	Н	Н	Me	EtOH	TsOH (1.11)	0.102	reflux, 1.5 h	8j	72	_
21	7k	Н	Me	Н	Me	MeCN	TsOH (1.12)	0.092	reflux, 1.5 h	8ĸ	71	48

^a The crude products obtained by the reaction of **4a**-i or **6c**,**d** with excess N₂H₄ in refluxing EtOH were used. Their *E/Z* ratios are presented in Table 2 (enties 2, 3-12).

^b Purity of the isolated crude product was estimated as ratio of the expected integral intensity of the aromatic protons region (10 H for **8a**,**j**, 9 H for **8b**,**c**,**e**,**f**,**k**, 8 H for **8d**,**g**,**h**, and 7 H for **8i**) to the observed integral intensity in this region in the ¹H NMR spectrum of the crude product multiplied by 100. In all cases complete conversion of the starting material was observed.

^c Isolated yield (after column chromatography).

^d The crude product obtained by the reaction of **4a** with excess N₂H₄ in EtOH at rt was used (Table 2, entry 2).

		•	•					•				
Entry	5	R	R^1	R ³	Solvent	Acid (equiv.)	Additive (equiv.)	Reaction time (h)	Conv. ^b (%)	8	Purity of 8 ^c (%)	Yield ^d (%)
1	5a	Н	Н	Н	EtOH	TsOH (0.11)	_	1	100	8a	17	_
2	5a	Н	Н	Н	MeCN	TsOH (0.10)	_	1	100	8a	23	_
3	5a	Н	Н	Н	EtOH	TsOH (1.12)	$N_2H_4 \cdot H_2O(1.01)$	1	100	8a	32	_
4	5a	Н	Н	Н	EtOH	TsOH (1.00)	$N_2H_4 \cdot H_2O(1.01)$	1	100	8a	33	_
5	5a	Н	Н	Н	MeCN	TsOH (1.04)	$N_2H_4 \cdot H_2O(1.04)$	1	100	8a	26	_
6	5a	Н	Н	Н	EtOH	AcOH (4.05)	_	1	87	8a	68	_
7	5a	Н	Н	Н	EtOH	AcOH (4.10)	-	3	100	8a	85	83
8	5a	Н	Н	Н	MeCN	AcOH (4.14)	-	3	55	8a	22	_
9	5b	Me	Me	Н	EtOH	AcOH (4.13)	-	3	100	8g	83	79
10	5c	Н	Н	Me	EtOH	TsOH (0.10)	-	1	85	8j	31	_
11	5c	Н	Н	Me	MeCN	TsOH (0.10)	-	1	100	8j	58	_
12	5c	Н	Н	Me	EtOH	AcOH (4.01)	-	1	39	8j	26	_
13	5c	Н	Н	Me	MeCN	AcOH (4.13)	-	5	21	8j	10	_
14	5c	Н	н	Me	EtOH	AcOH (10.40)	-	8	100	8j	89	89
15	5d	Н	Me	Me	EtOH	AcOH (10.62)	-	8	100	8k	89	82
16	5e	Me	Me	Me	EtOH	AcOH (10.16)	_	8	100	81	88	81

Table 4. Acid-catalyzed cyclization of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 5a-e into 2,4,5,6-tetrahydro-3H-1,2,4-triazepine-3-thiones 8a,g,j-l.^a

^a The reactions were performed at reflux with concentrations of the starting material ranging from 0.091 to 0.136 mol/L.

^b Level of conversion of the starting material according to ¹H NMR of the crude product.

^c Purity of the isolated crude product was estimated as ratio of the expected integral intensity of the aromatic protons region (10 H for 8a, j, 9 H for 8k, 8 H for $8g_{,1}$ to the observed integral intensity in this region in the ¹H NMR spectrum of the crude product multiplied by 100. ^d Isolated yield (after column chromatography).

ACCEPTED MANUSCRIPT

Table 5. Oxidative transformation of triazepine-3-thiones 8a-c,e,f into their 3-oxo-analogs 16a-e.ª

Entry	8	R	R^1	Product	Yield ^b (%)
1	8a	Н	Н	16 a	89
2	8b	Н	Me	16b	87
3	8c	Н	OMe	16c	88
4	8e	Н	t-Bu	16d	58
5	8f	Me	Н	16e	93

 a Reaction conditions: $\rm H_2O_2$ (10 equiv.), KOH (5 equiv.), EtOH/H_2O, rt, 1.5–2.5 h. b Isolated yield (for 16d after column chromatography).

Legends for Schemes and Figures

Scheme 1. Synthesis of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepin-3-ones 2.

Scheme 2. Synthesis of 4-(3-aryl-3-oxopropyl)thiosemicarbazides **5a-e** and their hydrazones **7a-k**.

Scheme 3. Synthesis of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones 8a-k from hydrazones of 4-(3-aryl-3-oxopropyl)thiosemicarbazides 7a-k.

Scheme 4. A plausible pathway for the acid-catalyzed (HA) cyclization of E-7a into 8a.

Scheme 5. Synthesis of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones **8a,g,j-1** from 4-(3-aryl-3-oxopropyl)thiosemicarbazides **5a-e**.

Scheme 6. Synthesis of 5-unsubstituted triazepine 15 from isothiocyanate 11.

Scheme 7. Transformation of 2,4,5,6-tetrahydro-3*H*-1,2,4-triazepine-3-thiones **8a-c,e,f** into their 3-oxo-analogs **16a-e**.

Figure 1. Views of molecular X-ray structures of *R*-**8b** (a) and *S*-**8b** (b) with ellipsoids drawn at the 50% probability level.

Figure 2. A view of molecular X-ray structure of 8i with ellipsoids drawn at the 50% probability level.

Figure 3. A view of molecular X-ray structure of **8j** with ellipsoids drawn at the 50% probability level. Only *R*-isomer is represented.

ACCEPTESchemes USCRIPT

ACCEPTEFiguresNUSCRIPT

