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 Histone deacetylases (HDACs) are enzymes that catalyze 

removal of acetyl groups from lysine residues. Beyond their 

originally identified histone substrates, HDACs target non-

histone proteins including α-tubulin, heat shock protein 90 or p53 

[1]. The HDAC family comprises 18 members subdivided into 
four classes based on sequence similarity and catalytic activity 

[2]. HDACs play a critical role in epigenetic gene regulation and 

therefore control multiple cellular processes [1, 3].  

Since expression and/or activity of HDACs are deregulated in 
various cancer subtypes, they became an interesting target for 

anticancer therapy [4, 5]. Accordingly, numerous compounds 

from natural sources as well as synthetic derivatives were 

identified and further developed as HDAC inhibitors (HDACi) 
and some of them are already undergoing clinical trials for 

anticancer therapy [6-8]. Among HDACi, chalcone-based 
compounds (1,3-diaryl-2-propen-1-ones) are a group of aromatic 

natural or synthetic unsaturated ketones with anti-inflammatory 
and anticancer activities [9, 10]. Ease of preparation, oral 

administration and safety also support the feasibility of chalcone-
based compounds as therapeutic agents [11-13]. 
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Additionally, their simple and efficient synthesis makes them 

attractive for industrial production [14]. 

Curcumin is a promising molecule that also modulates the 

acetylation status of proteins [15]. In vitro studies demonstrated 

that it possesses potent cytotoxic and chemotherapeutic 
properties in different models [16-24]. Whilst curcumin itself has 

limited efficacy due to its low bioavailability and stability in 
physiological media [25], analogs including N-methylpiperidone 

were generated [26]. Natural products bearing 2H-1-benzopyran-
2-one (coumarin) possess cytotoxic antitumor potential [27, 28]. 

Coumarin-based compounds were previously described as Cdc25 
phosphatase and HDAC inhibitors [27, 29-32]. 

So far only two molecules, FK228 (Romidepsin) and 
suberoylanilide hydroxamic acid (SAHA, Vorinostat), gained 

Food and Drug Administration approval for cutaneous T-cell 
lymphoma [8]. In this context, development of novel HDACi 

with good anticancer properties and low toxicity remains a 

challenge. Here we designed novel coumarin-containing analogs 

7a-h and we assessed their HDACi potential and effects on cell 
proliferation and viability in K-562 and U-937 leukemia cell 

lines compared to peripheral blood mononuclear cells (PBMCs) 

of healthy donors. 

 
The new series of coumarin-based analogues (7a-h) bearing an 

α,β-(mono- or bis)-unsaturated ketone at the C3 or C4 position 

(Figure 1) were prepared carrying out aldolic condensation 

between 3-acetylcoumarins (5a-b) or 4-acetyl coumarin (5c), 
previously synthesized by us according to the literature [33-35] 
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and the appropriate aldehydes (6a-h) following an adapted 
procedure of Cechinel-Filho et al. [36]. All the chemical-physical 

data, elemental analyses, 1H NMR and 13C NMR of the 

compounds as well as all the conditions for their biological 
evaluation are described in the supporting information. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Synthesis of coumarin-based compounds 7a-h. 

Reagent and conditions (1): pyrrolidine, ethanol, 80°C, 1-3 h. 

 Coumarin-based compounds were tested for their total HDAC 
inhibitory potential on K-562 nuclear extracts [37, 38]. 7b, 7d 

and 7h showed a 20 to 50% of inhibition of total HDAC activity 
at 100 µM (Table 1). In opposition to 7b, compound 7d, with a 

methoxy group at R
3
, presented increased levels of inhibition. 

Noteworthy, compound 7c with a hydroxyl group instead of the 

methoxy group in R
2
 was inactive against HDACs further 

demonstrating the importance of the methoxy group in this 

position. Compound 7d was tested against seven HDAC 

isoenzymes representing classes I, IIb and IV and acted as a pan-

HDACi (Table 2) with IC50s between 12 and 85 µM. 
Interestingly, 7d inhibited HDAC3 with an IC50 at 12 µM and 

may serve as a lead for targeting this nuclear isoenzyme. 

 
Table 1: Effect of compounds 7a-h on in vitro total HDAC activity. Values 

represent the mean of the percentage of inhibition measured in two 

independent experiments. Inactive means inhibition < 10% at 100 µM. 
Compound Effect on HDAC activity 

7a Inactive 
7b 30% inhibition at 100 µM 

7c Inactive 

7d 50% inhibition at 100 µM 
7e Inactive 

7f Inactive 

7g Inactive 

7h 20% inhibition at 100 µM 

 

Table 2: Effect of 7d on in vitro activity of HDAC isoenzymes. 

Values represent the mean of the percentage of inhibition measured in two 

independent experiments. Inactive means inhibition < 10% at 100 µM. 

HDAC IC50 (µM) 

Class Isoenzyme  

I HDAC1 59 
 HDAC2 33 

 HDAC3 12 

 HDAC8 28 

IIb HDAC6 32 

 HDAC10 85 

IV HDAC11 74 

 

Compounds 7b and 7d showed moderate effects on proliferation 
and viability of chronic myeloid leukemia K-562 and histiocytic 

lymphoma U-937 cell lines (Figure 2A). Compound 7h strongly 
inhibited proliferation in both cell lines. In U-937 cells, loss of 

proliferation was accompanied by a marked decrease of cell 
viability (Figure 2B). We noticed that compound 7d precipitated 

at 100 µM in cell culture medium that could explain why this 
compound was less effective at this concentration compared to 50 

µM. Thus, we observed a close effect between compounds 7b 
and 7d on leukemia cancer cell lines. Indeed, these two 

compounds are structurally identical except a methoxy group 
present in compound 7d. Interestingly, among compounds with 

one unsaturation (7e-g), compound 7h, the more active 

compound on cell viability and proliferation, was the only 

structure inhibiting HDAC activities and corresponds to the C4 
regioisomer of compound 7f, which was inactive. These 

differential activities could result from 3D structure variations 

depending on the position of the keto function. To assess for 
differential toxicity, PBMCs from healthy donors [39] were 

treated with compounds 7b, 7d and 7h under the same 
conditions. Results showed no effect on PBMC viability (Figure 

2C). 
 Since among newly synthetized compounds, 7d was the most 

active compound on HDAC activity, we further tested whether 
this hybrid compound possessed an HDAC inhibitory potential 

superior to the two parent compounds, namely the 3-
acetylcoumarin 5b and the aldehyde 6d. First, 5b and 6d were 

tested on in vitro total HDAC activity. Results demonstrated that 

100 µM compound 5b inhibited only 20% of total HDAC 

activity, whereas at the same concentration compound 6d 
enhanced total HDAC activity by 80%. Compounds 5b and 6d 

were further tested on cancer as well as on PBMCs from healthy 

donors. Results demonstrated that both compounds slightly 

decreased proliferation only in U-937 cells after 72 hours of 
treatment without affecting viability of both cancer K-562 and U-

937 cell lines and healthy PBMCs (Figure 3). All together these 

results clearly demonstrated that the newly synthetized hybrid 

compound 7d possesses an inhibitor potential superior to both 
parent compounds 5b and 6d. 

 In this study, we have described three new coumarin-
based derivatives, 7b, 7d and 7h, endowed with HDAC 

inhibitory and antitumor properties. Regarding differences in 
their chemical structures and biological effects, these 

compounds can support a new design of molecules to 
increase their reactivity against HDAC activity and cancer 

cells.



  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Effect of 7b, 7d, 7h on cell proliferation and viability. 

K-562 and U-937 cells were treated with the indicated concentration of compound. (A) Cell viability and (B) proliferation were assessed after 24, 48 and 72h. (C) 

PBMCs from healthy donors were incubated with 7b, 7d, 7h and then cell viability was evaluated after 24 and 48h of treatment. Data are the mean ± SD of three 

independent cultures. * p < 0.05, ** p < 0.01, *** p < 0.005 versus control. 
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Figure 3: Effect of 5b and 6d on cell proliferation and viability. 

K-562 and U-937 cells were treated with the indicated concentration of compound. (A) Cell viability and (B) proliferation were assessed after 24, 48 and 72h. (C) 

The viability of PBMCs from healthy donors was evaluated after 24 and 48h of treatment with compounds 5b and 6d. Data are the mean ± SD of three 

independent cultures. * p < 0.05, *** p < 0.005 versus control. 
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