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Introduction

Directed evolution[1–8] has emerged as a flexible and very
successful method to engineer catalytic properties of en-
zymes, such as thermostability,[9–12] stability in hostile organic
solvents,[13,14] and enantioselectivity.[15–17] The directed evolu-
tion procedure integrates gene mutagenesis, expression, and
screening (or selection) of libraries of enzyme mutants, con-
sisting typically of 103 to 106 transformants (clones). The
most commonly used mutagenesis methods are the error-
prone polymerase chain reaction (epPCR) and saturation
mutagenesis, as well as recombinant procedures such as
DNA shuffling or variations thereof. The vast majority of
the clones produced by any of these methods prove to be
non-functional, with the frequency of improved variants
(hits) in a given library depending upon the choice of the
gene mutagenesis method and how it is applied in each evo-
lutionary step. The screening effort remains the bottleneck
in the overall process of directed evolution.[18] For this
reason recent research has focused on the development of
advanced laboratory techniques and strategies for efficiently
probing the vast protein sequence space.[19–24] In particular,

the use of reduced amino acid alphabets as specified by the
respective codon degeneracy has proven to be effective in
raising the quality of focused libraries generated by satura-
tion mutagenesis, for example, NDT codon degeneracy en-
coding 12 amino acids as building blocks.[17,23] The use of
bioinformatics is yet another approach,[25,26] optionally in
combination with reduced amino acid alphabets.[25]

In the latter endeavor various computational approaches
have also been introduced,[27–38] including techniques such as
RCA,[39] SIRCH,[40] SCHEMA,[41,42] FamClash,[43] IPRO,[44]

HotSpot Wizard,[45] and ProSAR.[46–48] Most of these meth-
ods, with the exception of ProSAR, require a certain degree
of knowledge about the structures of the target protein and/
or the interaction with its substrate. Inspired by the use of
quantitative structure–activity relationships (QSAR) in tra-
ditional drug design, the ProSAR (protein sequence activity
relationship) algorithm is a statistical approach, based on
multivariable least squares regression, to model protein se-
quence–function relationships.[46–48] The first step of ProSAR
utilizes a set of sequence–function data to classify individual
mutations as beneficial, neutral, or deleterious. The second
step exploits this information to design subsequent libraries
characterized by more beneficial mutations and less delete-
rious ones.[46–48]

Herein, we present an alternative approach referred to as
the adaptive substitutent reordering algorithm (ASRA),[49–51]

which was previously employed for the discovery and prop-
erty optimization of small molecules. In this work, ASRA is
further developed and applied for property optimization in
focused protein libraries. For an enzyme library with N sub-
stitution positions (i.e., positions in the amino acid sequence
where mutations occur) and Si substitents (i.e. , different
types of amino acids; normally Si =20 for proteins) on the
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i-th position (i=1,2,…,N), ASRA views the property y of
a protein in the library as a function of an unknown form
with N independent variables y= f(X1,…,Xi,…,XN), in which
Xi2 [1,Si] is a distinct integer assigned to each substituent
on the i-th position. Consequently, each protein in the li-
brary is uniquely associated with an integer vector X=

{X1,…,Xi,…,XN}, and the collection of all proteins in the li-
brary and their corresponding property values form a dis-
crete N-dimensional property landscape.

The ASRA formulation above is simple and can represent
a broad variety of molecular libraries. However, the setup is
not amenable to traditional QSAR methods for molecular
discovery. This conclusion follows because 1) there is no
a priori way of assigning integers to the substituents (e.g.,
should alanine be assigned 1 or 9 on a substitution posi-
tion?), and 2) even when the substituents can be assigned to
“proper” values, the form of the function f will remain un-
known. Consequently, explicit QSAR functions cannot be
constructed from sampling a subset of the target library
space for property predictions. ASRA operates in three iter-
ative steps to address these problems and enable efficient
property prediction (Scheme 1): 1) Synthesize a small subset

of the protein library with simultaneous random mutations
on all N substitution positions and then measure the target
property value y for each mutant. 2) Based on the data from
the sampled mutants, find the optimal substituent ordering
(i.e., the best integer assignment Xi* to each amino acid on
each substitution position i) such that the property land-
scape is as regular/smooth as possible collectively across all
N positions (this step is also called reordering). 3) Based on
the observed structure of the reordered property landscape,
determine the best set of new mutant(s) to be sampled in
the next round of directed evolution experiments. This
closed-loop procedure continues until a sufficient number of
mutants with desired property value are discovered. Details
of the ASRA steps are described in the Materials and Meth-
ods section.

Step 2 is the key step for ASRA operation. Once a regu-
lar/smooth property landscape is identified through reorder-
ing, protein mutants with more desirable property values
can be estimated by a simple observation of the landscape
geometry (described in Scheme 1 and later in the article) or
an interpolation using empirical fitting functions.[49,51] Unlike
traditional QSAR methods as used in ProSAR, Step 2 of
ASRA does not depend on assumptions of linearity, additiv-
ity, or any explicit form of structure–activity relationship f ;
it only requires that an underlying regular structure–proper-
ty relationship (hence a regular property landscape) exists
across the library of proteins (i.e. , protein biochemistry is
sufficiently regular).[52,53] In fact, all existing computational
approaches for molecular discovery and/or property estima-
tion, as well as systematic laboratory-driven searches, rely in
some fashion on the regularity assumption. The key differ-
ence between ASRA and traditional QSAR methods is that
ASRA directly exploits the underlying regularity in the
structure–property relationship function without determin-
ing or assuming its explicit form. As a result, this property
of ASRA makes it a generic, “model-free” method applica-
ble to a wide range of situations.

ASRA can in principle be employed together with various
laboratory methods in directed evolution. Here we integrate
ASRA with the iterative saturation mutagenesis (ISM)
method. ISM has recently been proposed and implemented
experimentally as a means to accelerate the process of di-
rected evolution, with enhancing enantioselectivity[17,54] or
increasing thermostability[55, 56] of enzymes being the foci of
interest. Appropriate sites, each of which can contain one or
more substitution positions, in the enzyme of interest are
chosen for saturation mutagenesis. Following library forma-
tion and screening, the genes of the hits are used as tem-
plates for saturation mutagenesis at the other sites. The
choice of the mutation sites depends upon the nature of the
catalytic property to be improved. In the case of enantiose-
lectivity, the combinatorial active-site saturation test
(CAST)[55,57] is applied, in which all mutation sites around
the binding pocket of the enzyme are considered. ISM in
the embodiment of CASTing was first utilized in an effort
to increase the enantioselectivity of the hydrolytic kinetic
resolution of rac-1 (Scheme 2) catalyzed by the epoxide hy-

Scheme 1. The general steps of ASRA operation: As an example, two
substitution positions are selected as mutation targets and each amino
acid on each position is assigned a random distinct integer between 1 and
20. The total number of possible mutants is 400. Step 1: randomly synthe-
size a small subset of the 400 mutants containing substitutions on both
positions and measure the target property value for each of them. The in-
itial property landscape is irregular due to the random integer assign-
ments and offers no predictive power. Step 2: identify the optimal integer
assignment for each amino acid on each position such that the property
landscape is as regular/smooth as possible. Note that when an amino acid
on position 1 (or position 2) moves (meaning that its integer assignment
is changed from one value to another), all 20 amino acids on the other
position will move along with it to keep the indexing consistent. Step 3:
based on the geometric features of the reordered property landscape,
predict where the best mutants are located (e.g., the circle should be a de-
sired area given the monotonic landscape geometry), and if necessary,
synthesize these mutants in the next round of experiment (return to
Step 1).
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drolase from Aspergillus niger (ANEH).[58] Five rounds of
iterative CASTing increased the selectivity factor in favor of
(S)-2 from E= 4.6 (wild-type, WT) to E=115 (mutant
LW202). This remarkable increase was achieved by screen-
ing 20 000 transformants (clones),[58] which happens to be
the same number screened in an earlier study based on
epPCR which led to an E-value of only 11.[59]

The purpose of the present study is to evaluate the capa-
bility of ASRA for predicting desired mutants from limited
protein sampling and guiding directed evolution in focused
libraries, with the above ANEH-catalyzed reaction serving
as the experimental platform. We will demonstrate that
ASRA has notable predictive power, making it a useful tool
in this type of protein engineering.

Materials and Methods

Laboratory procedures : A racemic mixture of 1 was purchased from
Across (Geel, Belgium). Luria Burtani broth (LB) and LB agar were ob-
tained from Invitrogen (Karlsruhe, Germany). Carbenicillin was acquired
from Gerbu (Gaiberg, Germany). Methanol and acetonitrile (HPLC
grade, LiChrosolv) were purchased from Merck KGaA (Darmstadt, Ger-
many). Distilled water was further purified with a Milli-Q deionization
unit (Millipore, Bedford, MA, USA). Sodium dihydrogen phosphate (an-
hydrous) was obtained from Fluka (Fluka Chemie, Buchs SG, Switzer-
land). Anhydrous di-sodium hydrogen phosphate was acquired from Ap-
pliChem (AppliChem GmbH, Darmstadt, Germany). KOD hot start
DNA polymerase, dNTPs and buffer were purchased from Novagen (San
Diego, USA). DPN I was obtained from New England Biolabs (NEB,
Frankfurt, Germany). GeneRuler 1 kb DNA ladder was acquired from
Fermentas (St. Leon-Rot, Germany). Primers were obtained from Invi-
trogen.

An improved PCR method for the creation of saturation mutagenesis li-
braries, based on the use of a common reverse non-mutagenic primer,
was used to generate all the mutants.[60] LW202 pQEEH plasmid was
used as a template (10 ng L�1, 1 mL). For every mutant, desired mutations
were both inserted using a forward primer (5’-GGTTCATTT-
GAACXXXTGCYYYATGAGTGCTC-3’ in which XXX is the mutation
at position 215 and YYY the mutation at 217; 2.5 m, 1 mL), and a non-mu-
tagenic primer (SP2, 3’-CTCGCTCTGCTAATCCTGTTACCAGTGG-5’,
2.5m, 1 mL) was used as the reverse one for all cases. Amplification was
achieved by using KOD polymerase (1 mL). The temperature cycles
were: 1� (94 8C, 3 min), 5� (94 8C, 30 s; 53 8C, 1 min; 72 8C, 5 min), 20�
(94 8C, 30 s; 72 8C, 7 min), and 1� (72 8C, 16 min). PCR mixtures were di-
gested twice with DPN I (1 mL, 37 8C, 1 h) and transformed in homemade
chemical competent cells (DH5a, 50 mL). After the heat shock (42 8C,
60 s) the cells were grown in SOC (0.2 mL, 37 8C, 1 h, 1400 rpm (mixing
stroke 3 mm)). The suspension (15 mL) was streaked out in LB-agar sup-
plemented with carbenicillin (100 mgmL�1) and incubated overnight
(37 8C). Plasmid purification was performed by MEDIGENOMIX (Mar-
tinsried, Gemany). QER standard primer was used by Medigenomix to
read the plasmidic DNA region of interest.

All the mutants were drawn from the �80 8C glycerol stock and placed
into three 96-deep-well plates containing LB media (0.9 mL), supple-

mented with carbenicillin (100 mgmL�1). After 12 h, the latter precultures
(2 mL, 0.66 mL from each plate) were inoculated in fresh LB (18 mL)
containing carbenicillin and incubated until OD600 was around 3. Vials
(8 mL) were prepared with the second generation bacteria culture
(0.818 mL). After the addition of sodium phosphate buffer (20 mm,
pH 7.2, 5.5 mL) and a solution of rac-1 in acetonitrile (12.5 mg mL�1,
0.5 mL) and incubation (200 rpm (orbital motion: 25 mm, linear motion
12.5 mm), 30 8C), samples were withdrawn after a definite time (60 min
for the first experiment; optimized time for the second one, see Table SI4
in the Supporting Information) and centrifuged (2300 rcf), 20 min). The
achieved enantioselectivity in the reaction was analyzed by HPLC in
a Chiralcel OD-R HPLC chiral column from Daicel (Essex, UK) eluting
with methanol/water (7:3). The retention times were: (R)-2, tR =8.6 min;
(S)-2, tR =9.8 min; (R)-1, tR =20.9 min; (S)-1, tR =24.4 min. E-values were
calculated as recommended in Faber�s work[61] according to the following
equation:

E ¼ ln½ð1� eesÞ=ð1þ ees=eepÞ�
ln½ð1þ eesÞ=ð1þ ees=eepÞ�

¼ ðkcat=kMÞfast

ðkcat=kMÞslow

Most of the experiments were repeated at least three times (see the Sup-
porting Information for the raw data).

Computational analysis procedures : The enzyme library in this study was
constructed with two substitution positions (N =2) with each amino acid
on each position assigned a random distinct integer Xi (i=1,2) between
1 and 20. Consequently, each protein in the library is uniquely defined by
a length-two vector {X1, X2} and E-value. Following Step 1 as the synthe-
sis and property measurement of the random mutants, Step 2 of ASRA
serves to determine the optimal integer assignment {X1*, X2*} for each
amino acid on each substitution position that produces the most regular
property landscape. To achieve this goal, a quantitative measure Q for
property landscape regularity needs to be defined, and appropriate opti-
mization algorithms are needed to find the optimal substituent order-
ing(s) that minimize Q (small Q values correspond to more regular land-
scapes by definition). Several different Q measures and global optimiza-
tion algorithms were previously implemented for small molecule libra-
ries.[49–51] In this study, all of them produced satisfactory results. However,
going beyond this proof-of-principle system, the computational cost for
these algorithms can increase rapidly when the library dimensionality N
is high (the total number of substituent orderings is

Q
i=1,N Si! in which

Si =20 for proteins), which can pose a much more serious problem for
protein libraries than for the usually lower-dimensional small molecule li-
braries. Here we describe a new algorithm which is simple to operate,
computationally inexpensive, and easily scalable to higher N values.

For the first substitution position of this protein library, the new algo-
rithm computes a score Qm for the m-th amino acid (m=1,2,…,20) by
the following equation:

Qm ¼
X

m0 6¼m

X20

n¼1

ðamn � am0nÞ
1

1þ wsmn

1
1þ wsm0n

in which amn and am’n are the observed property values (E-values in this
case) of two variants with position 2 indexed by integer n and position
1 indexed by m and m’, respectively. smn and sm’n are the relative standard
deviation of amn and am’n, respectively, and w is a weight factor. This
simple expression of Qm provides a global measure of the influence of
amino acid m on the property value relative to the other amino acids on
position 1, averaged over all the mutations on position 2. When Qm is cal-
culated for all 20 amino acids on position 1, the optimal amino acid or-
dering on this position is determined by a simple and computationally ef-
ficient sorting of the twenty Qm values. The optimal ordering on position
2 (and additional positions when N>2) is calculated in the same way.
The computational cost scales linearly with respect to N. With this algo-
rithm, even though Qm is calculated individually for each position, the co-
operative/epistatic interactions among different positions are still ac-
counted for (they are averaged over all the other positions because all N
positions are sampled simultaneously for each mutant). Assumptions of
linearity or additivity are not needed for the underlying landscape. When

Scheme 2. Enantioselective ring opening in a racemic mixture of glycidyl
phenyl ether (rac-1) catalyzed by Aspergillus niger epoxide hydrolase.
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necessary, the cooperative interactions can also be explicitly expressed
with recently developed high dimensional model representation
(HDMR) methods.[62–64]

After optimal reordering of the property landscape, Step 3 of ASRA
makes prediction of the previously unsampled amino acid mutants that
are most likely to give desired property values. This step completes one
round of ASRA operation, which then returns to Step 1, when necessary,
for further protein synthesis and property measurement. As shown in
Scheme 1, a visual inspection of the reordered landscape will usually suf-
fice in Step 3 for identifying the location of new mutations in cases for
which two or perhaps three sites are involved. Since Step 3 serves to
identify regions with potentially better mutants, this operation is a pattern
recognition or interpolation problem that is amenable as well to automa-
tion with suitable software. The efficacy of even visual inspection is sup-
ported by the results of this proof-of-principle study. We have also devel-
oped appropriate interpolation techniques for reliable property predic-
tion when N is large.[49, 51] Regardless of this practical difference, success-
ful implementation of Step 3 for both strategies depends critically on the
regularity of the reordered landscape, which is the core of ASRA and
also distinguishes it from traditional QSAR techniques.

Results and Discussion

Experimental platform : As delineated above, we aimed to
test the viability of using the reordering algorithm ASRA to
discover ANEH enzymes with optimal enantioselectivity in
the selective ring opening of a racemic mixture of glycidyl
phenyl ether (1). The goal was to see if a limited set of ex-
periments (enzyme syntheses in the form of generated mu-
tants and property measurements as the respective E-
values) would suffice to reliably explore a defined portion
of the protein sequence space. Accordingly, we studied the
ability of ASRA to predict the enantioselectivity of ANEH-
mutants as catalysts in the hydrolytic kinetic resolution of
the model epoxide rac-1 (Scheme 2). Within the context of
this study, reliable prediction of enantioselectivity means the
identification of those hits/regions with high E-values, in-
stead of providing explicit E-value predictions.

The best previously evolved mutant LW202 (E=115)[58]

was selected to be the scaffold for ASRA. Rather than
choosing all the sites utilized in the original study (each
comprising more than one amino acid position), we decided
to simplify the experimental platform by considering only
N=2 substitution positions, namely Phe215 (position 1) and
Asn217 (position 2). All 20 natural amino acids were select-
ed to be mutation targets on each position (S1 =S2 =20),
with a total of 202 = 400 possible mutants. A main reason for
selecting these two positions is that, from our previous stud-
ies,[23, 56,65] mutations on these two positions can produce pro-
teins with both very high and very low E-values, providing
a desirable system to test the predictive capability of ASRA
in large dynamic ranges. The two positions were also select-
ed to be close to each other, to better evaluate ASRA in
the presence of potentially strong (synergistic or antagonis-
tic) epistatic interactions.

Figure 1 shows the dimeric structure of mutant LW202 de-
rived from X-ray structural analysis.[65] It is well known that
the substrate is bound and activated by hydrogen bonding
arising from Tyr251 and Tyr314 with the epoxide oxygen.[66]

This is followed by nucleophilic attack by Asp192 in the rate
determining step resulting in a covalently bound ester which
is rapidly hydrolyzed.[66]

As described earlier, ASRA started with an initial
random sampling of the focused library space. A total of 95
random variants with mutations on both positions were pre-
pared by site directed mutagenesis for this purpose (see the
Supporting Information, Table SI1). The WT enzyme was al-
ready obtained in a previous work.[56,65] With this informa-
tion ASRA was charged to reveal the general structure of
the E-value landscape with respect to the two positions.
After performing the standard experimental procedure
(60 min of reaction time for all mutants), the E-values for
all the reactions were calculated as recommended in Faber�s
work.[61]

The best application condition requires a conversion
higher than 20 %, which could not be met for all the mu-
tants during the original screening process.[56,65] Consequent-
ly, we performed another set of experiments with the same
95 mutants for which the reaction time was optimized to
assure at least 20 % conversion (see the Supporting Informa-
tion, Table SI4). Without synthesizing more mutants, the
second set of experiments enabled 1) an evaluation of the
influence of prolonged reaction time on E-value and 2) a
comparative study of ASRA under the two conditions. Since

Figure 1. A) Crystal structure of the dimer of LW202.[65] B) Active site of
ANEH featuring the catalytically active residues Asp192, Tyr251, and
Tyr314 in addition to the two substitution positions 1 (residue 215) and 2
(residue 217).
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the 60-minute reaction condi-
tion had been the original
screening condition in our ISM
experiments, this comparative
study allowed for an estimate
of the efficacy of the standard
screening procedure in discov-
ering the desired mutants.

ASRA reordering with 60-
minute reaction data : Using the
60-minute data (see the Sup-
porting Information, Table SI2),
Figure 2A shows the landscape
of the mean E-values for the 95
mutants with a random amino
acid ordering (Table 1A). The
E-value distribution shows
a low percentage of variants
above a moderate threshold
value of E�40 (Figure 2D).
The landscape resembles the so-called “golf course prob-
lem”, being flat with several local “good” regions. This sug-
gests that protein discovery in this library can be very diffi-
cult compared with problems with smoother distributions.

Figure 2B shows the regular E-value landscape after
ASRA reordering (see the Materials and Methods section
for details) using the data for all 95 peptides. Despite the
unfavorable E-value distribution, a reasonably smooth land-

scape exists with E-values grad-
ually decreasing from the
lower-right corner to other
areas of the landscape. The re-
ordered E-value landscape is
highly similar when data noise
is incorporated in the cost func-
tion Q (w=1.0, data not
shown). Table 1B and 1C con-
tain the optimal amino acid or-
derings for both cases.

Evaluation of ASRA predic-
tion : Based on the reordered
E-value landscape above,
a second set of 45 new mutants
were generated to evaluate the
reliability of the ASRA predic-
tions (see the Supporting Infor-
mation, Table SI3). Of the
chosen variants, 34 are in the
7 � 7 box at the most interesting
lower-right corner in the reor-
dered landscape (Figure 2B).
The other 11 mutants reside
randomly in other areas of the
landscape for background com-
parison. When these variants
are placed in the E-value land-
scape using the optimal order-
ing obtained from the 95
random mutants, all those with

Figure 2. Optimal reordering of the E-value landscapes with 60 min reaction time. A) Color heat map for the
E-value landscape of 95 randomly sampled mutants plotted with a random amino acid ordering (see Table 1A
for the integer assignment for each amino acid). Each color square represents one mutant with red indicating
a high E-value and blue corresponding to a low E-value (see color bar on the far right). White squares are un-
sampled proteins. B) E-value landscape of the 95 mutants using the ASRA-identified optimal amino acid or-
dering (Table 1B). The result predicts that proteins with high E-values are most likely located in the lower
right corner. The mutant at position 16/20 (circled in red in both A and B) of the reordered landscape turned
out to be the same as the mutant at position 20/19; the wrong protein was accidentally placed in this position
in the experiment. C) E-value landscape for 45 newly sampled mutants, guided by the ordering in B. D) E-
value distribution for the 95 initial random mutants. E) Reordered E-value landscape for the 94 mutants (ex-
cluding the erroneous mutant at position 16/20 in B). F) E-value landscape for the 45 newly sampled mutants,
based on the ordering in E.

Table 1. The amino acid orderings on positions 1 and 2 of the ANEH mutants. The integers Xi (i= 1,2) are the
same as the indices along positions 1 and 2, respectively, of the heat maps in the figures. Case A: a random or-
dering on both positions. Case B: 60-minute reaction time, error weight w=0 in cost function Q. Case C: 60-
minute reaction time, w=1.0. Case D: 60-minute reaction time, w=0, the erroneous mutant at position
[16, 20] in Figure 2B removed from data. Case E: 60-minute reaction time, w=0, mutants with E�50 excluded
from reordering. Case F: optimized reaction time, w=0, the erroneous mutant removed from data. Case G:
optimized reaction time, w=0, mutants with E�50 excluded from reordering.

Case Xi (i=1,2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
Position 1 A C D E F G H I K L M N P Q R S T V W Y
Position 2 A C D E F G H I K L M N P Q R S T V W Y

B
Position 1 K R W D E P G V A H I C Q L T Y N M S F
Position 2 Q R E S K A W P H Y T G I C F M V D N L

C
Position 1 R K W D E P G V A H I C Q L T M N Y S F
Position 2 Q R E W S K A H P Y T G I C F M V D N L

D
Position 1 K R D E P W V G Y A H I C Q L T N M S F
Position 2 Q K W R P E H S Y T A G I C F M V D L N

E
Position 1 K P R D E W V Y A G H I Q T C L N F S M
Position 2 K Q R P E S Y T A G D I H C W F N M V L

F
Position 1 K R P E D W V Y A C I Q T L H M G N S F
Position 2 Q Y K T E W S R C G P A H I F D V L M N

G
Position 1 K P R E Y A W V D H I Q T C F L G M N S
Position 2 K Q E Y P T G R S C A D I N F M W H V L
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E�40 are located inside the box (Figure 2C), clearly dem-
onstrating the reliability of ASRA prediction. Note that we
could have generated all 400 mutants to test the absolute
predictive ability of ASRA. However, the goal of ASRA is
to find good regions in a protein library space from a mini-
mal sampling effort. The 45 new mutants synthesized in this
work provide a sound evaluation of ASRA�s prediction of
the good versus the bad regions. In addition, the selection of
the new mutants here shows how the predictive Step 3 of
ASRA may be performed in practice. Further iterations of
ASRA could always be performed on the identified good
mutants to find the absolute best member, but that feature
is beyond the proof of principle tests in this paper.

Despite the generally high predictive quality, a closer ex-
amination of Figure 2B and 2C shows that all but one
mutant (circled in red in Figure 2B) in row 16 of position
1 in the reordered landscape have very low E-values. Since
row 16 overlaps with the selected 7 � 7 box, this result seems
to indicate that the ASRA predictions were unsatisfactory
at least for this position. However, a re-sequencing of this
“outlier” mutant revealed an experimental error—this
mutant was in fact the same as the one at position 20/19 in
Figure 2B; the wrong protein was placed at this position.
After removing the wrong mutant from the data, the reor-
dered landscape remains smooth (Figure 2E, the ordering is
in Table 1D), and all new mutants inside the 7 � 7 box have
relatively high E-values (Figure 2F). This experimental acci-
dent further illustrates the remarkable capability of
ASRA—it can even reveal laboratory errors from irregulari-
ties of the reordered landscape alone.

In the above tests, the 94 random samples include several
mutants with very high E-values. To examine whether
ASRA can make reliable predictions without these good
seeds, we eliminated all three mutants with E�50 from the
initial set of 94 and used the rest of the data for ASRA reor-
dering. Despite the differences in the optimal ordering
(Table 1D vs. E), the reordered E-value landscape remains
smooth (Figure 3 A), and 5 out of 6 mutants (in the total of
139 variants) with E�50 are discovered inside the 7 � 7 box
(Figure 3B) when the rest of the proteins are placed by
using the optimal ordering. This observation strongly dem-

onstrates the excellent predictive power of ASRA even in
the absence of good seeds, which will be an important prop-
erty when ASRA is used in directed evolution, for which fa-
vorable seeds and/or hits are most likely rare in the initial
iterations.

To fully evaluate the efficiency and robustness of ASRA,
we randomly selected 30, 40, 50, 60, 70, 80, and 90 mutants,
respectively, from the first set of 94 (the erroneous mutant
was excluded) to determine the best amino acid orderings.
Using these orderings, we then calculated, among the avail-
able 94+45= 139 mutants, the percentage of “desired”
members (defined as mutants with E-values higher than
a specified threshold) that are located inside the 7 � 7 box.
Figure 4 shows that convergence is reached at around 80

random mutant samples (i.e., 20 % of the library space).
When the E-value threshold is 40, 10 out of 12 desired mu-
tants are inside the box, corresponding to an approximately
10-fold gain in sampling the box compared with sampling
the rest of the library space for finding the hits:

This gain is approximately 5-fold when the E-value
threshold is set to 30 (20 out of 28 desired mutants are
inside the box). The lower gain is expected because the per-
centage of desired mutants increases with the reduced E-
value threshold, indicating that a larger box should be se-
lected. By contrast, if the E-value threshold is set as 50,
then all 6 desired mutants are inside the box, corresponding
to an infinitely large gain. The selection of the box is
a simple means of illustrating the predictive capability of
ASRA without knowing/assuming any structure–property
relationships of the proteins. More quantitative predictions
of precise E-values can be performed by applying appropri-
ate interpolation over the reordered landscape and will be
a topic of future research.

ASRA reordering with optimized reaction time : E-values
for the same 139 mutants were also measured using individ-

Figure 3. ASRA reordering in the absence of good seeds with the 60-
minute reactions. A) ASRA-reordered landscape when all mutants with
E�50 are excluded from the 94 random samples. B) Location of the rest
of the mutants using the amino acid ordering in A.

Figure 4. Among all 139 proteins, percentage of desired mutants (above
the E-value threshold value of 30, 40, or 50) inside the 7� 7 box vs. the
number of random samples used for reordering.
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ually optimized reaction times to obtain conversion rates
higher than 20 % (see the Supporting Information, Tables
SI4 and SI5). The E-value distribution shows a larger
number of mutants with high E-values compared with the
60-minute reactions (Figure 2D vs. Figure 5D), reflecting the
influence of prolonged reaction times for some proteins.
This change also results in a slightly different optimal order-
ing (Table 1F) and a reordered landscape that decreases
more “smoothly” from the lower right corner to the rest of
the library space (data not shown). However, using the opti-
mal ordering from the 60-minute reactions (Table 1D and
Figure 5B), data from the newly synthesized 45 mutants (see
the Supporting Information, Table SI6) again show that all
variants with E�40 are still located in the 7 � 7 box (Fig-
ure 5C), suggesting that ASRA predictions based on the 60-
minute reactions may still be extended to the optimized re-
action conditions. This behavior can be beneficial for high-
throughput procedures where the reaction conditions, in-
cluding reaction time, often cannot be easily adjusted for in-
dividual reactions. Quantitatively, the gain in efficiency (by
sampling inside the 7 �7 box) is slightly lower than the 60-
minute reactions (Figure 4 vs. Figure 5E), due to the
smoother landscape and the increased number of high E-
value mutants. This does not mean that the former results
are better or worse; it only indicates that desired mutants
are scattered over a larger area in the whole landscape (and
a larger box is needed).

Similar to the 60-minute reactions, we again excluded all
seven mutants with E�50 from the initial 94-mutant set

and applied ASRA to the rest
of the proteins. The resultant
optimal landscape is similarly
smooth (Figure 6A). Placing
the rest of the mutants using
this ordering (Table 1G) locates
6 out of 10 desired mutants
(E�50) in the 7 �7 box (Fig-
ure 6B). Again, the reordered
landscape in Figure 6A contains
more mutants with high E-
values than the landscape in
Figure 2E, suggesting that the
desired mutants should be lo-
cated in a larger region (e.g.,
the triangular area in the lower
right part of the landscape in
Figure 6).

Conclusion

The present study constitutes
the first application of ASRA
to the directed evolution of an
enzyme. Using the experimen-
tal platform of hydrolytic kinet-
ic resolution of a chiral epoxide
catalyzed by mutants of the ep-

oxide hydrolase from Aspergillus niger (ANEH), we have
shown that the ASRA technique constitutes a viable proce-
dure for property estimation and guiding directed evolution
of enzymes in focused libraries. Based on the reordered E-
value landscape generated from a small set of random mu-
tants, ASRA gave reliable estimates of the desired mutants
with improved enantioselectivity in the model enzyme-cata-
lyzed reaction. ASRA was even able to identify an error in
the laboratory data from irregularities in the reordered land-
scape alone.

Figure 5. The influence of optimized reaction time on E-value and the ASRA predictions. A) Color heat map
for the E-value landscape (with optimized reaction time) of 94 randomly sampled mutants plotted with
a random amino acid ordering (Table 1A). B) E-value landscape of the 94 mutants using the optimal amino
acid ordering identified from the 60-minute reactions (Table 1D). C) Locations for 45 newly sampled mutants
using the same ordering; all mutants with E�40 are in the 7 � 7 box in the lower right corner. D) E-value dis-
tribution for the 94 initial random mutants. E) Among all 139 proteins, percentage of desired mutants (above
the E-value threshold value of 30, 40, or 50) inside the 7� 7 box vs. the number of random samples used for re-
ordering.

Figure 6. ASRA reordering in the absence of good seeds with optimized
reaction times. A) ASRA-reordered landscape when all mutants with
E�50 are excluded from the 94 random samples. B) Location of the rest
of the available mutants using the amino acid ordering in A. The triangu-
lar area below the dotted line indicates a better prediction (than the orig-
inal 7� 7 box) of desired mutants that reflects the smooth geometry of
the reordered landscape.
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In contrast to other computational guides used in directed
evolution,[1–8,27–40] such as SCHEMA,[41,42] FamClash,[43–48] or
ProSAR,[46–48] the application of ASRA does not require as-
sumptions of linearity, additivity, or any functional form of
structure–property relationships. The only requirement is
global regularity of the underlying property landscape.[52, 53]

In addition, ASRA does not require the use of molecular
descriptors. Thus, knowledge of enzyme structure is not
needed; ASRA can be applied as long as the location of
each amino acid on each substitution position can be consis-
tently indexed and followed. With the algorithmic develop-
ment described in this article, the computational cost of
ASRA is very low; the main cost lies in performing the ex-
periments. ASRA is also compatible with Pareto optimiza-
tion techniques for simultaneously optimizing multiple prop-
erties of the same protein library.[67] All these attributes
make ASRA a generally applicable and operationally at-
tractive method for efficient protein engineering in focused
libraries.

Being a property prediction and optimization tool, ASRA
does not directly provide structure–property relationships,
but such information is contained in the features of the reor-
dered property landscape and the corresponding optimal
amino acid orderings. For example, we observed in this
study that structurally and electronically very different
amino acids can exert positive effects (higher enantioselec-
tivity). In the absence of a detailed mechanistic study,[65] it is
difficult to interpret the role of the point mutations in en-
hancing enantioselectivity solely. However, the relative posi-
tion of the amino acids on the reordered landscape may pro-
vide valuable insight (as a “free byproduct” of ASRA)
when detailed QSAR studies are performed.

An important issue regarding the applicability of ASRA
is the scaling of the number of samples needed to make reli-
able predictions with respect to the number of substitution
positions. In this proof-of-principle study, mutations were re-
stricted to two positions on the protein scaffold. However,
our research in random sampling high dimensional model
representation[62–64] (a related property prediction and opti-
mization method also based on random sampling of the var-
iable space) shows that an increasingly lower percentage of
the protein library space is expected to provide convergence
for ASRA when the number of substitution positions in-
creases. Moreover, as shown in a recent application,[50] the
iterative operation of ASRA can further decrease the exper-
imental cost.
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