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Three water soluble pincer ligands, 2,6-bis[(diethanolamine)methyl]pyridine hydrobromide (1:2) (1),
3,11,17,18-Tetraazatricyclo[11.3.1.15,9]octadeca-1(17),5,7,9(18),13,15-hexaene,3,11-bis(dihydroxymeth-
ylmethyl) hydrobromide (1:2) (2), and 1,3-bis[(diethanolamine)methyl]benzene (3) were synthesized
and unequivocally characterized by a number of analytical techniques including single crystal X-ray dif-
fraction analyses. Mixtures of these ligands with PdCl2 proved to be efficient in catalyzing the Suzuki–
Miyaura cross couplings in water. Being the most efficient system that including ligand (1). Further
experiments using this catalytic system were performed to assess the effects of varying temperature,
reaction times, and nature of the base, finding the optimal operational conditions of this system.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Catalytic reactions play a fundamental role for the production of
a variety of added value intermediates of industrial relevance. Such
that these reactions have been cataloged as a fundamental pillar of
green chemistry.1 The better comprehension of coordination and
organometallic chemistry and the consistency on the preparation
of these complexes have allowed the in situ generation of the cat-
alysts. This procedure represents an easy method to screen differ-
ent ligands by in situ generating the catalyst for a given reaction
from a mixture of a suitable metal salt for example PdCl2 and the
free ligand. Thus, accelerating the discovery of efficient catalytic
systems. On the other hand, pincer compounds have represented
a fundamental motif in the toolbox for both organometallic and
synthetic organic chemists. This being due to their well known
thermal stability and unusual reactivities and to the easiness in
which both steric and electronic properties can be finely tuned in
the basic pincer backbone.2a For the case of tridentate NCN ligands
this versatility is reflected in the number of different substituents
that can be included in the pincer structure where N donors can
ll rights reserved.

: +52 55 56162217.
rales).
be amines2b, imines,2c or oxazolines.2d The same applies for their
analogous NNN pincer ligand counterparts2e–g and CNC pincer
compounds where N-heterocyclic carbenes act as C donors.2h A
natural consequence of this versatility has been the widespread
applications that transition metal pincer complexes have found
in organic synthesis, materials science, and organometallic
catalysis.2i

Moreover, palladium-catalyzed cross coupling reactions have
become a power tool in organic synthesis.3 The Suzuki–Miyaura
reaction for the attaining of biphenyls, is one of the most important
cross coupling processes that involves the coupling of aryl halides
or triflates with organoboronic acids.4 This reaction allows the use
of a broad variety of functional groups and most importantly the
reaction can be performed in neat water5 minimizing the genera-
tion of hazardous wastes and thus greening the process.6,7 This fact
can be advantageously used, however this also requires the cata-
lyst to be soluble in water favoring at the same time the easy sep-
aration and removal of the organic products. Among the strategies
to water solubilize the catalysts8, the most common involves the
inclusion of hydrophilic groups such as carboxylates9, sulfonates,10

or ammonium groups11 in the structure of the ligands used.
In the last decade, we have been involved in the design and cat-

alytic applications of pincer ligands and their complexes12 in
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Scheme 1. Synthesis of the pincer ligands.

Figure 1. Thermal ellipsoids (50% probability) drawings for ligands 1 and 2.

Scheme 2. Suzuki–Miyaura couplings.
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Figure 2. % Suzuki–Miyaura couplings of p-substituted bromobenzenes using
ligand 1/Pd(II).
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potentially relevant organic transformations. Thus, with this
opportunity we would like to report our findings on the synthesis
and application of three novel pincer ligands including aminoalco-
hol moieties as a motif to favor water solubility on the in situ Pd(II)
catalyzed Suzuki–Miyaura C–C cross couplings in water.

Results and discussion

The ligands were synthesized by reacting either 2,6-bis(bromo-
methyl)pyridine or 1,3-bis(bromomethyl)benzene with diethanol-
amine (ligands 113 and 314) or 2-amine-1,3-propanediol (ligand
215) using Na2CO3 as base in methanol (Scheme 1). Compounds 1
and 2 were prepared under the same conditions (attempts to pre-
pare ligand 1 using MW were also performed producing poor
yields). Both ligands were characterized by 1H and 13C{1H} NMR
spectroscopy (DMSO-d6). The 1H NMR spectra showed the ex-
pected signals for 1 and 2, including those due to the presence of
the OH groups in d 4.72 ppm and 3.98 ppm (broad), respectively.
In addition, the 13C{1H} NMR spectra exhibit the six carbon signals
expected for each compound. Analysis by FAB+-MS, showed the
molecular ion ([M++Na], m/z 336) for 1. On the other hand, ligand
3 was prepared both in THF and methanol, producing better yields
when the reaction was made in methanol for 24 h. This compound
was obtained as a yellow viscous oil16 and was also characterized
by 1H NMR and 13C NMR, both spectrums exhibiting signals consis-
tent with the proposed formulation, including the broad singlet
due to the OH group in d 4.47 ppm. Analysis by FAB+-MS showed
the molecular ion at m/z 335 corresponding to [M++Na].

The identity of both ligands was unequivocally determined by
single crystal X-ray diffraction analysis.17 Both compounds being
crystallized as their ammonium salts (Fig. 1).

With the ligands on hand we decided to use them in the palla-
dium catalyzed Suzuki–Miyaura cross coupling reactions
(Scheme 2) of bromobenzene and phenyl boronic acid in water
(95 �C, 4 h, Na2CO3).18

We first evaluated the ligand and catalyst loading using PdCl2 as
palladium source. Preliminary results showed all the ligands to cat-
alyze the formation of biphenyl in good yields (96% yield of biphe-
nyl determined by GC–MS) attaining the best conversions with
1% mol catalyst loading using ligands 1 and 2. These results are
coherent with the easiness in the formation of the Pd–NNN pincer
compounds over the organometallic derivative Pd–NCN that re-
quires a C–H activation for its formation. In addition, employing
of lower loadings of Pd(II)/ligand ratio to 0.1% did not lower the
yields of the product except in one case (54%, ligand 3/PdCl2). In
light of these results we chose to use ligand 1/PdCl2 in 0.1% loading
in further experiments aimed to optimize the reaction conditions.
Thus, we investigated the effect of a number of parameters such as
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temperature, reaction time, and different bases. By varying the
temperature a notable change in yields is observed from 25% at
50 �C all the way through 96% when the reaction was performed
at 95 �C for 4 h. These results are consistent with the catalytic sys-
tem to be stable. Once the temperature was set to 95 �C, we pro-
ceed to investigate the effect of reaction time. Thus, experiments
were carried out at reduced reaction times from 0.5 h (46% yield)
to 4 h (96% yield) with increases of 0.5 h. The results clearly show
a direct dependence of the yield as a function of time, which in ab-
sence of any additive is consistent with the catalytic system to be
homogeneous. As the Suzuki–Miyaura couplings are strongly
dependant on the base used, several bases that is Li2CO3 (49%
yield), Na2CO3 (95% yield), K2CO3 (65% yield), CaCO3 (0.0% yield),
DIPEA (15% yield), and Et3N (50% yield), were tested under these
optimized conditions. The results obtained reveal that the inor-
ganic bases are more efficient having Na2CO3 with a 95% yield to
biphenyl. Organic bases were also tested showing lowered yields
compared to the inorganic salts. This fact can be due to compe-
tence between the ligand and the amine which upon coordination
with the metallic center may just coordinatively saturate the Pd(II)
avoiding any further catalysis. Although, we assumed the system
to be homogeneous, participation of nano-catalyst cannot be ruled
out in spite of the relatively low reaction temperatures employed.
Thus, in order to confirm the homogeneity of the catalytic system
we performed a catalytic experiment under the optimized condi-
tions but this time adding a couple of drops of elemental mercury19

noticing no appreciable difference in the performance of the cata-
lyst with or without the presence of elemental mercury. Thus, rul-
ing out the participation of palladium nanoparticles.

With the optimized reaction conditions, we completed the
examination of the activity for this catalytic system in the Suzu-
ki–Miyaura cross coupling reactions of some p-substituted bromo-
benzenes. The results are shown in Figure 2. A quick look to this
graphic clearly shows that bromobenzenes including electron
withdrawing substituents led to higher conversions as expected
according to the values of Hammett parameter.20

In summary, we have successfully synthesized a potentially
important set of water soluble pincer ligands and employed them
in Suzuki–Miyaura couplings attaining excellent yields to biphe-
nyls under relatively mild conditions. Noteworthy the fact is that
the reactions are performed in neat water and thus the purification
of the products consists in a mere decantation process. The present
system is interesting given the easiness on the synthesis of the li-
gands form cheap commercially available starting materials. Thus,
turning this system attractive for its potential application in organ-
ic synthesis or other cross coupling reactions. Efforts aimed to
achieve these goals are currently under development in our
laboratories.
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