

Organic Preparations and Procedures International

The New Journal for Organic Synthesis

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uopp20

A Simple and Convenient Two-step Synthesis of Idebenone

Rong-Ye Zhou, Na Li, Wan-Yue Luo, Li-Li Wang, Ye-Yu Zhang & Jin Wang

To cite this article: Rong-Ye Zhou, Na Li, Wan-Yue Luo, Li-Li Wang, Ye-Yu Zhang & Jin Wang (2021) A Simple and Convenient Two-step Synthesis of Idebenone, Organic Preparations and Procedures International, 53:4, 397-401, DOI: 10.1080/00304948.2021.1917945

To link to this article: https://doi.org/10.1080/00304948.2021.1917945

Published online: 28 May 2021.

🕼 Submit your article to this journal 🗗

Article views: 36

View related articles 🖸

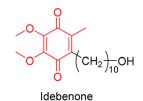
View Crossmark data 🗹

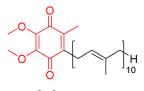
EXPERIMENTAL PAPER

Check for updates

A Simple and Convenient Two-step Synthesis of Idebenone

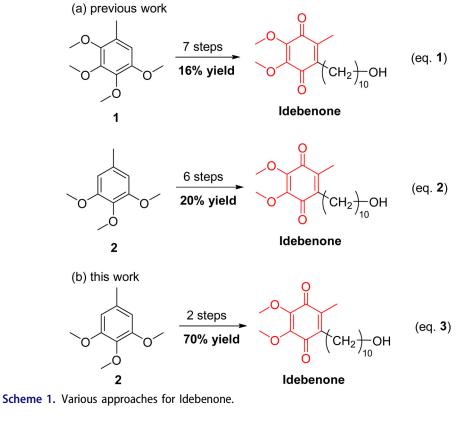
Rong-Ye Zhou, Na Li, Wan-Yue Luo (), Li-Li Wang, Ye-Yu Zhang, and Jin Wang () School of Pharmacy, Yancheng Teachers University, Yancheng, Jiangsu Province, P. R. China


ARTICLE HISTORY Received 11 April 2020; Accepted 18 November 2020


Idebenone (Figure 1) is a synthetic analogue of Coenzyme Q_{10} (Co Q_{10}),¹ which functions as an antioxidant and free radical scavenging molecule. Structurally, idebenone and Co Q_{10} share the same 1,4-benzoquinone moiety but have a different side chain at the C-5 position. Idebenone has a hydroxydecyl side chain (10 carbon atoms) while Co Q_{10} has a long side chain of 10 isoprene moieties.² Both idebenone and Co Q_{10} are involved in the electron transport chain by neutralizing free radicals. Unlike natural Co Q_{10} , however, idebenone is more efficacious because it can bypass mitochondrial complex I and maintain normal ATP production.³ Idebenone is a synthetic drug initially developed by Takeda Pharmaceutical company in 1980, and it has been widely used in the treatment of Friedreich's ataxia,⁴ Alzheimer's disease, and other mitochondrial disorders.⁵

To date, methods for the synthesis of idebenone and its analogues are limited. Two main routes for the preparation of idebenone are shown in Scheme 1. The major differences between these protocols are the starting materials. Park and colleagues⁶ started from 2,3,4,5-tetramethoxytoluene 1 to obtain idebenone in seven steps with a total yield of 16% (Scheme 1, eq. 1), while Bjørsvik and co-workers⁷ reported a six-step synthesis of idebenone by starting from 3,4,5-trimethoxytoluene 2 in a total yield of 20% (Scheme 1, eq. 2). These approaches involved multistep procedures under harsh reaction conditions (including Friedel-Crafts or Heck reactions and hydrogenation) and the use of toxic reagents. Therefore, a general and practical method for an efficient idebenone synthesis would be in high demand.

In recent years, transition-metal-catalyzed decarboxylative cross-coupling reactions using carboxylic acids as coupling partners have been widely studied in organic synthesis as novel methods for the formation of C-C bonds.⁸ Practical C-H functionalization of 1,4-benzoquinone with boronic acids in the presence of $K_2S_2O_8$ and $AgNO_3$ was reported by Baran *et al.*⁹ Following our recent work on the synthesis of Coenzyme Q analogues,¹⁰ in this paper we now describe a two-step synthesis of idebenone starting from 3,4,5-trimethoxytoluene **2** with a total yield of 70% (Scheme 1, eq. 3).


As shown in Scheme 2, we here describe a two-step synthesis of idebenone by oxidation of 3,4,5-trimethoxytoluene **2** to obtain Coenzyme Q_0 (Co Q_0),¹¹⁻¹² followed by a decarboxylative cross-coupling reaction of Co Q_0 with 11-hydroxyundecanoic acid under silver catalysis to afford the target compound. We began our study with the preparation

 CoQ_{10}

Figure 1. Structures of Idebenone and CoQ₁₀.

Scheme 2. Two-step synthesis of Idebenone.

of $CoQ_{0,}$ by the oxidation of commercially available 3,4,5-trimethoxytoluene 2 with different oxidants in acetic acid (Table 1).

25

25

25

25

30

88

62

0

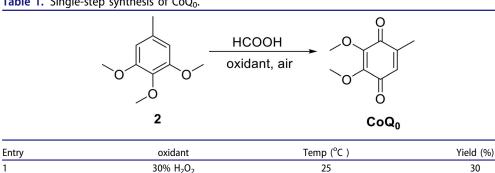


Table 1. Single-step synthesis of CoQ₀.

1

2

3

4

Reaction Conditions: 2 (0.02 mol), oxidant (1.5 equiv), 4 hr.

 $K_{2}S_{2}O_{8}$

(NH₄)₂S₂O₈

CAN

As shown in Table 1, the oxidation was conducted in formic acid at 25°C in air without using any metal catalyst. The traditional method employing 30% H₂O₂ as oxidant gave a yield of 30% (entry 1, Table 1). The use of $(NH_4)_2S_2O_8$ as oxidant improved the reaction yield to 62% (entry 3, Table 1). The best yield was obtained when using K₂S₂O₈ as oxidant, which gave the desired product CoQ_0 in 88% yield (entry 2, Table 1). When ceric ammonium nitrate (CAN) was used as oxidant we did not observe any product CoQ_0 (entry 4, Table 1).

Our initial optimization studies of the AgNO₃-catalyzed decarboxylative coupling reaction between CoQ₀ and 11-hydroxyundecanoic acid focused on different reaction atmospheres (Table 2). The reaction was performed in N_2 (1 atm), O_2 (1 atm) and ambient air. Interestingly we found that the yield increased to 80% yield when the reaction was performed under an O_2 atmosphere (entry 3, Table 2). Examination of different solvents at 80 °C under O_2 (1 atm) for 2 h revealed that the best reaction solvent was acetonitrile (entry 3-8, Table 2). Several other oxidants were screened in the reaction. We found that $Na_2S_2O_8$ and $(NH_4)_2S_2O_8$ catalyzed the reaction with moderate efficiency (entry 9-10, Table 2). Without the silver salt oxidant, the reaction cannot proceed (entry 11, Table 2). The optimal conditions employed AgNO₃ (20%), and $K_2S_2O_8$ (1.5 equiv) in acetonitrile at 80 °C for 2 h (entry 3, Table 2).

In conclusion, a practical and convenient two-step total synthesis of idebenone by oxidation and silver-catalyzed decarboxylative cross-coupling has been developed. The 70% overall yield is suitable for large-scale industrial production. Firstly, CoQ_0 can be synthesized in a single step from the cheap and readily available 3,4,5-trimethoxytoluene 2 by oxidation without using a metal catalyst. It is of course worthy of note that CoQ_0 can serve as a key intermediate for the synthesis of a vast number of Coenzyme Q compounds, not just idebenone. Secondly, the silver-catalyzed decarboxylative cross-coupling reaction between CoQ_0 and carboxylic acids is operationally simple, mild, efficient, and amenable to the gram-scale synthesis of idebenone. It is our expectation that the methods described here will lead to further explorations of high value Coenzyme Q analogues.

Experimental section

All reactions were monitored by TLC (SiO₂, petroleum ether (PE)/EtOAc 5:1). Melting points were measured on Melting Point M-565 (BUCHI) apparatus and are uncorrected.

		$\frac{\text{AgNO}_3, \text{ oxidant, 2h}}{\text{HOOC} - (CH_2)_{10} \text{OH}}$	о (сн ₂) ₁₀ он	
	CoQ ₀	Idebenone		
No.	Oxidant	solvent	atmosphere	Yield (%)
1	K ₂ S ₂ O ₈	CH₃CN	N ₂	50
2	$K_2S_2O_8$	CH₃CN	air	60
3	K ₂ S ₂ O ₈	CH₃CN	02	80
4	$K_2S_2O_8$	Acetone	02	20
5	$K_2S_2O_8$	THF	02	35
6	$K_2S_2O_8$	DMSO	02	trace
7	$K_2S_2O_8$	DMF	02	trace
8	$K_2S_2O_8$	Ethanol	02	trace
9	(NH ₄) ₂ S ₂ O ₈	CH₃CN	02	45
10	Na ₂ S ₂ O ₈	CH₃CN	02	50
11	none	CH₃CN	02	trace

Table 2. AgNO₃-catalyzed decarboxylative reaction under different conditions.

Reaction Conditions: CoQ_0 (0.02 mol), 11-hydroxyundecanoic acid (1.0 equiv), $AgNO_3$ (10 mol %), oxidant (0.6 equiv), 80 °C.

NMR and mass spectra were recorded on a Bruker Avance III-HD 400 NMR and a TripleTOF mass spectrometer, respectively. All reagents were purchased from Adamasbeta®, P. R. China, and used without further purification.

Preparation of CoQ₀

3,4,5-Trimethoxytoluene 2 (3.64 g, 0.02 mol) was dissolved in formic acid (10 mL), then a solution of K₂S₂O₄ (8.1 g, 0.03 mol) in H₂O (15 mL) was added dropwise over 10 minutes. The mixture was stirred and heated at 25 °C for 4 hours and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phases were washed with H₂O and NaHCO₃, then dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by silica-gel column chromatography (PE/EtOAc 4:1) and recrystallization from hexane to give Coenzyme Q₀, 3.20 g, 88% yield, red-colored needles, m.p. 55-58 °C (lit.¹³ 57-59 °C). Rf 0.50 (silica gel, PE/EtOAc 4:1). IR: (cm⁻¹) 2954, 1672, 1685, 1467. ¹H NMR (400 MHz, CDCl₃) δ 6.44 (q, *J*=1.7 Hz, 1H), 4.02 (s, 3H, OCH₃), 4.00 (s, 3H, OCH₃), 2.04 (d, *J*=1.6 Hz, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 184.4 (C=O), 184.2(C=O), 145.0, 144.8, 144.0, 131.2, 61.2 (OCH₃), 61.1 (OCH₃), 15.4 (CH₃). The spectroscopic data are in accord with the literature.¹³

Idebenone

To a solution of CoQ_0 (3.64 g, 0.02 mol) and 11-hydroxyundecanoic acid (4.34 g, 0.02 mol) in acetonitrile (40 mL) was added AgNO₃ (0.3 g, 2 mmol) under an O₂ atmosphere. The mixture was heated to 80 °C and a solution of oxidant (K₂S₂O₈, 12 mmol) in distilled water was added dropwise over 2 h, then the reaction mixture was stirred for

another 2 h, with TLC monitoring until the starting material was consumed. The resulting mixture was cooled and extracted with CH₂Cl₂. The organic layer was washed with water, then dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by column chromatograph on silica gel (PE/EtOAc= 5:1) to give idebenone 5.40 g, 80% yield, orange solid, m.p. 53-55 °C (lit.¹⁰ 52-54 °C). Rf 0.25 (silica gel, PE/EtOAc 4:1). IR: (cm⁻¹) 2910,1680,1610, 1460. ¹H NMR (400 MHz, CDCl₃): δ 4.00 (s, 3H, OCH₃),3.99 (s,3H, OCH₃), 3.62-3.66 (m, 2H, CH₂), 2.45 (t, 2H, J=8.0 Hz, CH₂), 2.01 (s, 3H, CH₃), 1.61 (s,1H,OH), 1.59-1.52 (m, 2H), 1.42-1.22 (m, 14H).¹³C NMR (100 MHz, CDCl₃): 184.7 (C=O), 184.2 (C=O), 144.3, 144.2, 143.1, 138.7, 63.1, 61.2, 32.8, 29.8, 29.5, 29.4, 29.3,28.7, 26.4, 25.7, 11.9 (CH₃). The spectroscopic data were in accord with the literature.¹⁰

Acknowledgments

Rong-Ye Zhou, Na Li and Wan-Yue Luo contributed equally to this work. We thank the National Natural Science Foundation of China (No.81903427), the Jiangsu Key Research and Development Plan (Social Development No.BE2020672) project, the Natural Science Foundation of Jiangsu Province (BK20160443), the Six Talent Peaks Project in Jiangsu Province (SWYY-094), and innovative training program for college students in Jiangsu Province (202010324060Y) for financial support.

ORCID

Wan-Yue Luo (b) http://orcid.org/0000-0002-1166-4908 Jin Wang (b) http://orcid.org/0000-0002-3395-5896

References

- 1. A. Leonardi, L. Crasci, A. Panico and R. Pignatello, *Pharm. Dev. Technol.*, **20**, 716 (2015). doi: 10.3109/10837450.2014.915572
- 2. L. Montenegro, R. Turnaturi, C. Parenti and L. Pasquinucci, *Nanomaterials*, 8, 87 (2018). doi:10.3390/nano8020087
- 3. N. Gueven, K. Woolley and J. Smith, Redox Biol., 4, 289 (2015). doi:10.1016/j.redox.2015.01.009
- 4. C. Tonon and R. Lodi, Expert Opin. Pharmaco., 9, 2327 (2008). doi:10.1517/14656566.9.13.2327
- 5. D. S. Kerr, Neurotherapeutics, 10, 307 (2013). doi:10.1007/s13311-013-0176-7
- Y. S. Jung, B. Y. Joe, C. M. Seong and N. S. Park, Synth. Commun., 31, 2735 (2001). doi:10. 1081/SCC-100105319
- 7. A. Tsoukala and H.-R. Bjørsvik, Org. Process Res. Dev., 15, 673 (2011). doi:10.1021/ op200051v
- 8. L. W. Yin Xiaoting, Zhao Baoli, Cheng Kai, Chin. J. Org. Chem., 38, 2879 (2018). doi:10. 6023/cjoc201805013
- 9. Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio, M. Del Bel and P. S. Baran, J. Am. Chem. Soc., 133, 3292 (2011). doi:10.1021/ja111152z
- 10. J. Wang, S. Li, T. Yang and J. Yang, Tetrahedron, 70, 9029 (2014). doi:10.1016/j.tet.2014.10.017
- 11. O. V. Zalomaeva, V. Y. Evtushok, G. M. Maksimov, R. I. Maksimovskaya and O. A. Kholdeeva, *Dalton T.*, **46**, 5202 (2017). doi:10.1039/C7DT00552K
- 12. J. Wang, X. Hu and J. Yang, Synthesis, 46, 2371 (2014). doi:10.1016/j.electacta.2014.02.153
- Y. F. Qiu, Y. Y. Yan, B. Lu, L. Tang, Y. L. Zhai, K. X. Chen and J. Wang, Org. Prep. Proced. Int., 51, 602 (2019). doi:10.1080/00304948.2019.1673616