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Per(3-deoxy)-�-cyclomannin: a non-glucose cyclooligosaccharide
featuring inclusion properties
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Abstract—Per(3-deoxy)-�-cyclomannin has been efficiently synthesized by a three-step procedure starting from natural �-cyclodex-
trin, and proved to be capable of binding naphthalenesulfonate in aqueous solution and solubilizing C60 in water. For the first
time it was spectrally evidenced that a non-glucose cyclooligosaccharide did form inclusion complexes with conventional organic
guest molecules. © 2003 Elsevier Science Ltd. All rights reserved.

Cyclodextrins, a series of cyclooligosaccharides formed
during the enzymatic degradation of the linear amylose
components of starch, have attained a unique and
special status in supramolecular chemistry.1 The hydro-
phobic cavities of these torus-like molecules turn out to
be the havens for a wide range of guest molecules in
aqueous solutions while their two rims provide the
opportunity to improve or develop specific functions.1,2

These particular features of cyclodextrins have been
well documented and have found wide applications in
chemical, pharmaceutical, biomedical and materials sci-
ences.3 In contrast to the wealth of knowledge on
cyclodextrins, our knowledge on the molecular recogni-
tion properties of cyclooligosaccharides other than
cyclodextrins has been surprisingly poor.4 A limited

range of cyclooligosaccharides5 other than cyclodex-
trins, such as cyclooligo-(1�6)-�-glucopyranosides,
cyclooligo-(1�2)-�-glucopyranosides, cyclooligo-(1�
2)-�-fructofuranosides, are available by enzymatic or
bacterial action on their corresponding linear compo-
nents but their capability of binding organic guests has
not been yet documented. During the last decades,
much effort has been directed to the chemical synthesis
of cyclooligosaccharides6 from their corresponding
monosaccharide units with the ultimate goal to create
novel water-soluble chiral molecular receptors possess-
ing specific complex formation properties that are
sufficiently different and unique to be able to compete
with those of cyclodextrins. Most of non-glucose
cyclooligosaccharides presently known have been thus

Scheme 1. Synthesis of per(3-deoxy)-�-cyclomannin.
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prepared synthetically but usually in such minute
amounts as to preclude investigation into their inclu-
sion behavior because of the tedious multistep proce-
dures and the difficulty in controlling the regio- and
stereoselectivity. Two of the authors7 reported a four-
step strategy for the facile access to cycloaltrins starting
from the corresponding natural cyclodextrins. Unfortu-
nately this series of non-glucose cyclooligosaccharides
again failed in demonstrating inclusion ability towards
normal organic guests. Therefore, non-glucose
cyclooligosaccharides with inclusion ability still remain
to be a challenge. In this paper, we report an efficient
three-step-preparation of per(3-deoxy)-�-cyclomannin 2
from �-CD 1 (Scheme 1) and provide spectral evidence
for its inclusion binding towards conventional organic
guests.

Per(6-silyl)-per(2,3-mannoepoxy)-�-cyclodextrin 4 was
prepared from �-cyclodextrin by the modification of the
procedure used for the preparation of the �-analog.8

Reduction of the epoxide 4 was carried out in THF by
using LiAlH4 as reducing agent and the reaction was
traced by TLC. The reaction mixture was taken in
water and chromatographed on a reversed-phase
column to afford the pure product 2 in 55% yield.9

Kelly10 reported that the reduction of the �-analog with
LiAlH4 or AlH(i-Pr)2 gave a complicated mixture.
However, our procedure surely enables an efficient
reduction and subsequent deprotection of 4 in a one-
pot reaction. The isolated 2 demonstrated the pseudo-
molecular ions at m/z=1169 [M+H+] and 1191
[M+Na+] in the FAB-MS spectrum.

Its NMR spectra (Fig. 1) clearly demonstrates a C8

symmetry and two upfield shifted protons resonating at
� 2.01 and 1.95 ppm as two ddd’s with strong second

order effects from each other. 1H–1H COSY, 1H–13C
HSQC and 1H–13C HMBC experiments indicate that
they are geminal protons bound to the C-3 carbon that
also resonates in a very high field (� 31.9). This means
the reduction occurs at the C-3 carbons. Both the H-2
and H-4 protons are shifted to much lower fields (�
3.84 and 3.93), while the H-1, H-5 and H-6 protons (at
� 4.72, 3.89 and �3.78, respectively) are not signifi-
cantly affected in comparison with the corresponding
chemical shifts of �-cyclodextrin.

The small J1,2 (3.3 Hz) and large J3a,4 and J4,5 spin–spin
coupling constants (both 8.1 Hz), which can be roughly
derived by directly reading the 1H NMR spectrum,
suggest that the proton H-1 be in an equatorial disposi-
tion while the protons Ha-3, H-4 and H-5 all be axially
located. This observation supports the 4C1 conforma-
tion of the 3-deoxymannoside units and a hydrophobic
cavity is thus expected to form with all the 2-OH
groups axially located outside. Compared with �-CD,
there are only half the number of secondary hydroxyl
groups in per(3-deoxy)-�-cyclomannin 2. Therefore, the
cavity of per(3-deoxy)-�-cyclomannin is expected to
have stronger hydrophobicity. Its capability of binding
hydrophobic guests in aqueous solution is unambigu-
ously evidenced by taking sodium 2-naphthalenesul-
fonate and fullerene C60 as the guests.

Addition of naphthalenesulfonate to the NMR solution
of 2 results in upfield shift of all the proton signals of 2,
which is consistent with the shielding effect of the
aromatic ring (Fig. 2).10,11 The signals of the inward-
cavity-located protons H-2 and H-5 are obviously
shifted faster than those of H-6 ones and finally get
superimposed with the latter ones. The shifting
behaviors of the two geminal protons of C-3 offer

Figure 1. 1H NMR spectrum (top, 500 MHz) and 13C NMR spectrum (bottom, 125 MHz) of 2 in D2O (CH3OH int.).
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Figure 2. 1H NMR spectra of 2 (300 MHz, 3 mM 2 in D2O, CH3OH int.) in the absence (a) and in the presence of (b) 5 mM,
(c) 17 mM, (d) 30 mM, (e) 48 mM, (f) 60 mM and (g) 69 mM sodium 2-naphthalenesulfonate. The inset was recorded on a 500
MHz NMR spectrometer.

even more important evidence for the binding. The
right one, which shows an axial–axial coupling to H-4
and is therefore located inwards to the cavity, is sub-
jected to a stronger shielding effect and is shifted to the
higher field faster than the left one. As a result, the
second order effect between them is significantly
reduced and the normal ddd splitting pattern is
observed for both protons (Fig. 2, inset).

Solubilization of fullerene C60 in water has been attract-
ing particular interest because of its potential biological
applications.12 Compound 2 is very efficient in solubi-
lizing C60 in water. By heating C60 (5 mg) and 2 (20 mg)
in pyridine (2 ml) at 60°C, the C60 becomes partially
solubilized. After evaporation of the solvent, the
residue is taken in distilled water (10 ml) and filtered
through a polymer membrane (cellulose acetate, 0.4
�m) to give a clear solution. The UV–vis spectrum of
this filtrate and that of C60 in CH2Cl2 are shown in
Figure 3. C60 in CH2Cl2 shows absorbance peaked at
257 and 329 nm. The filtrate also demonstrates strong
absorption around 255 nm and in the range of 310 �
410 nm. The absorbance around 255 nm is quite similar
to that of C60 in CH2Cl2 while that in the range of 310
� 410 nm is different. Three peaks (347, 359 and an
end peak at 392 nm) are observed instead of a single
peak of C60 in CH2Cl2. The concentration of C60 in this
filtrate is estimated to be ca. 2.8×10−5 M by assuming
that the molecular absorptivity of C60-2 complex at 347
nm is the same as that of C60 in CH2Cl2 solution
(�=5.65×104 at �max 329 nm). This result indicates that
the solubility of C60 in the presence of 2 is comparable
with that in the presence of �-cyclodextrin.13

In summary, we described a three-step synthesis of
per(3-deoxy)-�-cyclomannin 2 from the natural �-
cyclodextrin, and proved for the first time that a non-

Figure 3. UV–vis absorption spectra of C60 in CH2Cl2 and
the C60-2 inclusion complex in water.

glucose cyclooligosaccharide binds conventional
organic molecules such as naphthalensulfonate in
aqueous solution and efficiently solubilizes C60 in water.
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