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Abstract: Tin-free, radical-mediated g-alkylation of a,b-unsaturat-
ed esters is accomplished by radical addition and b-fragmentation
of O-tert-alkyl dienol ethers and subsequent iodine atom transfer
process.

Key words: alkylation, carboxylic ester, fragmentation, radicals,
tin-free

Reaction of an enolate anion of an a,b-unsaturated carbo-
nyl compound with an alkylating agent generally affords
an a-alkylation product as a major product.1 Thus, the g-
alkylation of a,b-unsaturated carbonyl compounds has
been a very challenging problem in synthetic organic
chemistry. Several methods to effect the g-alkylation of
a,b-unsaturated carbonyl compounds have been devel-
oped over the years and include the use of g-arylsulfonyl
group as a regiospecific control group,2 copper dieno-
lates,3 and zinc bromide catalyzed alkylation of O-silylat-
ed dienolates.4,5 However, those methods have
limitations, depending critically on the nature of alkyla-
tion agents and dienolates.

Previously, we reported a radical-mediated g-functional-
ization approach based on the addition of an alkyl radical
to diene ketene O,N-acetal 1 followed by the cleavage of
N–O bond to afford g-alkylated carboxylic imide 2 after
aqueous workup (Scheme 1).6,7 In this approach, the radi-
cal rearrangement of silyloxy radical 3 into silyl radical 4
was utilized to achieve tin-free conditions.8,9

During our studies on the radical alkylation using ketene
enol ethers, Roberts reported a similar approach involving
radical addition–fragmentation approach using O-tert-
alkyl enol ethers as shown in Scheme 2.10 In our continued
effort to develop a tin-free approach to achieve g-alkyla-
tion of a,b-unsaturated carboxylic esters, we have studied
the radical reaction of silyl dienol ethers 5 derived from
a,b-unsaturated esters.

Our approach is based on three factors. First, our idea to
accomplish the g-alkylation relies on the stability of radi-
cal intermediates derived from a- and g-attack of the alkyl
radical onto silyl dienol ether 5. It is evident that interme-
diate 6 should be more stable than intermediate 7 due to
the allylic nature of 6 (Scheme 3). Second, one of the key

features in this approach is a facile b-fragmentation of in-
termediate 11 to yield alkylation product 10 along with
liberation of tert-alkyl radical 12. Finally, to achieve the
tin-free conditions, Curran’s iodine-atom-transfer process
was employed.11 A noteworthy feature in this approach is
to generate reactive primary alkyl radical 13 by a radical
cyclization of tert-alkyl radical 12 for an efficient iodine-
atom transfer (Scheme 4).

In order to test our rationale, we initially prepared 15a
from 14a to facilitate the b-fragmentation process by gen-
eration of a very stable tert-benzylic radical. Radical reac-
tion of 15a with iodomethyl phenyl sulfone in refluxing

Scheme 1 Radical-mediated g-functionalization of a,b-unsaturated
carboxylic amides
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benzene using lauroyl peroxide (DLP) for five hours af-
forded the desired product in a very low yield (8%).

The yield was improved to some extent by performing the
reaction in benzene using a catalytic amount of hexameth-
ylditin (0.1 equiv) under irradiation (300 nm) for one
hour. It appeared that the low yield resulted from instabil-
ity of 15a under thermally and photochemically initiated
conditions. To increase the stability of ketene enol ether
15, we introduced a methyl group instead of the phenyl
group in 15a. When the reaction was repeated with 15b
under the similar conditions, 17 was isolated in 72% and
70% yield, respectively (Scheme 5). Due to instability of
TBS esters 16 on silica gel, 16 was converted into the cor-
responding methyl ester by treatment of 16 with tetrabu-
tylammonium fluoride and methyl iodide in THF at room
temperature for two hours.12

The silyl dienol ethers 9a and 9b were prepared by a two-
step sequence. Treatment of tert-alcohol 18 with butyllith-

ium followed by the addition of crotonyl chloride and 2-
pentenoyl chloride afforded the corresponding esters 8a
and 8b in 85% and 77% yield, respectively. When ester 8a
was treated with LDA in the presence of tert-butyldimeth-
ylsilyl chloride (TBSCl) in THF containing a small
amount of HMPA, silyl dienol ether 9a was prepared in
90% yield.

Compound 9a was thermally stable but was decomposed
to some extent during a column-chromatographic separa-
tion on silica gel. Thus, remaining reactions were carried
out with the crude products without isolation of 9
(Scheme 6).

When a benzene solution of 9a (1.5 equiv), iodomethyl
phenyl sulfone (1.0 equiv), DLP initiator (0.1 equiv) was
refluxed at 90 °C for five hours, 20a was isolated in 89%
yield via 19 (Scheme 7).13 To determine the efficiency
and scope of the present method, we performed additional
experiments with several different alkyl iodides and bro-

Scheme 4 Radical approach for the g-alkylation of 8 via 9
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Scheme 5 Radical alkylation of ketene enol ether 15. Conditions A: DLP (0.1 equiv), C6H6, 90 °C, 5 h. Conditions B: (Me3Sn)2 (0.1 equiv),
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mides using 9a and 9b. As shown in Table 1, several acti-
vated alkyl iodides and bromides bearing a-electron-
withdrawing substituents worked well, yielding the g-
alkylation products exclusively. It is also noteworthy that
methyl-substituted dienol ether 9b worked well without
affecting the chemical yields significantly. Of synthetic
importance is the exclusive formation of g-alkylation
products under tin-free radical conditions and there was
no indication of the formation of a-alkylation products.

However, this method proved to be limited with respect to
nucleophilic alkyl radicals. Irradiation (300 nm) of a ben-
zene solution of 9a with an equimolar amount of 1-io-
doadamantane and DLP gave the starting iodide (95%).
To further study the g-radical alkylation, we prepared a
cyclic silyl dienol ether 21. When the ester was treated
with LDA in the presence of TBSCl in THF containing a
small amount of HMPA, 21 was obtained in 89% yield.
When the radical reaction was carried out with 21 and io-
domethyl phenyl sulfone in the presence of DLP initiator
in benzene at 90 °C for five hours, the desired g-alkylated
product 23 was isolated in 77% yield (Scheme 8).

A sequential radical reaction involving the radical g-alky-
lation and cyclization sequence was examined
(Scheme 9). Treatment of 24 with 21 (1.5 equiv), DLP
(0.1 equiv) in benzene at 90 °C for five hours afforded 25.
Treatment of 25 with benzenethiol and V-40 [1,1¢-azo-
bis(cyclohexanecarbonitrile)] initiator followed by addi-
tion of tetrabutylammonium fluoride and methyl iodide
afforded 26 in 66% yield along with 27 (12%). Further
treatment of 26 with MCPBA and subsequent elimination

provided 28 in 79% yield (Scheme 9). From the 1H–1H
COSY NMR spectrum and the decoupling technique, an
NOE experiment of 28 showed 6.56% NOE between Ha

(d = 3.36 ppm) and Hb (d = 2.65–2.73 ppm), indicative of
a cis-fused bicyclic product.

Scheme 6 Preparation of silyl dienol ethers
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Table 1 Tin-Free Radical g-Alkylationa

Entry Substrate Product Yield (%)b

20a 20b

1 89 75

2 88 76c

3 84 82

4 89 77

5 82 73d

6 74 75e

7 73 71

a The reaction was carried out with lauroyl peroxide initiator in ben-
zene at 90 °C for 5 h.
b Yield of isolated products.
c Ratio syn/anti = 1:1.7.
d Ratio syn/anti = 1:1.
e Ratio syn/anti = 1:1.7.
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In conclusion, we have developed the radical-mediated g-
alkylation of a,b-unsaturated carboxylic esters via O-tert-
alkyl dienol ethers under tin-free conditions, which ap-
pears to be a synthetically useful process.
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1.66 (m, 1 H), 1.84–1.87 (m, 1 H), 2.48–2.52 (m, 1 H), 2.68–
2.72 (m, 1 H), 2.97–3.00 (m, 1 H), 3.67 (s, 3 H), 5.80 (dt, 
J = 15.6, 1.3 Hz, 1 H), 6.78 (dt, J = 15.6, 7.37 Hz, 1 H), 
7.51–7.55 (m, 2 H), 7.60–7.64 (m, 1 H), 7.83–7.85 (m, 2 H). 
13C NMR (100 MHz, CDCl3): d = 11.0, 20.7, 30.0, 51.5, 
64.6, 123.8, 128.7 (C2), 129.2 (C2), 133.8, 137.6, 143.4, 
166.0. IR (KBr): 1729, 1658, 1447, 1320, 1214, 731, 691 
cm–1. HRMS: m/z calcd for C14H18O4S [M+]: 282.0926; 
found: 282.0929.
Compound 20a (entry 3): MW (C10H16O4): 186.21. 1H NMR 
(400 MHz, CDCl3): d = 1.21 (t, J = 7.1 Hz, 3 H), 2.39–2.43 
(m, 2 H), 2.46–2.51 (m, 2 H), 3.67 (s, 3 H), 4.10 (q, J = 7.1 
Hz, 2 H), 5.82 (dt, J = 15.7, 1.5 Hz, 1 H), 6.91 (dt, J = 15.7, 
6.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): d = 14.1, 27.2, 
32.4, 51.4, 60.5, 121.7, 146.9, 166.7, 172.1. IR (KBr): 1742, 
1720, 1659, 1436, 1179, 1039, 859 cm–1. HRMS: m/z calcd 
for C9H14O4 [M

+]: 186.0892; found: 186.0893.
Compound 20a (entry 4): MW (C7H9NO2): 139.15. 1H NMR 
(400 MHz, CDCl3): d = 2.47–2.55 (m, 4 H), 3.72 (s, 3 H), 
5.93 (dt, J = 15.7, 1.54 Hz, 1 H), 6.89 (dt, J = 15.7, 6.5 Hz, 
1 H). 13C NMR (100 MHz, CDCl3): d = 16.1, 27.7, 51.6, 
118.2, 123.6, 143.3, 166.1. IR (KBr): 1730, 1663, 1437, 
1275, 1213, 1162, 766, 748 cm–1. HRMS: m/z calcd for 
C7H9NO2 [M

+]: 139.0633; found: 139.0642.
Compound 20a (entry 5): MW (C10H16O4: 200.23. 1H NMR 
(400 MHz, CDCl3): d = 1.15 (d, J = 14.3 Hz, 3 H), 1.20 (t, 
J = 7.1 Hz, 3 H), 2.25–2.30 (m, 1 H), 2.50–2.57 (m, 2 H), 
3.68 (s, 3 H), 4.09 (q, J = 7.1 Hz, 2 H), 5.82 (dt, J = 15.6, 1.1 
Hz, 1 H), 6.84 (dt, J = 15.6, 6.9 Hz, 1 H). 13C NMR (100 
MHz, CDCl3): d = 14.1, 25.5, 35.8, 38.4, 51.4, 60.4, 122.8, 
145.8, 166.6, 175.2. IR (KBr): 1740, 1720, 1659, 1436, 
1275, 1196, 1180 cm–1. HRMS: m/z calcd for C10H16O4 
[M+]: 200.1049; found: 200.1041.
Compound 20a (entry 6): MW (C14H16O3): 232.27. 1H NMR 
(400 MHz, CDCl3): d = 1.21 (d, J = 7.0 Hz, 3 H), 2.30–2.36 
(m, 1 H), 2.66–2.72 (m, 1 H), 3.54–3.59 (m, 1 H), 3.67 (s, 3 
H), 5.84 (dt, J = 15.6, 1.5 Hz, 1 H), 6.91 (dt, J = 15.6, 6.9 Hz, 
1 H), 7.43–7.46 (m, 2 H), 7.52–7.54 (m, 1 H), 7.90–7.92 (m, 
2 H). 13C NMR (100 MHz, CDCl3): d = 17.5, 35.4, 39.8, 
51.4, 122.8 (C2), 128.7 (C2), 133.1, 135.8, 146.3, 166.6, 
202.4. IR (KBr): 1733, 1712, 1688, 1449, 1434, 971, 705 
cm–1. HRMS: m/z calcd for C14H16O3 [M

+]: 232.1099; 
found: 232.1086.
Compound 20a (entry 7): MW (C12H18O6): 258.26. 1H NMR 
(400 MHz, CDCl3): d = 1.23 (t, J = 7.1 Hz, 6 H), 2.73–2.77 
(m, 2 H), 3.44 (t, J = 7.44 Hz, 1 H), 3.68 (s, 3 H), 4.18 (q, 
J = 7.1 Hz, 4 H), 5.87 (dt, J = 15.6, 1.5 Hz, 1 H), 6.86 (dt, 
J = 15.6, 7.1 Hz, 1 H). 13C NMR (100 MHz, CDCl3): 
d = 14.0 (C2), 31.0, 50.6, 51.5, 61.7 (C2), 123.8, 144.0, 
166.3, 168.2 (C2). IR (KBr): 1755, 1720, 1661, 1436, 1151, 
1036, 774 cm–1. HRMS: m/z calcd for C12H18O6 [M

+]: 
258.1103; found: 258.1128.
Compound 20b (entry 1): MW (C13H16O4S): 268.32. 1H 
NMR (400 MHz, CDCl3): d = 1.19 (d, J = 8.9 Hz, 3 H), 
2.90–2.96 (m, 1 H), 3.06 (dd, J = 14.1, 6.3 Hz, 1 H), 3.17 
(dd, J = 14.1, 6.6 Hz, 1 H), 3.65 (s, 3 H), 5.72 (dd, J = 15.6, 
1.0 Hz, 1 H), 6.71 (dd, J = 15.6, 7.6 Hz, 1 H), 7.50–7.55 (m, 
2 H), 7.59–7.63 (m, 1 H), 7.84–7.90 (m, 2 H). 13C NMR (100 
MHz, CDCl3): d = 19.5, 31.6, 51.5, 60.9, 120.9, 127.8 (C2), 
129.2 (C2), 133.7, 139.4, 149.5, 166.3. IR (KBr): 1721, 
1659, 1447, 1305, 1209, 766, 747 cm–1. HRMS: m/z calcd 
for C13H16O4S [M+]: 268.0769; found: 2268.0751.
Compound 20b (entry 2): MW (C15H20O4S): 296.38. Ratio 
syn/anti = 1.67:1 (from 1H NMR). 1H NMR (400 MHz, 
CDCl3): d(anti) = 0.90 (t, J = 7.5 Hz, 3 H), 1.19 (d, J = 7.0 
Hz, 3 H), 1.67–1.70 (m, 1 H), 1.84–1.88 (m, 1 H), 2.88–2.91 
(m, 1 H), 3.05–3.12 (m, 1 H), 3.69 (s, 3 H), 5.77 (dd, 

J = 15.7, 1.4 Hz, 1 H), 6.99 (dd, J = 15.7, 7.0 Hz, 1 H), 7.51–
7.55 (m, 2 H), 7.60–7.63 (m, 1 H), 7.84–7.87 (m, 2 H); 
d(syn) = 0.85 (t, J = 7.5 Hz, 3 H), 1.21 (d, J = 7.0 Hz, 3 H), 
1.67–1.70 (m, 1 H), 1.84–1.88 (m, 1 H), 2.95–2.99 (m, 1 H), 
3.05–3.12 (m, 1 H), 3.68 (s, 3 H), 5.76 (dd, J = 15.7, 1.7 Hz, 
1 H), 6.83 (dd, J = 15.7, 6.3 Hz, 1 H), 7.51–7.55 (m, 2 H), 
7.60–7.63 (m, 1 H), 7.84–7.87 (m, 2 H). 13C NMR (100 
MHz, CDCl3): d = 12.9, 13.0, 13.1, 13.4, 17.8, 18.9, 34.5, 
34.8, 51.5, 51.6, 69.1, 70.5, 121.1, 121.9, 128.4 (C2), 128.6 
(C2), 129.2 (C2), 129.3 (C2), 133.6, 133.7, 138.7, 138.9, 
148.3, 150.5, 166.4, 166.5. IR (KBr): 1727, 1656, 1447, 
1303, 1197, 765, 728 cm–1. HRMS: m/z calcd for C15H20O4S 
[M+]: 296.1082; found: 296.1089.
Compound 20b (entry 3): MW (C10H16O4): 200.23. 1H NMR 
(400 MHz, CDCl3): d = 1.07 (d, J = 6.7 Hz, 3 H), 1.20 (t, 
J = 7.1 Hz, 3 H), 2.27 (dd, J = 15.3 Hz, 7.2 Hz, 1 H), 2.36 
(dd, J = 15.3, 7.1 Hz, 1 H), 2.77–2.84 (m, 1 H), 3.67 (s, 3 H), 
4.08 (q, J = 7.1 Hz, 2 H), 5.79 (dd, J = 15.7, 1.2 Hz, 1 H), 
6.86 (dd, J = 15.7, 7.3 Hz, 1 H). 13C NMR (100 MHz, 
CDCl3): d = 14.1, 18.9, 32.9, 40.3, 51.4, 60.4, 119.8, 152.0, 
166.9, 171.5. IR (KBr): 1738, 1722, 1658, 1276, 1177, 765, 
748 cm–1. HRMS: m/z calcd for C10H16O4 [M

+]: 200.1049; 
found: 200.1048.
Compound 20b (entry 4): MW (C8H11NO2): 153.17. 1H 
NMR (400 MHz, CDCl3): d = 1.21 (d, J = 6.8 Hz, 3 H), 
2.35–2.46 (m, 2 H), 2.68–2.75 (m, 1 H), 3.70 (s, 3 H), 5.87 
(dd, J = 15.7, 1.2 Hz, 1 H), 6.82 (dd, J = 15.7, 7.2 Hz, 1 H). 
13C NMR (100 MHz, CDCl3): d = 18.6, 23.6, 33.1, 51.6, 
117.5, 121.6, 148.7, 166.3. IR (KBr): 1728, 1659, 1436, 
1277, 1197, 765, 749 cm–1. HRMS: m/z calcd for C8H11NO2 
[M+]: 153.0790; found: 153.0781.
Compound 20b (entry 5): MW (C11H18O4): 214.25. Ratio 
syn/anti = 1:1 (from 1H NMR). 1H NMR (400 MHz, CDCl3): 
d(syn) = 1.02 (d, J = 3.4 Hz, 3 H), 1.07 (t, J = 7.4 Hz, 3 H), 
1.19 (t, J = 7.1 Hz, 3 H), 2.31–2.38 (m, 1 H), 2.55–2.65 (m, 
1 H), 3.68 (s, 3 H), 4.06–4.14 (m, 2 H), 5.78 (dd, J = 15.7, 
11.7 Hz, 1 H), 6.87 (dd, J = 15.7, 7.7 Hz, 1 H); d(anti) = 1.03 
(d, J = 3.2 Hz, 3 H), 1.07 (t, J = 7.4 Hz, 3 H), 1.22 (t, J = 7.1 
Hz, 3 H), 2.41–2.48 (m, 1 H), 2.55–2.65 (m, 1 H), 3.69 (s, 3 
H), 4.06–4.14 (m, 2 H), 5.79 (dd, J = 15.6, 10.8 Hz, 1 H), 
6.77 (dd, J = 15.6, 8.6 Hz, 1 H). 13C NMR (100 MHz, 
CDCl3): d = 13.4, 14.1, 14.2, 14.8, 15.5, 17.6, 38.9, 39.5, 
43.9, 44.5, 51.4, 51.5, 60.3, 60.4, 120.6, 121.3, 150.9, 151.4, 
166.8, 166.9, 174.8, 175.0. IR (KBr): 1735, 1723, 1658, 
1435, 1277, 1243, 765, 748 cm–1. HRMS: m/z calcd for 
C11H18O4 [M

+]: 214.1205; found: 214.1203.
Compound 20b (entry 6): MW (C15H18O3): 246.30. Ratio 
syn/anti = 1.67:1 (from 1H NMR). 1H NMR (400 MHz, 
CDCl3): d(anti) = 1.03 (d, J = 6.8 Hz, 3 H), 1.15 (d, J = 6.9 
Hz, 3 H), 2.76–2.84 (m, 1 H), 3.47–3.54 (m, 1 H), 3.66 (s, 3 
H), 5.77–5.85 (m, 1 H), 6.94 (dd, J = 15.7, 7.4 Hz, 1 H), 
7.42–7.47 (m, 2 H), 7.51–7.55 (m, 1 H), 7.87–7.93 (m, 2 H); 
d(syn) = 1.02 (d, J = 6.6 Hz, 3 H), 1.11 (d, J = 6.9 Hz, 3 H), 
2.76–2.84 (m, 1 H), 3.38–3.41 (m, 1 H), 5.77–5.85 (m, 1 H), 
6.87 (dd, J = 15.6, 8.9 Hz, 1 H), 7.42–7.47 (m, 2 H), 7.51–
7.55 (m, 1 H), 7.87–7.93 (m, 2 H). 13C NMR (100 MHz, 
CDCl3): d = 13.4, 14.9, 16.0, 18.4, 38.2, 39.4, 44.6, 45.2, 
51.4, 51.5, 120.5 (C2), 121.3, 128.1 (C2), 128.7 (C2), 133.0, 
133.1, 136.4, 136.8, 151.3, 151.9 (C2), 166.8, 166.9, 202.6, 
203.2. IR (KBr): 1722, 1681, 1655, 1449, 1277, 765, 748 
cm–1. HRMS: m/z calcd for C15H18O3 [M

+]: 246.1256; 
found: 246.1255.
Compound 20b (entry 7): MW (C13H20O6): 272.29. 1H NMR 
(400 MHz, CDCl3): d = 1.12 (d, J = 6.8 Hz, 3 H), 1.20 (t, 
J = 7.1 Hz, 3 H), 1.23 (t, J = 7.1 Hz, 3 H), 3.04–3.10 (m, 1 
H), 3.30 (d, J = 8.5 Hz, 1 H), 3.68 (s, 3 H), 4.13 (t, J = 7.1 
Hz, 2 H), 4.17 (t, J = 7.1 Hz, 2 H), 5.83 (dd, J = 15.6, 0.7 Hz, 
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1 H), 6.87 (dd, J = 15.6, 8.1 Hz, 1 H). 13C NMR (100 MHz, 
CDCl3): d = 13.9, 14.0, 17.3, 36.2, 51.4, 56.7, 61.4, 61.5, 
121.4, 149.3, 166.6, 167.6, 167.7. IR (KBr): 1756, 1722, 
1658, 1436, 1300, 1278, 1234, 988 cm–1. HRMS: m/z calcd 
for C13H20O6 [M

+]: 272.1260; found: 272.1271.
Compound 23: MW (C15H18O4S): 294.37. 1H NMR (400 
MHz, CDCl3): d = 1.36–1.44 (m, 1 H), 1.50–1.56 (m, 1 H), 
1.68–1.74 (m, 1 H), 1.87–1.93 (m, 1 H), 2.10–2.17 (m, 1 H), 
2.21–2.27 (m, 1 H), 2.85–2.89 (m, 1 H), 3.04 (dd, J = 14.1, 
6.9 Hz, 1 H), 3.13 (dd, J = 14.1, 6.1 Hz, 1 H), 3.66 (s, 3 H), 
6.74–6.75 (m, 1 H), 7.52–7.56 (m, 2 H),  7.60–7.64 (m, 1 H), 
7.88–7.90 (m, 2 H). 13C NMR (100 MHz, CDCl3): d = 20.3, 
23.8, 27.8, 31.1, 51.6, 60.4, 127.8, 129.3, 132.1, 133.7, 

139.0, 139.7, 167.3. IR (KBr): 1715, 1447, 1276, 1255, 
1151, 1086, 719 cm–1. HRMS: m/z calcd for C15H18O4S 
[M+]: 294.0926; found: 294.0936.
Compound 28: MW (C18H26O6): 338.39. 1H NMR (400 
MHz, CDCl3): d = 0.84–0.95 (m, 1 H), 1.17–1.25 (m, 8 H), 
1.49–1.59 (m, 1 H), 1.74–1.80 (m, 2 H), 2.62–2.73 (m, 2 H), 
2.79–2.84 (m, 1 H), 3.28–3.36 (m, 2 H), 3.65 (s, 3 H), 4.07–
4.22 (m, 4 H), 4.55–4.57 (m, 1 H), 4.90–4.91 (m, 1 H). 13C 
NMR (100 MHz, CDCl3): d = 13.9, 14.0, 21.5, 23.2, 24.6, 
37.8, 41.9, 44.4, 45.4, 51.5, 60.9, 61.4, 61.5, 107.4, 145.4, 
169.5, 171.7, 174.9. IR (KBr): 1731, 1446, 1268, 1254, 
1224, 1058, 1038, 1015 cm–1. HRMS: m/z calcd for 
C18H26O6 [M

+]: 338.1729; found: 338.1750.
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