## organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# Pseudopolymorphs of chelidamic acid and its dimethyl ester

### Maya Tutughamiarso, Thorsten Pisternick and Ernst Egert\*

Institut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany Correspondence e-mail: egert@chemie.uni-frankfurt.de

Received 30 May 2012 Accepted 11 July 2012 Online 1 August 2012

Different tautomeric and zwitterionic forms of chelidamic acid (4-hydroxypyridine-2,6-dicarboxylic acid) are present in the crystal structures of chelidamic acid methanol monosolvate, C<sub>7</sub>H<sub>5</sub>NO<sub>5</sub>·CH<sub>4</sub>O, (Ia), dimethylammonium chelidamate (dimethylammonium 6-carboxy-4-hydroxypyridine-2-carboxylate),  $C_2H_8N^+ \cdot C_7H_4NO_5^-$ , (Ib), and chelidamic acid dimethyl sulfoxide monosolvate, C7H5NO5·C2H6OS, (Ic). While the zwitterionic pyridinium carboxylate in (Ia) can be explained from the  $pK_a$  values, a (partially) deprotonated hydroxy group in the presence of a neutral carboxy group, as observed in (Ib) and (Ic), is unexpected. In (Ib), there are two formula units in the asymmetric unit with the chelidamic acid entities connected by a symmetric  $O-H \cdots O$  hydrogen bond. Also, crystals of chelidamic acid dimethyl ester (dimethyl 4-hydroxypyridine-2,6-dicarboxylate) were obtained as a monohydrate,  $C_9H_9NO_5H_2O_1$  (IIa), and as a solvent-free modification, in which both ester molecules adopt the hydroxypyridine form. In (IIa), the solvent water molecule stabilizes the synperiplanar conformation of both carbonyl O atoms with respect to the pyridine N atom by two  $O-H \cdots O$ hydrogen bonds, whereas an antiperiplanar arrangement is observed in the water-free structure. A database study and ab initio energy calculations help to compare the stabilities of the various ester conformations.

### Comment

Chelidamic acid, (I), and its derivatives are widely used as starting materials for multichelating ligands in coordination chemistry, biochemistry and medicinal chemistry (Zou *et al.*, 2009). They can adopt different tautomeric and zwitterionic forms, resulting from intra- or intermolecular proton transfer. A search of the Cambridge Structural Database (CSD, Version 5.33 of November 2011, plus two updates; Allen, 2002) for 4-hydroxypyridine and 4-pyridone fragments yielded 68 structures, of which 36 exhibit the hydroxypyridine tautomer [mean C-O = 1.34 (2) Å] and 32 the pyridone form [mean C-O = 1.268 (14) Å]. According to a density functional theory (DFT) study, unsubstituted 4-hydroxypyridine is



more stable than 4-pyridone; however, the stabilities are reversed if two methyl ester groups are substituted at positions 2 and 6 (Alkorta & Elguero, 2001). In order to examine these interesting structural aspects, we recrystallized chelidamic acid from various solvents and obtained a methanol monosolvate, (*Ia*), a dimethylammonium salt, (*Ib*), and a dimethyl sulfoxide monosolvate, (*Ic*). For comparison, we also crystallized its dimethyl ester as a monohydrate, (*IIa*), and as a solvent-free modification, (*II*), of lower crystal quality (Tutughamiarso *et al.*, 2009).



Pseudopolymorph (Ia) crystallized in the monoclinic space group  $P2_1/n$ , with one chelidamic acid and one methanol molecule in the asymmetric unit (Fig. 1). Proton transfer from one of the carboxy groups to the pyridine N atom has led to a zwitterionic form. The O atoms of the carboxylate group are displaced by 0.183 (2) and 0.326 (2) Å in opposite directions from the planar pyridine ring [N1-C2-C21-O21 = $168.44 (13)^{\circ}$  and  $N1-C2-C21-O22 = -12.50 (19)^{\circ}]$ . The planes through the neutral carboxy group and the pyridine ring enclose a dihedral angle of 6.1 (2)°, with the carbonyl O atom synperiplanar to the N atom [N1-C6-C61-O61 = $5.00 (19)^{\circ}]$ . Two chelidamic acid and two methanol molecules form a centrosymmetric dimer held together by six hydrogen



### Figure 1

A perspective view of (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates an  $O-H\cdots O$  hydrogen bond.



### Figure 2

A partial packing diagram for (I*a*). Dashed lines indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii)  $x - \frac{1}{2}$ ,  $-y + \frac{3}{2}$ ,  $z + \frac{1}{2}$ .]

bonds: the chelidamic acid molecules are connected by an  $R_2^2(10)$  interaction (Bernstein *et al.*, 1995) with two N-H···O hydrogen bonds and the chelidamic acid and the methanol molecules are connected by an  $R_3^3(11)$  interaction with four O-H···O hydrogen bonds (Table 1 and Fig. 2). However, since the N1···O61 distance of 3.4354 (18) Å is well beyond the expected value for that kind of hydrogen bond, it seems that the two N-H···O interactions are more like close contacts resulting from the dimer formation through the O-H···O hydrogen bonds with the solvent. These dimers are linked into chains running along the *ac* diagonal by further O-H···O hydrogen bonds between the 4-hydroxy and carboxylate groups, with a dihedral angle of 65.21 (2)° between neighbouring chelidamic acid molecules.

Compound (Ib), which crystallized in the triclinic space group  $P\overline{1}$ , was obtained by recrystallization of chelidamic acid



### Figure 3

A perspective view of (Ib), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate hydrogen bonds and the two intramolecular  $N1'-H\cdots$ O interactions.

from commercial dimethylformamide. Under the crystallization conditions, the solvent probably reacted with water to form formic acid and dimethylamine, which would explain the unexpected formation of the dimethylammonium salt of chelidamic acid. As another surprise, the asymmetric unit of (Ib) consists, apart from two dimethylammonium cations, either of one neutral acid molecule and one dianion or of two monoanions with different constitution, depending on the position of one H atom between the two chelidamic acid entities (Fig. 3). Actually carboxy atom O22 and hydroxy atom O41' are connected by a symmetric  $O-H \cdots O$  hydrogen bond characterized by a very short O22···O41' distance of 2.4788 (15) Å, and O22-H22 and O41'-H22 distances of 1.24 (4) Å, which are significantly longer than a standard O-H bond. In the unprimed entity, the pyridine N atom is antiperiplanar to one of the carbonyl O atoms [N1-C2- $C21-O21 = -157.69 (15)^{\circ}$  and synperiplanar to the other  $[N1-C6-C61-O61 = 7.9 (3)^{\circ}]$ . In the primed entity, the planes of the carboxylate groups and the pyridine ring enclose dihedral angles of 4.9 (2) and 11.5 (2) $^{\circ}$ , respectively. The short distances between the N1'-H group and the carboxylate O atoms give rise to strong electrostatic interactions. Alternating chelidamic acid entities, whose planes enclose a dihedral angle of  $17.45 (3)^{\circ}$ , form double chains held together by two different  $R_4^4(30)$  arrangements of O-H···O hydrogen bonds. The dimethylammonium cations connect these double chains



**Figure 4** A partial packing diagram for (*Ib*). Dashed lines indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown. [Symmetry codes: (i) x + 1, y - 1, z + 1; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x, y + 1, z.]

into a three-dimensional network by  $N-H\cdots N$  and  $N-H\cdots O$  interactions (Table 2 and Fig. 4).

The asymmetric unit of pseudopolymorph (I*c*), which also crystallized in  $P\overline{1}$ , contains one planar chelidamic acid (r.m.s. deviation = 0.022 Å for all non-H atoms) and one dimethyl sulfoxide molecule connected by an  $O-H\cdots O$  hydrogen bond (Fig. 5). Both carbonyl O atoms are synperiplanar to the pyridine N atom [torsion angles = 3.46 (15) and  $-0.11 (15)^{\circ}$ ]. Since the latter is protonated, one would expect that, similar to (I*a*), one of the carboxy groups is deprotonated. However, not



### Figure 5

A perspective view of (Ic), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line between the two molecules indicates an  $O-H\cdots O$  hydrogen bond, while the other four dashed lines show either intramolecular  $N-H\cdots O$  interactions or bonds to H atoms disordered over two equally occupied positions.

only the H atom bonded to carboxy atom O22, but also that bonded to hydroxy atom O41, is disordered over two equally occupied positions on both sides of inversion centres. Thus, the molecular structure may be described as a superposition of four distinct forms: protonated and zwitterionic hydroxypyridine, as well as neutral and deprotonated pyridone. As in (*Ib*), there are close contacts between the protonated N atom and the neighbouring O atoms. The crystal packing of (*Ic*) shows layers parallel to the (111) plane held together by O–  $H \cdots O$  and C– $H \cdots O$  interactions (the latter from atom C5 to the solvent molecule) (Table 3 and Fig. 6).

Compound (II*a*) crystallized in the monoclinic space group I2/a with one chelidamic acid dimethyl ester molecule and one water molecule in the asymmetric unit (Fig. 7). An  $R_2^2(10)$  hydrogen-bonding pattern between the carbonyl O atoms and the water molecule stabilizes the synperiplanar conformation between these O atoms and the pyridine N atom [torsion angles = 0.2 (2) and 6.3 (2)°]. Furthermore, the water molecule accepts a hydrogen bond from the hydroxy group, thus forming chains along the *a* axis (Table 4 and Fig. 8). The conformation of (II*a*) differs from that of the solvent-free structure of (II) (Fig. 9), where both carbonyl O atoms are antiperiplanar to the N atom (Tutughamiarso *et al.*, 2009).

In contrast to the DFT study (Alkorta & Elguero, 2001), chelidamic acid dimethyl ester adopts the hydroxypyridine tautomeric form in the solid state. However, the situation is more complex for (Ia)–(Ic). The  $pK_a$  values of chelidamic acid ( $pK_{a1} = 1.4$ ,  $pK_{a2} = 3.1$  and  $pK_{a3} = 10.9$ ; Norkus *et al.*, 2003) suggest a proton transfer from one of the carboxy groups to the pyridine N atom. The zwitterionic form present in (Ia) is therefore expected; it is also observed in the crystal structure of chelidamic acid monohydrate (CSD refcode KIXCUP; Hall





A partial packing diagram for (I*c*). Dashed lines indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding and only one site of each disordered H atom are shown. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y + 2, -z + 2; (iii) -x + 1, -y + 1, -z + 2.]





A perspective view of (II*a*), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. Only the major occupied sites of the disordered methyl groups are shown.

*et al.*, 2000), but with an antiperiplanar conformation between the carbonyl O and the pyridine N atom.

In the short O41'-H···O22 hydrogen bond observed in (*Ib*), the H atom is located very close to the mid-point between the two O atoms. Therefore it is not possible to clearly distinguish which group is deprotonated. A similar hydrogen bond is observed in the structure of the guanidinium salt of chelidamic acid [O···O and O-H distances = 2.46, 1.19 and 1.30 Å; refcode SARJIF (Moghimi *et al.*, 2005)]. A comparison of the C-O bond lengths in (*Ib*) with standard values (Allen *et al.*, 1987) and those in (*Ia*) shows that the substituent at atom C2 is rather close to a neutral carboxy group, while the C4'-O41' bond length of 1.2899 (18) Å resembles that of a



### Figure 8

A partial packing diagram for (II*a*). Dashed lines indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown. [Symmetry code: (i)  $x + \frac{1}{2}, -y + 2, z$ .]





A partial packing diagram for the solvent-free structure of (II), showing hydrogen-bonded chains. Dashed lines indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown.

phenolate ion (Table 5). So it seems that this hydroxy group is at least partially deprotonated in the presence of a neutral carboxy group at C6.

That this is not pure speculation is confirmed by structure (Ic), which shows C–O bond lengths similar to those in (Ib). Here, clearly one H atom is shared between two carboxy groups and one between two hydroxy groups, again in the presence of a –COOH group at atom C6. In view of the  $pK_a$  values mentioned above, these are unexpected results. The O–H···O hydrogen bond connecting two hydroxy groups (of which one is deprotonated) may also be regarded as a connection between a protonated hydroxypyridine and a pyridone moiety (Fig. 6).

Although three of the four pyridine N atoms in (Ia)-(Ic) are protonated, there are no strong intermolecular N-H···O interactions resulting from that. In (Ia), there is only a rather long N-H···O hydrogen bond, whereas in (Ib) and (Ic), the N-H groups are not involved in the intermolecular hydrogen bonding. Instead they form close contacts (or perhaps intramolecular hydrogen bonds) to the neighbouring carboxylate and carboxy groups.

In (II*a*) and the solvent-free form of (II), different conformations of the ester groups are observed. A CSD study of diesters of pyridine-2,6-dicarboxylic acids yielded 18 entries. Comparable with (II*a*), ten entries show a synperiplanar (*sp*) conformation between both carbonyl O atoms and the pyridine N atom [refcodes ADEKOK (Huang & Xu, 2006), DELXUO (Gao *et al.*, 2006), EMOJAS (Felsmann *et al.*, 2011),

## organic compounds

TIFQUU, TIFRAB, TIFREF, TIFRIJ, TIFROP, TIFRUV (Grossel *et al.*, 2001) and XEFDUH (Froidevaux *et al.*, 2000)]. In three entries, an antiperiplanar (*ap*) conformation similar to the solvent-free structure of (II) is observed [refcodes SAYXUM (Du *et al.*, 2006), VAHFOA (Habata *et al.*, 2001) and YIVYOC (Abhayawardhana *et al.*, 2007)]. In the remaining five entries, one carbonyl O atom adopts an *sp* and the other an *ap* conformation with respect to the pyridine N atom [refcodes DUZPIY (Kaboub *et al.*, 2010), GARROH (Bettencourt-Dias *et al.*, 2005), HOSPAG (Boger *et al.*, 1999), KITVOZ (Picot *et al.*, 2008) and XIBRUW (Santoni *et al.*, 2007)].

In order to compare the stabilities of the various conformers and tautomers of chelidamic acid dimethyl ester, (II), we have calculated the energies of the main conformers (sp/sp, sp/ ap and ap/ap) of the hydroxypyridine and the pyridone tautomer by quantum-mechanical methods. For the hydroxypyridine tautomer, the *ap/ap* conformation [as in the solventfree structure of (II)] is favoured by about  $15 \text{ kJ mol}^{-1}$ compared to sp/sp. The opposite order resulted for the pyridone tautomer; here the *sp/sp* conformation is more stable than ap/ap by about 13 kJ mol<sup>-1</sup>. For both series, the sp/apenergy is approximately the average of the other two. Obviously it makes a big difference for the preferred ester conformation if there is just an N atom or instead an N-H group between the COOR substituents. These calculations confirm that the sp/sp conformation observed in (IIa) is considerably stabilized by the bridging water molecule.

### Experimental

Single crystals of (I*a*), (I*b*) and (I*c*) were obtained by recrystallization of commercially available chelidamic acid from various solvents. Chelidamic acid (5.5 mg, 0.030 mmol) dissolved in methanol (520  $\mu$ l) at 323 K yielded (I*a*) by slow evaporation over several days. Salt (I*b*) was obtained by recrystallization of chelidamic acid (5.1 mg, 0.028 mmol) from dimethylformamide (75  $\mu$ l) at 323 K and pseudopolymorph (I*c*) by recrystallization of chelidamic acid (5.1 mg, 0.028 mmol) from dimethyl sulfoxide (55  $\mu$ l) at 269 K.

Chelidamic acid dimethyl ester was prepared from chelidamic acid (1.0 g, 0.005 mol) by reaction with methanol (75 ml) in the presence of sulfuric acid (100  $\mu$ l). After refluxing at 373 K for 2 h, the mixture was cooled and extracted with ethyl acetate (3 × 185 ml) from water. The organic layer was dried over magnesium sulfate. The solvent was removed, whereupon (II*a*) precipitated as a light-yellow solid (0.97 g, 84%). [The solvent-free form had been obtained by recrystallization of chelidamic acid dimethyl ester (5.5 mg, 0.026 mmol) from tetrahydrofuran (50  $\mu$ l) at room temperature.]

### Pseudopolymorph (Ia)

Crystal data  $C_7H_5NO_5 \cdot CH_4O$   $M_r = 215.16$ Monoclinic,  $P2_1/n$  a = 5.8256 (5) Å b = 12.5648 (12) Å c = 12.7464 (11) Å  $\beta = 100.303$  (7)°

 $V = 917.96 (14) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.14 \text{ mm}^{-1}$  T = 173 K $0.52 \times 0.50 \times 0.44 \text{ mm}$ 

### Table 1

Hydrogen-bond geometry (Å, °) for (Ia).

| $D - H \cdots A$                                                                                 | $D-{\rm H}$                                  | $H \cdot \cdot \cdot A$                      | $D \cdots A$                                             | $D - \mathbf{H} \cdots A$                   |
|--------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|---------------------------------------------|
| $N1 - H1 \cdots O61^{i} O41 - H41 \cdots O21^{ii} O62 - H62 \cdots O1M O1M - H1M \cdots O22^{i}$ | 0.86 (2)<br>1.07 (3)<br>1.03 (3)<br>0.97 (3) | 2.61 (2)<br>1.43 (3)<br>1.50 (3)<br>1.71 (3) | 3.4354 (18)<br>2.4827 (14)<br>2.5274 (15)<br>2.6617 (16) | 163.7 (19)<br>170 (2)<br>174 (3)<br>167 (2) |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii)  $x - \frac{1}{2}$ ,  $-y + \frac{3}{2}$ ,  $z + \frac{1}{2}$ .

### Data collection

Stoe IPDS II two-circle diffractometer 8713 measured reflections

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$  $wR(F^2) = 0.096$ S = 1.071712 reflections 153 parameters

### Salt (Ib)

### Crystal data

 $C_{2}H_{8}N^{+} \cdot C_{7}H_{4}NO_{5}^{-}$   $M_{r} = 228.20$ Triclinic,  $P\overline{1}$  a = 7.3688 (8) Å b = 11.1416 (12) Å c = 14.3584 (15) Å  $\alpha = 69.025 (8)^{\circ}$   $\beta = 79.438 (9)^{\circ}$ 

### Data collection

Stoe IPDS II two-circle diffractometer 10298 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ H atoms  $wR(F^2) = 0.114$ indepe S = 1.00refinen 3884 reflections  $\Delta \rho_{max} = 0$ 325 parameters  $\Delta \rho_{min} = 0$ 

### Pseudopolymorph (Ic)

Crystal data

 $C_7H_5NO_5 \cdot C_2H_6OS$   $M_r = 261.25$ Triclinic, *P*1 a = 4.7460 (4) Å b = 10.4917 (9) Å c = 11.9787 (11) Å  $\alpha = 103.592 (7)^{\circ}$  $\beta = 97.606 (7)^{\circ}$ 

### Data collection

Stoe IPDS II two-circle diffractometer Absorption correction: multi-scan (*MULABS*; Spek, 2009; Blessing, 1995)  $T_{\rm min} = 0.897, T_{\rm max} = 0.936$  1712 independent reflections 1491 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.043$ 

H atoms treated by a mixture of independent and constrained refinement 
$$\begin{split} &\Delta\rho_{max}=0.18~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.26~e~{\rm \AA}^{-3} \end{split}$$

 $\gamma = 72.455 (9)^{\circ}$   $V = 1045.74 (19) \text{ Å}^3$  Z = 4Mo K $\alpha$  radiation  $\mu = 0.12 \text{ mm}^{-1}$  T = 173 K $0.42 \times 0.40 \times 0.40 \text{ mm}$ 

3884 independent reflections 3102 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.066$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$ 

 $\gamma = 101.651 (7)^{\circ}$   $V = 557.59 (9) \text{ Å}^{3}$  Z = 2Mo K\alpha radiation  $\mu = 0.31 \text{ mm}^{-1}$  T = 173 K $0.36 \times 0.28 \times 0.22 \text{ mm}$ 

11141 measured reflections 2552 independent reflections 2458 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.038$ 

Table 2Hydrogen-bond geometry (Å, °) for (Ib).

| $D - H \cdots A$                         | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| O41′ - H22O22                            | 1 24 (4) | 1 24 (4)                | 2 4788 (15)  | 176 (3)                              |
| $O41 - H41 \cdots O22'^{i}$              | 0.99(3)  | 1.59 (3)                | 2.5765 (16)  | 175 (3)                              |
| $O62 - H62 \cdot \cdot \cdot O62'^{ii}$  | 1.03 (3) | 1.50 (3)                | 2.5255 (16)  | 174 (3)                              |
| $N1'-H1'\cdots O22'$                     | 0.87(2)  | 2.31 (2)                | 2.6437 (17)  | 102.8 (15)                           |
| $N1' - H1' \cdots O61'$                  | 0.87(2)  | 2.348 (19)              | 2.7095 (17)  | 105.0 (15)                           |
| $N2Y - H2Y1 \cdot \cdot \cdot N1$        | 0.92(2)  | 2.13 (2)                | 3.005 (2)    | 159 (2)                              |
| $N2Y - H2Y2 \cdot \cdot \cdot O21^{iii}$ | 0.96(2)  | 1.94 (3)                | 2.8459 (19)  | 157.1 (19)                           |
| $N2Z-H2Z2\cdots O21'^{iv}$               | 0.96 (3) | 1.82 (3)                | 2.7645 (19)  | 167 (2)                              |
| $N2Z-H2Z1\cdots O61'$                    | 0.96 (2) | 1.93 (2)                | 2.8151 (19)  | 152.5 (18)                           |

Symmetry codes: (i) x + 1, y - 1, z + 1; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x, y - 1, z.

### Table 3

Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (Ic).

| $D - H \cdot \cdot \cdot A$                                                                                                                                                          | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------|------------------|
| $\begin{array}{c} N1 - H1 \cdots O21 \\ N1 - H1 \cdots O61 \\ C5 - H5 \cdots O1S^{i} \\ O22 - H22 \cdots O22^{ii} \\ O41 - H41 \cdots O41^{iii} \\ O62 - H62 \cdots O1S \end{array}$ | 0.818 (18) | 2.289 (18)              | 2.6478 (12)  | 107.2 (14)       |
|                                                                                                                                                                                      | 0.818 (18) | 2.331 (17)              | 2.6720 (12)  | 105.8 (14)       |
|                                                                                                                                                                                      | 0.95       | 2.31                    | 3.2593 (13)  | 174              |
|                                                                                                                                                                                      | 0.84       | 1.64                    | 2.4703 (15)  | 170              |
|                                                                                                                                                                                      | 0.84       | 1.63                    | 2.4509 (16)  | 166              |
|                                                                                                                                                                                      | 0.94 (2)   | 1.61 (2)                | 2.5419 (12)  | 173 (2)          |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y + 2, -z + 2; (iii) -x + 1, -y + 1, -z + 2.

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.028$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.078$               | independent and constrained                                |
| S = 1.06                        | refinement                                                 |
| 2552 reflections                | $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 169 parameters                  | $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Dimethyl ester (IIa)

### Crystal data

C<sub>9</sub>H<sub>9</sub>NO<sub>5</sub>·H<sub>2</sub>O  $M_r = 229.19$ Monoclinic, I2/a a = 17.241 (3) Å b = 6.1519 (12) Å c = 20.710 (4) Å  $\beta = 107.96$  (3)°

### Data collection

Stoe IPDS II two-circle diffractometer 5752 measured reflections

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.100$ S = 1.011951 reflections 159 parameters  $V = 2089.6 (7) Å^{3}$  Z = 8Mo K\alpha radiation  $\mu = 0.12 \text{ mm}^{-1}$  T = 173 K $0.40 \times 0.28 \times 0.13 \text{ mm}$ 

1951 independent reflections 1474 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.080$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$ 

All H atoms were initially located by difference Fourier synthesis. Subsequently, H atoms bonded to C atoms were refined using a riding model, with methyl C-H = 0.98 Å and aromatic C-H = 0.95 Å, and

### Table 4

Hydrogen-bond geometry (Å, °) for (IIa).

| $D-\mathrm{H}\cdots A$                                                          | D-H                  | $H \cdots A$         | $D \cdots A$             | $D - \mathbf{H} \cdots A$ |
|---------------------------------------------------------------------------------|----------------------|----------------------|--------------------------|---------------------------|
| $\begin{array}{c} O41 - H41 \cdots O1W^{i} \\ O1W - H1W \cdots O61 \end{array}$ | 1.00 (3)<br>0.99 (3) | 1.62 (3)<br>1.88 (3) | 2.6225 (19)<br>2.869 (2) | 176 (2)<br>176 (2)        |
| $O1W-H2W\cdots O21$                                                             | 0.84 (3)             | 2.11 (3)             | 2.928 (2)                | 168 (2)                   |

Symmetry code: (i)  $x + \frac{1}{2}, -y + 2, z$ .

## Table 5C-O bond lengths (Å) for (Ia)-(Ic).

|             | (I <i>a</i> ) | (I <i>b</i> ) | (I <i>c</i> ) |
|-------------|---------------|---------------|---------------|
| C4-O41      | 1.3118 (18)   | 1.3410 (19)   | 1.2956 (13)   |
| C4′-O41′    |               | 1.2899 (18)   | ( )           |
| C21-O21     | 1.2644 (18)   | 1.2285 (19)   | 1.2317 (14)   |
| C21′ – O21′ |               | 1.246 (2)     |               |
| C21-O22     | 1.2409 (19)   | 1.2998 (18)   | 1.2823 (13)   |
| C21′ – O22′ |               | 1.2594 (19)   |               |
| C61-O61     | 1.2124 (19)   | 1.208 (2)     | 1.2180 (13)   |
| C61′ – O61′ |               | 1.246 (2)     |               |
| C61-O62     | 1.3136 (18)   | 1.318 (2)     | 1.3095 (13)   |
| C61' - O62' |               | 1.261 (2)     |               |
|             |               |               |               |

with  $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$  for methyl or  $1.2 U_{\rm eq}({\rm C})$  for aromatic H atoms. Apart from (II*a*), the methyl groups were allowed to rotate about their local threefold axes.

In (Ia), (Ib) and (IIa), H atoms bonded to N or O atoms were refined isotropically.

In (Ib), a symmetric hydrogen bond was verified by close examination of the difference electron-density map, which clearly showed one maximum between two O atoms.

In (Ic), H atoms bonded to the N atom and to carboxy atom O62 were refined isotropically. A free isotropic refinement of the H atoms bonded to carboxy atom O22 and hydroxy atom O41 resulted in symmetric hydrogen bonds, with both H atoms at inversion centres. However, the difference electron-density map revealed that both H atoms are disordered over two positions. They were therefore refined isotropically with O-H = 0.84 Å and a site-occupation factor of 0.5, and were allowed to rotate about the C–O bond.

In (II*a*), the H atoms of both methyl groups are disordered over two positions, with site-occupation factors of 0.61 (2) and 0.70 (2) for the major occupied orientations. Owing to the large  $\beta$  value of 118.86 (1)° for the standard space group setting *C*2/*c* and correlation coefficients larger than 0.5 for several  $U_{13}/U_{11}$  and  $U_{13}/U_{33}$  pairs, the nonstandard setting *I*2/*a* was used.

Ab initio energy calculations were performed with geometry optimization using GAUSSIAN (Frisch *et al.*, 2004) at the B3LYP/6–31++G(d,p) level starting from the crystal structures and conformations derived thereof.

For all compounds, data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008) and *XP* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Dr Michael Bolte for helpful discussions and Dr Quoc Cuong Ton for useful advice.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3095). Services for accessing these data are described at the back of the journal.

### References

- Abhayawardhana, A. D., Parvez, M. & Sutherland, T. C. (2007). Acta Cryst. E63, 02963–02965.
- Alkorta, I. & Elguero, J. (2001). J. Heterocycl. Chem. 38, 1387-1391.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bettencourt-Dias, A. de, Viswanathan, S. & Ruddy, K. (2005). Cryst. Growth Des. 5, 1477–1483.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Boger, D. L., Hong, J., Hikota, M. & Ishida, M. (1999). J. Am. Chem. Soc. 121, 2471–2477.
- Du, P., Zhang, X.-R., Xu, M.-H. & Zhang, S.-S. (2006). Acta Cryst. E62, o300– o302.
- Felsmann, M., Hübscher, J., Eissmann, F., Seichter, W. & Weber, E. (2011). Z. Naturforsch. Teil B, 66, 197–204.
- Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
- Froidevaux, P., Harrowfield, J. M. & Sobolev, A. N. (2000). Inorg. Chem. 39, 4678–4687.
- Gao, X.-S., Wan, Y.-M., Zhou, Q., Shi, Y.-X. & Wang, J.-T. (2006). Acta Cryst. E62, 03145–03146.

- Grossel, M. C., Golden, C. A., Gomm, J. R., Horton, P. N., Merckel, D. A. S., Oszer, M. E. & Parker, R. A. (2001). *CrystEngComm*, 3, 170–173.
- Habata, Y., Takeshita, M., Fukuda, Y., Akabori, S. & Bradshaw, J. S. (2001). J. Heterocycl. Chem. 38, 1323–1327.
- Hall, A. K., Harrowfield, J. M., Skelton, B. W. & White, A. H. (2000). Acta Cryst. C56, 448–450.
- Huang, J.-Y. & Xu, W. (2006). Acta Cryst. E62, o2653-o2654.
- Kaboub, L., Fabre, J.-M., Vendier, L. & Legros, J.-P. (2010). Acta Cryst. C66, 0429–0432.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Moghimi, A., Aghabozorg, H., Sheshmani, S. & Soleimannejad, J. (2005). Anal. Sci. 21, x71-x72.
- Norkus, E., Stalnioniene, I. & Crans, D. C. (2003). *Heteroatom Chem.* 14, 625–632.
- Picot, A., Feuvrie, C., Barsu, C., Malvolti, F., Le Guennic, B., Le Bozec, H., Andraud, C., Toupet, L. & Maury, O. (2008). *Tetrahedron*, 64, 399– 411.
- Santoni, M.-P. C., Fang, Y.-Q., Hanan, G. S., Proust, A. & Hasenknopf, B. (2007). Acta Cryst. E63, o2560–o2562.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Private communication (deposition number CCDC 752303). CCDC, Cambridge, England.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zou, J.-P., Zhou, G.-W., Zhang, X., Wang, M.-S., Lu, Y.-B., Zhou, W.-W., Zhang, Z.-J., Guo, G.-C. & Huang, J.-S. (2009). *CrystEngComm*, **11**, 972– 974.

### Acta Cryst. (2012). C68, o344-o350 [doi:10.1107/S0108270112031691]

## Pseudopolymorphs of chelidamic acid and its dimethyl ester

### Maya Tutughamiarso, Thorsten Pisternick and Ernst Egert

### (Ia) 4-hydroxypyridine-2,6-dicarboxylic acid methanol monosolvate

| Crystal data                                                     |                                                                           |
|------------------------------------------------------------------|---------------------------------------------------------------------------|
| C <sub>7</sub> H <sub>5</sub> NO <sub>5</sub> ·CH <sub>4</sub> O | F(000) = 448                                                              |
| $M_r = 215.16$                                                   | $D_{\rm x} = 1.557 {\rm ~Mg} {\rm ~m}^{-3}$                               |
| Monoclinic, $P2_1/n$                                             | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å                     |
| Hall symbol: -P 2yn                                              | Cell parameters from 12422 reflections                                    |
| a = 5.8256(5) Å                                                  | $\theta = 3.2 - 25.9^{\circ}$                                             |
| b = 12.5648 (12)  Å                                              | $\mu=0.14~\mathrm{mm^{-1}}$                                               |
| c = 12.7464 (11)  Å                                              | T = 173  K                                                                |
| $\beta = 100.303 \ (7)^{\circ}$                                  | Block, yellow                                                             |
| $V = 917.96 (14) \text{ Å}^3$                                    | $0.52 \times 0.50 \times 0.44 \text{ mm}$                                 |
| Z = 4                                                            |                                                                           |
| Data collection                                                  |                                                                           |
| Stoe IPDS II two-circle                                          | 1491 reflections with $I > 2\sigma(I)$                                    |
| diffractometer                                                   | $R_{\rm int} = 0.043$                                                     |
| Radiation source: fine-focus sealed tube                         | $\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ |
| Graphite monochromator                                           | $h = -5 \rightarrow 7$                                                    |
| $\omega$ scans                                                   | $k = -15 \rightarrow 15$                                                  |
| 8713 measured reflections                                        | $l = -15 \rightarrow 15$                                                  |
| 1712 independent reflections                                     |                                                                           |
| Refinement                                                       |                                                                           |
| Refinement on $F^2$                                              | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                                       | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                                  | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.096$                                                | neighbouring sites                                                        |
| S = 1.07                                                         | H atoms treated by a mixture of independent                               |
| 1712 reflections                                                 | and constrained refinement                                                |
| 153 parameters                                                   | $w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.3671P]$                         |
| 0 restraints                                                     | where $P = (F_0^2 + 2F_c^2)/3$                                            |
| Primary atom site location: structure-invariant                  | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| direct methods                                                   | $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$                 |
|                                                                  | $\Delta  ho_{ m min} = -0.26 \ { m e} \ { m \AA}^{-3}$                    |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| N1   | 0.6359 (2)   | 0.63208 (10) | 0.45800 (9)  | 0.0174 (3)                  |  |
| H1   | 0.760 (4)    | 0.6038 (17)  | 0.4439 (16)  | 0.037 (5)*                  |  |
| C2   | 0.4981 (2)   | 0.68738 (11) | 0.37964 (11) | 0.0170 (3)                  |  |
| C3   | 0.2995 (3)   | 0.73542 (11) | 0.39842 (11) | 0.0183 (3)                  |  |
| H3   | 0.2024       | 0.7731       | 0.3428       | 0.022*                      |  |
| C4   | 0.2381 (3)   | 0.72914 (11) | 0.50048 (11) | 0.0181 (3)                  |  |
| C5   | 0.3849 (3)   | 0.66925 (11) | 0.58014 (11) | 0.0182 (3)                  |  |
| H5   | 0.3469       | 0.6617       | 0.6492       | 0.022*                      |  |
| C6   | 0.5812 (3)   | 0.62263 (11) | 0.55661 (11) | 0.0171 (3)                  |  |
| C21  | 0.5859 (3)   | 0.69354 (11) | 0.27464 (11) | 0.0174 (3)                  |  |
| O21  | 0.44112 (19) | 0.72881 (9)  | 0.19653 (8)  | 0.0246 (3)                  |  |
| O22  | 0.79039 (19) | 0.66493 (9)  | 0.27627 (8)  | 0.0252 (3)                  |  |
| O41  | 0.04962 (18) | 0.77874 (9)  | 0.51697 (8)  | 0.0219 (3)                  |  |
| H41  | 0.021 (5)    | 0.774 (2)    | 0.597 (2)    | 0.064 (7)*                  |  |
| C61  | 0.7573 (3)   | 0.56000 (11) | 0.63437 (11) | 0.0187 (3)                  |  |
| O61  | 0.9366 (2)   | 0.52961 (9)  | 0.60839 (8)  | 0.0266 (3)                  |  |
| O62  | 0.69101 (19) | 0.54420 (9)  | 0.72637 (8)  | 0.0230 (3)                  |  |
| H62  | 0.825 (5)    | 0.505 (2)    | 0.775 (2)    | 0.065 (7)*                  |  |
| C1M  | 1.1971 (3)   | 0.52753 (15) | 0.89663 (16) | 0.0395 (5)                  |  |
| H1M1 | 1.1487       | 0.5720       | 0.9519       | 0.059*                      |  |
| H1M2 | 1.2307       | 0.5728       | 0.8386       | 0.059*                      |  |
| H1M3 | 1.3374       | 0.4875       | 0.9273       | 0.059*                      |  |
| O1M  | 1.0126 (2)   | 0.45452 (9)  | 0.85558 (9)  | 0.0273 (3)                  |  |
| H1M  | 1.077 (4)    | 0.403 (2)    | 0.8130 (19)  | 0.055 (7)*                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| N1  | 0.0171 (7)  | 0.0204 (6)  | 0.0148 (6)  | -0.0007 (5) | 0.0028 (5)  | -0.0001 (5) |
| C2  | 0.0191 (7)  | 0.0175 (7)  | 0.0138 (7)  | -0.0041 (5) | 0.0009 (5)  | -0.0003 (5) |
| C3  | 0.0192 (7)  | 0.0215 (7)  | 0.0138 (7)  | -0.0011 (6) | 0.0013 (6)  | 0.0016 (5)  |
| C4  | 0.0176 (7)  | 0.0205 (7)  | 0.0157 (7)  | -0.0039 (6) | 0.0017 (6)  | -0.0024 (5) |
| C5  | 0.0205 (7)  | 0.0226 (7)  | 0.0113 (6)  | -0.0037 (6) | 0.0028 (5)  | -0.0008(5)  |
| C6  | 0.0189 (7)  | 0.0181 (7)  | 0.0137 (7)  | -0.0045 (6) | 0.0010 (5)  | -0.0008(5)  |
| C21 | 0.0194 (7)  | 0.0185 (7)  | 0.0151 (7)  | -0.0003 (5) | 0.0049 (5)  | -0.0004(5)  |
| O21 | 0.0230 (6)  | 0.0378 (6)  | 0.0138 (5)  | 0.0073 (5)  | 0.0052 (4)  | 0.0057 (4)  |
| O22 | 0.0214 (6)  | 0.0361 (6)  | 0.0192 (5)  | 0.0071 (5)  | 0.0064 (4)  | 0.0016 (5)  |
| O41 | 0.0189 (6)  | 0.0321 (6)  | 0.0153 (5)  | 0.0037 (4)  | 0.0046 (4)  | -0.0001 (4) |
| C61 | 0.0211 (8)  | 0.0196 (7)  | 0.0147 (7)  | -0.0025 (6) | 0.0015 (6)  | -0.0013 (5) |
| O61 | 0.0271 (6)  | 0.0336 (6)  | 0.0198 (6)  | 0.0080 (5)  | 0.0057 (5)  | 0.0031 (4)  |
| O62 | 0.0239 (6)  | 0.0310 (6)  | 0.0138 (5)  | 0.0027 (5)  | 0.0025 (4)  | 0.0046 (4)  |
| C1M | 0.0359 (10) | 0.0373 (10) | 0.0412 (10) | 0.0040 (8)  | -0.0044 (8) | -0.0034 (8) |
|     |             |             |             |             |             |             |

| <u>01M</u> | 0.0280 (6)        | 0.0334 (6) | 0.0197 (6) | 0.0064 (5)    | 0.0020 (5) | -0.0002 (5)  |
|------------|-------------------|------------|------------|---------------|------------|--------------|
| Geometri   | ic parameters (Å, | °)         |            |               |            |              |
| N1-C2      |                   | 1.3556 (19 | ))         | C21—O22       |            | 1.2409 (19)  |
| N1-C6      |                   | 1.3559 (19 | )          | C21—O21       |            | 1.2644 (18)  |
| N1—H1      |                   | 0.86(2)    |            | O41—H41       |            | 1.07 (3)     |
| C2—C3      |                   | 1.364 (2)  |            | C61—O61       |            | 1.2124 (19)  |
| C2-C21     | l                 | 1.5179 (19 | ))         | C61—O62       |            | 1.3136 (18)  |
| C3—C4      |                   | 1.412 (2)  |            | O62—H62       |            | 1.03 (3)     |
| С3—Н3      |                   | 0.9500     |            | C1M—O1M       |            | 1.439 (2)    |
| C4—O41     | l                 | 1.3118 (18 | 5)         | C1M—H1M1      |            | 0.9800       |
| C4—C5      |                   | 1.421 (2)  | ,<br>      | C1M—H1M2      |            | 0.9800       |
| C5—C6      |                   | 1.365 (2)  |            | C1M—H1M3      |            | 0.9800       |
| С5—Н5      |                   | 0.9500     |            | O1M—H1M       |            | 0.97 (3)     |
| C6—C61     | l                 | 1.513 (2)  |            |               |            |              |
| C2—N1-     | —C6               | 121.45 (13 | 5)         | C5—C6—C61     |            | 125.13 (13)  |
| C2-N1-     | —H1               | 118.1 (14) | /          | O22—C21—O21   |            | 128.17 (14)  |
| C6—N1-     | —H1               | 120.4 (14) |            | O22—C21—C2    |            | 116.38 (12)  |
| N1-C2-     | C3                | 120.45 (13 | 5)         | O21—C21—C2    |            | 115.45 (12)  |
| N1-C2-     | C21               | 115.30 (13 |            | C4—O41—H41    |            | 114.1 (14)   |
| C3—C2-     | C21               | 124.23 (13 | 5)         | O61—C61—O62   |            | 126.96 (13)  |
| C2—C3-     | C4                | 119.98 (13 | )          | O61—C61—C6    |            | 120.06 (13)  |
| C2—C3-     | -H3               | 120.0      | )          | O62—C61—C6    |            | 112.98 (13)  |
| C4—C3-     | —Н3               | 120.0      |            | С61—О62—Н62   |            | 107.2 (15)   |
| O41—C4     | 4—C3              | 118.57 (13 | )          | O1M—C1M—H1M1  |            | 109.5        |
| O41—C4     | 4—C5              | 123.47 (13 | 5)         | 01M—C1M—H1M2  |            | 109.5        |
| C3—C4-     | C5                | 117.96 (14 | ·)         | H1M1—C1M—H1M2 |            | 109.5        |
| C6—C5-     | C4                | 119.42 (13 | )          | O1M—C1M—H1M3  |            | 109.5        |
| C6—C5-     | -H5               | 120.3      | /          | H1M1—C1M—H1M3 | 1          | 109.5        |
| C4—C5-     | —H5               | 120.3      |            | H1M2—C1M—H1M3 | 5          | 109.5        |
| N1-C6-     | C5                | 120.72 (13 | 5)         | C1M—O1M—H1M   |            | 107.0 (14)   |
| N1-C6-     | —C61              | 114.14 (13 | )          |               |            |              |
| C6—N1-     | —С2—С3            | 0.1 (2)    |            | C4—C5—C6—N1   |            | -0.6 (2)     |
| C6-N1-     |                   | 178.30 (12 | 2)         | C4—C5—C6—C61  |            | 177.79 (13)  |
| N1-C2-     | C3C4              | 1.0 (2)    |            | N1—C2—C21—O22 |            | -12.50 (19)  |
| C21—C2     | 2—С3—С4           | -177.04 (1 | 3)         | C3—C2—C21—O22 |            | 165.63 (14)  |
| C2—C3-     | C4O41             | 178.04 (13 | 5)         | N1-C2-C21-O21 |            | 168.44 (13)  |
| C2—C3-     | C4C5              | -1.9 (2)   |            | C3—C2—C21—O21 |            | -13.4 (2)    |
| O41—C4     | 4—C5—C6           | -178.22 (1 | 3)         | N1-C6-C61-O61 |            | 5.00 (19)    |
| C3—C4-     | C5C6              | 1.7 (2)    |            | C5—C6—C61—O61 |            | -173.51 (14) |
| C2-N1-     | C6C5              | -0.3 (2)   |            | N1-C6-C61-O62 |            | -174.55 (12) |
| C2—N1-     | C6C61             | -178.86 (1 | 2)         | C5—C6—C61—O62 |            | 6.9 (2)      |

## Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|--------------------------|-------------|----------|--------------|-------------------------|
| N1—H1···O61 <sup>i</sup> | 0.86 (2)    | 2.61 (2) | 3.4354 (18)  | 163.7 (19)              |

Acta Cryst. (2012). C68, o344-o350

| O41—H41····O21 <sup>ii</sup> | 1.07 (3) | 1.43 (3) | 2.4827 (14) | 170 (2) |  |
|------------------------------|----------|----------|-------------|---------|--|
| O62—H62…O1M                  | 1.03 (3) | 1.50 (3) | 2.5274 (15) | 174 (3) |  |
| $O1M$ — $H1M$ ··· $O22^{i}$  | 0.97 (3) | 1.71 (3) | 2.6617 (16) | 167 (2) |  |

Z = 4

F(000) = 480

 $\theta = 3.0-25.7^{\circ}$  $\mu = 0.12 \text{ mm}^{-1}$ 

Block, colourless

 $0.42 \times 0.40 \times 0.40$  mm

T = 173 K

 $D_{\rm x} = 1.449 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 11295 reflections

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1/2, -y+3/2, z+1/2.

### (Ib) dimethylammonium 6-carboxy-4-hydroxypyridine-2-carboxylate

Crystal data

C<sub>2</sub>H<sub>8</sub>N<sup>+</sup>·C<sub>7</sub>H<sub>4</sub>NO<sub>5</sub><sup>-</sup>  $M_r = 228.20$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.3688 (8) Å b = 11.1416 (12) Å c = 14.3584 (15) Å a = 69.025 (8)°  $\beta = 79.438$  (9)°  $\gamma = 72.455$  (9)° V = 1045.74 (19) Å<sup>3</sup>

### Data collection

| Stoe IPDS II two-circle                  | 3102 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                           | $R_{\rm int} = 0.066$                                                     |
| Radiation source: fine-focus sealed tube | $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| Graphite monochromator                   | $h = -7 \rightarrow 8$                                                    |
| $\omega$ scans                           | $k = -13 \rightarrow 13$                                                  |
| 10298 measured reflections               | $l = -17 \rightarrow 17$                                                  |
| 3884 independent reflections             |                                                                           |

### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.043$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.114$                               | neighbouring sites                                        |
| S = 1.00                                        | H atoms treated by a mixture of independent               |
| 3884 reflections                                | and constrained refinement                                |
| 325 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0746P)^2]$                   |
| 0 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                            |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                                 | $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$  |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|---------------|--------------|-----------------------------|--|
| N1   | 1.07354 (19) | 0.18057 (13)  | 0.69845 (10) | 0.0147 (3)                  |  |
| C2   | 1.0139 (2)   | 0.28878 (15)  | 0.72811 (11) | 0.0144 (3)                  |  |
| C3   | 1.0279 (2)   | 0.28679 (15)  | 0.82396 (12) | 0.0175 (3)                  |  |
| H3   | 0.9845       | 0.3665        | 0.8407       | 0.021*                      |  |
| C4   | 1.1065 (2)   | 0.16621 (16)  | 0.89543 (12) | 0.0176 (3)                  |  |
| C5   | 1.1719 (2)   | 0.05255 (15)  | 0.86574 (12) | 0.0172 (3)                  |  |
| Н5   | 1.2275       | -0.0314       | 0.9115       | 0.021*                      |  |
| C6   | 1.1536 (2)   | 0.06554 (15)  | 0.76771 (12) | 0.0153 (3)                  |  |
| C21  | 0.9266 (2)   | 0.42058 (15)  | 0.65175 (11) | 0.0149 (3)                  |  |
| 021  | 0.92447 (18) | 0.52509 (11)  | 0.66324 (9)  | 0.0219 (3)                  |  |
| O22  | 0.85769 (17) | 0.41137 (11)  | 0.57818 (8)  | 0.0192 (3)                  |  |
| H22  | 0.767 (5)    | 0.522 (4)     | 0.526 (3)    | 0.098 (12)*                 |  |
| O41  | 1.1166 (2)   | 0.16544 (12)  | 0.98795 (9)  | 0.0270 (3)                  |  |
| H41  | 1.190 (5)    | 0.079 (3)     | 1.030 (2)    | 0.077 (9)*                  |  |
| C61  | 1.2267 (2)   | -0.05173 (15) | 0.72877 (12) | 0.0190 (4)                  |  |
| O61  | 1.2311 (2)   | -0.03798 (12) | 0.64113 (10) | 0.0376 (4)                  |  |
| O62  | 1.2869 (2)   | -0.16665 (11) | 0.79828 (9)  | 0.0253 (3)                  |  |
| H62  | 1.327 (5)    | -0.242 (3)    | 0.767 (3)    | 0.089 (10)*                 |  |
| N1′  | 0.4435 (2)   | 0.69879 (13)  | 0.22462 (10) | 0.0153 (3)                  |  |
| H1′  | 0.399 (3)    | 0.711 (2)     | 0.1687 (16)  | 0.024 (5)*                  |  |
| C2′  | 0.4312 (2)   | 0.80344 (15)  | 0.25502 (12) | 0.0142 (3)                  |  |
| C3′  | 0.5037 (2)   | 0.78274 (15)  | 0.34220 (11) | 0.0149 (3)                  |  |
| H3′  | 0.4905       | 0.8560        | 0.3643       | 0.018*                      |  |
| C4′  | 0.5991 (2)   | 0.65216 (15)  | 0.40032 (11) | 0.0149 (3)                  |  |
| C5′  | 0.6102 (2)   | 0.54665 (15)  | 0.36362 (12) | 0.0166 (3)                  |  |
| H5′  | 0.6732       | 0.4580        | 0.3995       | 0.020*                      |  |
| C6′  | 0.5312 (2)   | 0.57165 (15)  | 0.27748 (12) | 0.0154 (3)                  |  |
| C21′ | 0.3387 (2)   | 0.94067 (15)  | 0.18491 (12) | 0.0178 (3)                  |  |
| O21′ | 0.3214 (2)   | 1.03734 (11)  | 0.21314 (9)  | 0.0269 (3)                  |  |
| O22′ | 0.29196 (19) | 0.93962 (11)  | 0.10517 (9)  | 0.0248 (3)                  |  |
| O41′ | 0.67307 (17) | 0.63405 (11)  | 0.48060 (8)  | 0.0198 (3)                  |  |
| C61′ | 0.5305 (2)   | 0.46417 (15)  | 0.23593 (12) | 0.0183 (3)                  |  |
| O61′ | 0.42720 (19) | 0.49618 (11)  | 0.16680 (9)  | 0.0246 (3)                  |  |
| O62′ | 0.6373 (2)   | 0.35127 (12)  | 0.27677 (10) | 0.0325 (3)                  |  |
| C1Y  | 0.9274 (3)   | 0.1873 (2)    | 0.47622 (18) | 0.0404 (6)                  |  |
| H1Y1 | 0.9031       | 0.2087        | 0.4065       | 0.061*                      |  |
| H1Y2 | 0.8229       | 0.2415        | 0.5085       | 0.061*                      |  |
| H1Y3 | 0.9356       | 0.0929        | 0.5119       | 0.061*                      |  |
| N2Y  | 1.1090 (2)   | 0.21580 (14)  | 0.47896 (11) | 0.0223 (3)                  |  |
| H2Y1 | 1.132 (3)    | 0.198 (2)     | 0.5439 (18)  | 0.032 (6)*                  |  |
| H2Y2 | 1.097 (3)    | 0.309 (2)     | 0.4466 (18)  | 0.039 (6)*                  |  |
| C3Y  | 1.2769 (3)   | 0.14836 (19)  | 0.42541 (15) | 0.0360 (5)                  |  |
| H3Y1 | 1.3070       | 0.0523        | 0.4605       | 0.054*                      |  |
| H3Y2 | 1.3866       | 0.1820        | 0.4232       | 0.054*                      |  |
| H3Y3 | 1.2482       | 0.1661        | 0.3570       | 0.054*                      |  |
| C1Z  | 0.3843 (4)   | 0.3340 (2)    | 0.02766 (15) | 0.0401 (5)                  |  |
| H1Z1 | 0.3347       | 0.2929        | -0.0088      | 0.060*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H1Z2 | 0 5226     | 0 2964       | 0.0300       | 0.060*     |  |
|------|------------|--------------|--------------|------------|--|
| H1Z3 | 0.3573     | 0.4302       | -0.0065      | 0.060*     |  |
| N2Z  | 0.2908 (2) | 0.30742 (14) | 0.13127 (11) | 0.0243 (3) |  |
| H2Z1 | 0.344 (3)  | 0.350 (2)    | 0.1637 (16)  | 0.031 (5)* |  |
| H2Z2 | 0.317 (4)  | 0.213 (3)    | 0.1651 (18)  | 0.046 (7)* |  |
| C3Z  | 0.0795 (3) | 0.3568 (2)   | 0.13578 (17) | 0.0358 (5) |  |
| H3Z1 | 0.0439     | 0.4517       | 0.0971       | 0.054*     |  |
| H3Z2 | 0.0280     | 0.3440       | 0.2056       | 0.054*     |  |
| H3Z3 | 0.0271     | 0.3074       | 0.1077       | 0.054*     |  |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | U <sup>12</sup> | U <sup>13</sup> | <i>U</i> <sup>23</sup> |
|------|-------------|-----------------|-----------------|-----------------|-----------------|------------------------|
| N1   | 0.0160 (7)  | 0.0110 (6)      | 0.0150 (6)      | -0.0018 (5)     | -0.0034 (5)     | -0.0019 (5)            |
| C2   | 0.0124 (8)  | 0.0122 (7)      | 0.0162 (8)      | -0.0020(6)      | -0.0018(6)      | -0.0025(6)             |
| C3   | 0.0215 (9)  | 0.0108 (7)      | 0.0183 (8)      | -0.0002(6)      | -0.0044 (6)     | -0.0044(6)             |
| C4   | 0.0205 (9)  | 0.0160 (8)      | 0.0148 (8)      | -0.0026 (7)     | -0.0053 (6)     | -0.0033 (6)            |
| C5   | 0.0190 (8)  | 0.0109 (7)      | 0.0187 (8)      | -0.0010 (6)     | -0.0062 (6)     | -0.0013 (6)            |
| C6   | 0.0159 (8)  | 0.0105 (7)      | 0.0176 (8)      | -0.0012 (6)     | -0.0033 (6)     | -0.0032 (6)            |
| C21  | 0.0124 (8)  | 0.0142 (8)      | 0.0132 (8)      | 0.0004 (6)      | -0.0004 (6)     | -0.0020(6)             |
| O21  | 0.0306 (7)  | 0.0117 (5)      | 0.0200 (6)      | -0.0009(5)      | -0.0080(5)      | -0.0022(4)             |
| O22  | 0.0221 (6)  | 0.0151 (5)      | 0.0177 (6)      | -0.0003(5)      | -0.0078(5)      | -0.0028(5)             |
| O41  | 0.0472 (9)  | 0.0154 (6)      | 0.0159 (6)      | 0.0019 (6)      | -0.0138 (6)     | -0.0050(5)             |
| C61  | 0.0225 (9)  | 0.0132 (8)      | 0.0189 (8)      | 0.0002 (7)      | -0.0051 (7)     | -0.0048 (6)            |
| O61  | 0.0678 (11) | 0.0175 (6)      | 0.0208 (7)      | 0.0062 (7)      | -0.0122 (7)     | -0.0085 (5)            |
| O62  | 0.0413 (8)  | 0.0095 (5)      | 0.0215 (6)      | 0.0017 (5)      | -0.0105 (6)     | -0.0038 (5)            |
| N1′  | 0.0173 (7)  | 0.0126 (6)      | 0.0149 (7)      | -0.0012(5)      | -0.0041 (5)     | -0.0040 (5)            |
| C2′  | 0.0135 (8)  | 0.0103 (7)      | 0.0164 (8)      | -0.0013 (6)     | -0.0016 (6)     | -0.0028 (6)            |
| C3′  | 0.0147 (8)  | 0.0118 (7)      | 0.0170 (8)      | -0.0008 (6)     | -0.0019 (6)     | -0.0050 (6)            |
| C4′  | 0.0119 (8)  | 0.0145 (7)      | 0.0153 (7)      | -0.0020 (6)     | -0.0015 (6)     | -0.0024 (6)            |
| C5′  | 0.0170 (8)  | 0.0102 (7)      | 0.0192 (8)      | 0.0003 (6)      | -0.0030 (6)     | -0.0031 (6)            |
| C6′  | 0.0130 (8)  | 0.0121 (7)      | 0.0187 (8)      | -0.0009 (6)     | -0.0006 (6)     | -0.0046 (6)            |
| C21′ | 0.0195 (9)  | 0.0121 (7)      | 0.0182 (8)      | -0.0009 (6)     | -0.0044 (7)     | -0.0018 (6)            |
| O21′ | 0.0407 (8)  | 0.0109 (5)      | 0.0264 (7)      | -0.0010 (5)     | -0.0112 (6)     | -0.0036 (5)            |
| O22′ | 0.0339 (8)  | 0.0168 (6)      | 0.0204 (6)      | -0.0006 (5)     | -0.0122 (5)     | -0.0022 (5)            |
| O41′ | 0.0243 (7)  | 0.0145 (5)      | 0.0181 (6)      | -0.0004 (5)     | -0.0103 (5)     | -0.0022 (4)            |
| C61′ | 0.0222 (9)  | 0.0131 (8)      | 0.0186 (8)      | -0.0035 (7)     | 0.0000 (7)      | -0.0056 (6)            |
| O61′ | 0.0325 (7)  | 0.0203 (6)      | 0.0238 (6)      | -0.0067 (5)     | -0.0082 (5)     | -0.0076 (5)            |
| O62′ | 0.0446 (9)  | 0.0146 (6)      | 0.0384 (8)      | 0.0071 (6)      | -0.0193 (6)     | -0.0134 (5)            |
| C1Y  | 0.0389 (13) | 0.0246 (10)     | 0.0634 (15)     | -0.0008 (9)     | -0.0247 (11)    | -0.0168 (10)           |
| N2Y  | 0.0335 (9)  | 0.0168 (7)      | 0.0170 (7)      | -0.0069 (6)     | -0.0052 (6)     | -0.0040 (6)            |
| C3Y  | 0.0445 (13) | 0.0268 (10)     | 0.0291 (10)     | 0.0023 (9)      | 0.0001 (9)      | -0.0110 (8)            |
| C1Z  | 0.0496 (14) | 0.0513 (13)     | 0.0254 (10)     | -0.0269 (11)    | -0.0006 (9)     | -0.0091 (9)            |
| N2Z  | 0.0344 (9)  | 0.0157 (7)      | 0.0226 (8)      | -0.0072 (7)     | -0.0075 (7)     | -0.0029 (6)            |
| C3Z  | 0.0334 (11) | 0.0332 (10)     | 0.0451 (12)     | 0.0010 (9)      | -0.0112 (9)     | -0.0218(9)             |

Geometric parameters (Å, °)

| N1—C2 | 1.344 (2) | С5'—Н5'  | 0.9500    |
|-------|-----------|----------|-----------|
| N1—C6 | 1.351 (2) | C6'—C61' | 1.519 (2) |

| $C^2$ $C^3$              | 1301(2)              | C21' = O21'                                                 | 1.246(2)               |
|--------------------------|----------------------|-------------------------------------------------------------|------------------------|
| $C_2 = C_3$              | 1.391(2)<br>1.520(2) | $C_{21} = 0_{21}$                                           | 1.240(2)<br>1 2504(10) |
| $C_2 = C_2 I$            | 1.320(2)<br>1.308(2) | 0.21 - 0.22                                                 | 1.2394(19)             |
| $C_3 = C_4$              | 1.598 (2)            | $C_{41} - 1122$                                             | 1.24(4)                |
| $C_{3}$                  | 0.9300               | $C_{01} = 0.01$                                             | 1.240(2)               |
| C4 = C5                  | 1.3410(19)           | $C_{01} = 0.02$                                             | 1.201(2)               |
| C4—C3                    | 1.400(2)             | CIY_N2Y                                                     | 1.4/5(3)               |
| C5—C6                    | 1.390 (2)            |                                                             | 0.9800                 |
| C5—H5                    | 0.9500               | CIY—HIY2                                                    | 0.9800                 |
|                          | 1.516 (2)            | CIY—HIY3                                                    | 0.9800                 |
| C21—O21                  | 1.2285 (19)          | N2Y—C3Y                                                     | 1.480 (3)              |
| C21—O22                  | 1.2998 (18)          | N2Y—H2Y1                                                    | 0.92 (2)               |
| O22—H22                  | 1.24 (4)             | N2Y—H2Y2                                                    | 0.96 (2)               |
| O41—H41                  | 0.99 (3)             | C3Y—H3Y1                                                    | 0.9800                 |
| C61—O61                  | 1.208 (2)            | C3Y—H3Y2                                                    | 0.9800                 |
| C61—O62                  | 1.318 (2)            | СЗҮ—НЗҮЗ                                                    | 0.9800                 |
| O62—H62                  | 1.03 (3)             | C1Z—N2Z                                                     | 1.486 (3)              |
| N1′—C2′                  | 1.3580 (19)          | C1Z—H1Z1                                                    | 0.9800                 |
| N1′—C6′                  | 1.363 (2)            | C1Z—H1Z2                                                    | 0.9800                 |
| N1'—H1'                  | 0.87 (2)             | C1Z—H1Z3                                                    | 0.9800                 |
| C2'—C3'                  | 1.368 (2)            | N2Z—C3Z                                                     | 1.484 (3)              |
| C2'—C21'                 | 1.529 (2)            | N2Z—H2Z1                                                    | 0.96 (2)               |
| C3'—C4'                  | 1.427 (2)            | N2Z—H2Z2                                                    | 0.96 (3)               |
| C3'—H3'                  | 0.9500               | C3Z—H3Z1                                                    | 0.9800                 |
| C4'—O41'                 | 1.2899 (18)          | C3Z—H3Z2                                                    | 0.9800                 |
| C4′—C5′                  | 1.427 (2)            | C3Z—H3Z3                                                    | 0.9800                 |
| C5′—C6′                  | 1.366 (2)            |                                                             |                        |
|                          |                      |                                                             |                        |
| C2—N1—C6                 | 116.01 (13)          | O21'—C21'—O22'                                              | 128.95 (14)            |
| N1—C2—C3                 | 123.88 (14)          | O21'—C21'—C2'                                               | 116.58 (13)            |
| N1—C2—C21                | 117.60 (13)          | O22'—C21'—C2'                                               | 114.46 (13)            |
| C3—C2—C21                | 118.52 (13)          | C4'—O41'—H22                                                | 119.5 (15)             |
| C2—C3—C4                 | 119.30 (14)          | O61'—C61'—O62'                                              | 127.66 (14)            |
| С2—С3—Н3                 | 120.4                | O61'—C61'—C6'                                               | 117.61 (14)            |
| С4—С3—Н3                 | 120.4                | O62'—C61'—C6'                                               | 114.73 (14)            |
| O41—C4—C3                | 118.66 (14)          | N2Y—C1Y—H1Y1                                                | 109.5                  |
| O41—C4—C5                | 123.58 (14)          | N2Y—C1Y—H1Y2                                                | 109.5                  |
| C3—C4—C5                 | 117.76 (14)          | H1Y1—C1Y—H1Y2                                               | 109.5                  |
| C6—C5—C4                 | 118.42 (14)          | N2Y—C1Y—H1Y3                                                | 109.5                  |
| С6—С5—Н5                 | 120.8                | H1Y1 - C1Y - H1Y3                                           | 109.5                  |
| C4—C5—H5                 | 120.8                | H1Y2— $C1Y$ — $H1Y3$                                        | 109.5                  |
| N1-C6-C5                 | 124 59 (14)          | C1Y - N2Y - C3Y                                             | 115.05 (16)            |
| N1-C6-C61                | 11374(13)            | C1V N2V H2V1                                                | 110.02(10)             |
| $C_{5}$ $C_{6}$ $C_{61}$ | 121 66 (14)          | $C_{3Y}$ N2Y H2Y1                                           | 110.2(11)<br>110.8(14) |
| 021 - 021 - 022          | 125.28 (14)          | C1V N2V H2V2                                                | 108.8(14)              |
| 021 - C21 - C2           | 119 51 (13)          | C3Y - N2Y - H2Y2                                            | 105.5(17)              |
| 022 - 021 - 02           | 115 21 (13)          | $H_{2}Y_{1} = N_{2}Y_{1} = H_{2}Y_{2}$                      | 106.0(18)              |
| C21-O22-H22              | 111 5 (15)           | N2Y - C3Y - H3V1                                            | 109.5                  |
| C4 - O41 - H41           | 112 8 (18)           | N2Y - C3Y - H3V2                                            | 109.5                  |
| 061 - 061 - 062          | 12.0 (10)            | $H_{21} = C_{31} = H_{312}$<br>$H_{3V1} = C_{3V} = H_{3V2}$ | 109.5                  |
| 001 001 002              | 147.41 (17)          | 113 1 1 0 3 1 113 1 2                                       | 107.5                  |

| O61—C61—C6    | 121.75 (14)  | N2Y—C3Y—H3Y3      | 109.5        |
|---------------|--------------|-------------------|--------------|
| O62—C61—C6    | 114.03 (13)  | НЗҮ1—СЗҮ—НЗҮЗ     | 109.5        |
| С61—О62—Н62   | 109.8 (19)   | НЗҮ2—СЗҮ—НЗҮЗ     | 109.5        |
| C2'—N1'—C6'   | 121.91 (13)  | N2Z-C1Z-H1Z1      | 109.5        |
| C2'—N1'—H1'   | 120.8 (13)   | N2Z-C1Z-H1Z2      | 109.5        |
| C6'—N1'—H1'   | 117.2 (13)   | H1Z1—C1Z—H1Z2     | 109.5        |
| N1′—C2′—C3′   | 120.11 (14)  | N2Z-C1Z-H1Z3      | 109.5        |
| N1′—C2′—C21′  | 115.84 (13)  | H1Z1—C1Z—H1Z3     | 109.5        |
| C3'—C2'—C21'  | 124.03 (13)  | H1Z2—C1Z—H1Z3     | 109.5        |
| C2'—C3'—C4'   | 120.64 (13)  | C3Z—N2Z—C1Z       | 113.65 (16)  |
| С2'—С3'—Н3'   | 119.7        | C3Z—N2Z—H2Z1      | 110.5 (13)   |
| C4'—C3'—H3'   | 119.7        | C1Z—N2Z—H2Z1      | 106.3 (13)   |
| O41'—C4'—C5'  | 123.14 (14)  | C3Z—N2Z—H2Z2      | 105.7 (15)   |
| O41'—C4'—C3'  | 120.28 (13)  | C1Z—N2Z—H2Z2      | 109.8 (15)   |
| C5'—C4'—C3'   | 116.57 (13)  | H2Z1—N2Z—H2Z2     | 111.0 (19)   |
| C6'—C5'—C4'   | 120.72 (14)  | N2Z—C3Z—H3Z1      | 109.5        |
| Сб'—С5'—Н5'   | 119.6        | N2Z—C3Z—H3Z2      | 109.5        |
| C4'—C5'—H5'   | 119.6        | H3Z1—C3Z—H3Z2     | 109.5        |
| N1′—C6′—C5′   | 120.01 (13)  | N2Z—C3Z—H3Z3      | 109.5        |
| N1′—C6′—C61′  | 116.22 (13)  | H3Z1—C3Z—H3Z3     | 109.5        |
| C5'—C6'—C61'  | 123.75 (14)  | H3Z2—C3Z—H3Z3     | 109.5        |
|               |              |                   |              |
| C6—N1—C2—C3   | -1.1 (2)     | C6'—N1'—C2'—C3'   | -1.6 (2)     |
| C6—N1—C2—C21  | 178.83 (13)  | C6'—N1'—C2'—C21'  | 176.68 (14)  |
| N1-C2-C3-C4   | -0.6 (3)     | N1'-C2'-C3'-C4'   | 2.3 (2)      |
| C21—C2—C3—C4  | 179.49 (15)  | C21'—C2'—C3'—C4'  | -175.86 (15) |
| C2—C3—C4—O41  | -179.07 (15) | C2'—C3'—C4'—O41'  | 177.55 (15)  |
| C2—C3—C4—C5   | 1.4 (3)      | C2'—C3'—C4'—C5'   | -1.3 (2)     |
| O41—C4—C5—C6  | 179.93 (16)  | O41'—C4'—C5'—C6'  | -179.23 (15) |
| C3—C4—C5—C6   | -0.6 (2)     | C3'—C4'—C5'—C6'   | -0.5 (2)     |
| C2—N1—C6—C5   | 2.0 (2)      | C2'—N1'—C6'—C5'   | -0.1 (2)     |
| C2—N1—C6—C61  | -177.23 (14) | C2'—N1'—C6'—C61'  | 178.70 (15)  |
| C4—C5—C6—N1   | -1.2 (3)     | C4'—C5'—C6'—N1'   | 1.1 (3)      |
| C4—C5—C6—C61  | 177.98 (16)  | C4'—C5'—C6'—C61'  | -177.57 (15) |
| N1-C2-C21-O21 | -157.69 (15) | N1'-C2'-C21'-O21' | 178.02 (15)  |
| C3—C2—C21—O21 | 22.2 (2)     | C3'—C2'—C21'—O21' | -3.7 (3)     |
| N1-C2-C21-O22 | 22.7 (2)     | N1'—C2'—C21'—O22' | -2.7 (2)     |
| C3—C2—C21—O22 | -157.35 (15) | C3'—C2'—C21'—O22' | 175.56 (16)  |
| N1-C6-C61-O61 | 7.9 (3)      | N1'—C6'—C61'—O61' | -10.6 (2)    |
| C5-C6-C61-O61 | -171.34 (18) | C5'—C6'—C61'—O61' | 168.19 (16)  |
| N1-C6-C61-O62 | -173.35 (14) | N1'—C6'—C61'—O62' | 169.38 (15)  |
| C5—C6—C61—O62 | 7.4 (2)      | C5'—C6'—C61'—O62' | -11.9 (2)    |

### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H… <i>A</i> |
|-----------------------------|-------------|----------|--------------|-----------------------|
| O41′—H22…O22                | 1.24 (4)    | 1.24 (4) | 2.4788 (15)  | 176 (3)               |
| O41—H41···O22′ <sup>i</sup> | 0.99 (3)    | 1.59 (3) | 2.5765 (16)  | 175 (3)               |
| O62—H62…O62′ <sup>ii</sup>  | 1.03 (3)    | 1.50 (3) | 2.5255 (16)  | 174 (3)               |

| N1′—H1′···O22′                                  | 0.87 (2) | 2.31 (2)   | 2.6437 (17) | 102.8 (15) |
|-------------------------------------------------|----------|------------|-------------|------------|
| N1'—H1'…O61'                                    | 0.87 (2) | 2.348 (19) | 2.7095 (17) | 105.0 (15) |
| N2 <i>Y</i> —H2 <i>Y</i> 1···N1                 | 0.92 (2) | 2.13 (2)   | 3.005 (2)   | 159 (2)    |
| N2 <i>Y</i> —H2 <i>Y</i> 2···O21 <sup>iii</sup> | 0.96 (2) | 1.94 (3)   | 2.8459 (19) | 157.1 (19) |
| N2Z—H2Z2···O21′ <sup>iv</sup>                   | 0.96 (3) | 1.82 (3)   | 2.7645 (19) | 167 (2)    |
| N2Z—H2Z1…O61′                                   | 0.96 (2) | 1.93 (2)   | 2.8151 (19) | 152.5 (18) |

Z = 2

F(000) = 272

 $\theta = 3.6-27.9^{\circ}$  $\mu = 0.31 \text{ mm}^{-1}$ 

Plate, colourless

 $0.36 \times 0.28 \times 0.22 \text{ mm}$ 

T = 173 K

 $D_{\rm x} = 1.556 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 17750 reflections

Symmetry codes: (i) *x*+1, *y*-1, *z*+1; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*.

### (Ic) 4-hydroxypyridine-2,6-dicarboxylic acid dimethyl sulfoxide monosolvate

Crystal data C<sub>7</sub>H<sub>5</sub>NO<sub>5</sub>·C<sub>2</sub>H<sub>6</sub>OS  $M_r = 261.25$ Triclinic, *P*I Hall symbol: -P 1 a = 4.7460 (4) Å b = 10.4917 (9) Å c = 11.9787 (11) Å a = 103.592 (7)°  $\beta = 97.606$  (7)°  $\gamma = 101.651$  (7)° V = 557.59 (9) Å<sup>3</sup>

### Data collection

| Stoe IPDS II two-circle                  | 11141 measured reflections                                                |
|------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                           | 2552 independent reflections                                              |
| Radiation source: fine-focus sealed tube | 2458 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                   | $R_{\rm int} = 0.038$                                                     |
| $\omega$ scans                           | $\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ |
| Absorption correction: multi-scan        | $h = -6 \rightarrow 6$                                                    |
| (MULABS; Spek, 2009; Blessing, 1995)     | $k = -13 \rightarrow 13$                                                  |
| $T_{\min} = 0.897, \ T_{\max} = 0.936$   | $l = -15 \rightarrow 14$                                                  |

### Refinement

| Refinement on F <sup>2</sup><br>Least-squares matrix: full | Hydrogen site location: inferred from<br>neighbouring sites    |
|------------------------------------------------------------|----------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.078$          | H atoms treated by a mixture of independent                    |
| S = 1.06                                                   | $w = 1/[\sigma^2(F_o^2) + (0.045P)^2 + 0.1667P]$               |
| 2552 reflections                                           | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| 169 parameters                                             | $(\Delta/\sigma)_{\rm max} < 0.001$                            |
| 0 restraints                                               | $\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$        |
| Primary atom site location: structure-invariant            | $\Delta  ho_{ m min} = -0.32$ e Å <sup>-3</sup>                |
| direct methods                                             | Extinction correction: SHELXL97 (Sheldrick,                    |
| Secondary atom site location: difference Fourier           | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| map                                                        | Extinction coefficient: 0.086 (9)                              |
|                                                            |                                                                |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|--------------|--------------|-----------------------------|-----------|
| N1   | 0.4687 (2)   | 0.78021 (9)  | 0.73731 (8)  | 0.01689 (19)                |           |
| H1   | 0.441 (4)    | 0.8353 (18)  | 0.7014 (15)  | 0.035 (4)*                  |           |
| C2   | 0.3755 (2)   | 0.78845 (10) | 0.84006 (9)  | 0.0164 (2)                  |           |
| C3   | 0.4164 (2)   | 0.69729 (11) | 0.90262 (9)  | 0.0183 (2)                  |           |
| Н3   | 0.3517       | 0.7037       | 0.9750       | 0.022*                      |           |
| C4   | 0.5572 (2)   | 0.59265 (11) | 0.85821 (9)  | 0.0184 (2)                  |           |
| C5   | 0.6547 (2)   | 0.58953 (11) | 0.74974 (9)  | 0.0181 (2)                  |           |
| Н5   | 0.7520       | 0.5226       | 0.7180       | 0.022*                      |           |
| C6   | 0.6069 (2)   | 0.68340 (10) | 0.69208 (9)  | 0.0164 (2)                  |           |
| C21  | 0.2199 (2)   | 0.90220 (11) | 0.87362 (10) | 0.0190 (2)                  |           |
| O21  | 0.1828 (2)   | 0.96876 (10) | 0.80321 (8)  | 0.0312 (2)                  |           |
| O22  | 0.13897 (19) | 0.91346 (8)  | 0.97273 (7)  | 0.0247 (2)                  |           |
| H22  | 0.0514       | 0.9760       | 0.9851       | 0.051 (11)*                 | 0.50      |
| O41  | 0.5992 (2)   | 0.50148 (9)  | 0.91080 (7)  | 0.0270 (2)                  |           |
| H41  | 0.5245       | 0.5119       | 0.9711       | 0.042 (10)*                 | 0.50      |
| C61  | 0.6967 (2)   | 0.69305 (11) | 0.57736 (9)  | 0.0184 (2)                  |           |
| O61  | 0.6429 (2)   | 0.78174 (9)  | 0.53434 (7)  | 0.0273 (2)                  |           |
| O62  | 0.8340 (2)   | 0.60150 (9)  | 0.53520 (7)  | 0.0277 (2)                  |           |
| H62  | 0.875 (5)    | 0.617 (2)    | 0.464 (2)    | 0.068 (7)*                  |           |
| S1   | 0.90608 (6)  | 0.74888 (3)  | 0.29997 (2)  | 0.01996 (11)                |           |
| O1S  | 0.9724 (2)   | 0.62973 (8)  | 0.34301 (7)  | 0.0256 (2)                  |           |
| C1S  | 1.1706 (3)   | 0.89513 (12) | 0.39007 (11) | 0.0305 (3)                  |           |
| H1S1 | 1.1381       | 0.9111       | 0.4708       | 0.046*                      |           |
| H1S2 | 1.1513       | 0.9736       | 0.3613       | 0.046*                      |           |
| H1S3 | 1.3679       | 0.8810       | 0.3876       | 0.046*                      |           |
| C2S  | 1.0555 (3)   | 0.73813 (13) | 0.16945 (11) | 0.0277 (3)                  |           |
| H2S1 | 1.2636       | 0.7390       | 0.1870       | 0.042*                      |           |
| H2S2 | 1.0342       | 0.8154       | 0.1393       | 0.042*                      |           |
| H2S3 | 0.9507       | 0.6541       | 0.1106       | 0.042*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|-----|------------|------------|------------|------------|------------|------------|
| N1  | 0.0229 (4) | 0.0171 (4) | 0.0166 (4) | 0.0107 (3) | 0.0078 (3) | 0.0088 (3) |
| C2  | 0.0185 (5) | 0.0169 (5) | 0.0171 (5) | 0.0087 (4) | 0.0067 (4) | 0.0049 (4) |
| C3  | 0.0245 (5) | 0.0199 (5) | 0.0164 (5) | 0.0118 (4) | 0.0102 (4) | 0.0074 (4) |
| C4  | 0.0249 (5) | 0.0183 (5) | 0.0177 (5) | 0.0112 (4) | 0.0084 (4) | 0.0080 (4) |
| C5  | 0.0248 (5) | 0.0173 (5) | 0.0175 (5) | 0.0112 (4) | 0.0095 (4) | 0.0064 (4) |
| C6  | 0.0200 (5) | 0.0168 (5) | 0.0152 (5) | 0.0080 (4) | 0.0072 (4) | 0.0048 (4) |
| C21 | 0.0226 (5) | 0.0190 (5) | 0.0210 (5) | 0.0126 (4) | 0.0082 (4) | 0.0075 (4) |
| O21 | 0.0480 (5) | 0.0346 (5) | 0.0279 (4) | 0.0302 (4) | 0.0172 (4) | 0.0179 (4) |
| O22 | 0.0349 (4) | 0.0263 (4) | 0.0256 (4) | 0.0216 (3) | 0.0179 (3) | 0.0122 (3) |
|     |            |            |            |            |            |            |

| O41 | 0.0472 (5)   | 0.0268 (4)   | 0.0227 (4)   | 0.0247 (4)   | 0.0194 (4)   | 0.0160 (3)   |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| C61 | 0.0249 (5)   | 0.0184 (5)   | 0.0158 (5)   | 0.0088 (4)   | 0.0081 (4)   | 0.0065 (4)   |
| O61 | 0.0443 (5)   | 0.0267 (4)   | 0.0227 (4)   | 0.0197 (4)   | 0.0158 (4)   | 0.0144 (3)   |
| O62 | 0.0459 (5)   | 0.0299 (4)   | 0.0233 (4)   | 0.0250 (4)   | 0.0224 (4)   | 0.0153 (3)   |
| S1  | 0.02493 (16) | 0.02090 (16) | 0.02033 (16) | 0.01183 (11) | 0.01011 (10) | 0.00898 (11) |
| O1S | 0.0436 (5)   | 0.0200 (4)   | 0.0240 (4)   | 0.0165 (3)   | 0.0195 (4)   | 0.0118 (3)   |
| C1S | 0.0409 (7)   | 0.0210 (5)   | 0.0299 (6)   | 0.0101 (5)   | 0.0060 (5)   | 0.0056 (5)   |
| C2S | 0.0393 (7)   | 0.0315 (6)   | 0.0221 (5)   | 0.0164 (5)   | 0.0149 (5)   | 0.0143 (5)   |

Geometric parameters (Å, °)

| N1—C2                     | 1.3519 (13)              | O22—H22                      | 0.8400                 |
|---------------------------|--------------------------|------------------------------|------------------------|
| N1—C6                     | 1.3638 (13)              | O41—H41                      | 0.8400                 |
| N1—H1                     | 0.818 (18)               | C61—O61                      | 1.2180 (13)            |
| C2—C3                     | 1.3739 (14)              | C61—O62                      | 1.3095 (13)            |
| C2—C21                    | 1.5298 (14)              | O62—H62                      | 0.94 (2)               |
| C3—C4                     | 1.4319 (14)              | S1—O1S                       | 1.5318 (8)             |
| С3—Н3                     | 0.9500                   | S1—C1S                       | 1.7834 (13)            |
| C4—O41                    | 1.2956 (13)              | S1—C2S                       | 1.7898 (12)            |
| C4—C5                     | 1.4314 (14)              | C1S—H1S1                     | 0.9800                 |
| C5—C6                     | 1.3662 (14)              | C1S—H1S2                     | 0.9800                 |
| С5—Н5                     | 0.9500                   | C1S—H1S3                     | 0.9800                 |
| C6—C61                    | 1.5110 (14)              | C2S—H2S1                     | 0.9800                 |
| C21—O21                   | 1.2317 (14)              | C2S—H2S2                     | 0.9800                 |
| C21—O22                   | 1.2823 (13)              | C2S—H2S3                     | 0.9800                 |
| $C_2$ N1 $C_6$            | 122 14 (0)               | $C_{21}$ $C_{22}$ $U_{22}$   | 100.5                  |
| $C_2 = N_1 = C_0$         | 122.14(9)<br>118.7(12)   | $C_{21}$ $O_{22}$ $H_{22}$   | 109.5                  |
| $C_2$ —NI—III<br>C6 NI HI | 110.7(12)<br>110.2(12)   | $C_{4} = 0_{41} = 11_{41}$   | 126.58 (10)            |
| $C_0 = N_1 = H_1$         | 119.2(12)<br>120.35(0)   | 001 - 001 - 002              | 110.70 (0)             |
| NI = C2 = C3              | 120.33 (9)               | 061 - 061 - 061              | 119.79(9)<br>112.62(0) |
| N1 - C2 - C21             | 115.80 (9)               | 002-001-00                   | 115.02(9)<br>105.7(14) |
| $C_{2} = C_{2} = C_{2}$   | 123.82 (9)               | 015 $51$ $015$               | 105.26 (6)             |
| $C_2 = C_3 = C_4$         | 119.09 (9)               | 015 - 51 - 015               | 104.46 (5)             |
| $C_2 = C_3 = H_3$         | 120.2                    | 015-51-025                   | 104.40(3)              |
| C4 - C3 - H3              | 120.2                    | C15-S1-C25                   | 97.38 (6)              |
| 041 - C4 - C3             | 110.00 (9)               |                              | 109.5                  |
| 041 - 04 - 03             | 125.40 (9)               | SI = CIS = HIS2              | 109.5                  |
| $C_{5} - C_{4} - C_{5}$   | 117.03 (9)               |                              | 109.5                  |
| $C_{0} - C_{3} - C_{4}$   | 119.39 (9)               | 51 - C15 - D153              | 109.5                  |
| Со-С5-Н5                  | 120.2                    | H1S1 - C1S - H1S3            | 109.5                  |
| C4 - C5 - H5              | 120.2                    | S1 C28 H281                  | 109.5                  |
| NI = C6 = C5              | 120.30(9)<br>113 75 (0)  | S1 - C2S - H2S1              | 109.5                  |
| R1 - C0 - C01             | 125.69 (9)               | $H_{25} = H_{25} = H_{25}$   | 109.5                  |
| 021  021  022             | 123.03(9)<br>128.33(10)  | S1 C25 H2S2                  | 109.5                  |
| 021 - 021 - 022           | 128.33(10)<br>117.44(10) | 1251 - 225 - 11253           | 109.5                  |
| 021 - 021 - 021 - 021     | 117.44(10)<br>114.21(0)  | $H_{251} = C_{25} = H_{253}$ | 109.5                  |
| 022-021-02                | 114.21 (9)               | П252—025—П255                | 107.5                  |
| C6—N1—C2—C3               | -0.42 (16)               | C4C5C6N1                     | 0.34 (16)              |
| C6-N1-C2-C21              | -178.69 (9)              | C4—C5—C6—C61                 | 179.97 (10)            |

| N1-C2-C3-C4  | -0.36 (16)   | N1 - C2 - C21 - O21 | 3.46 (15)    |
|--------------|--------------|---------------------|--------------|
| C21—C2—C3—C4 | 177.69 (10)  | C3—C2—C21—O21       | -174.70 (11) |
| C2-C3-C4-O41 | -178.73 (10) | N1—C2—C21—O22       | -177.90 (9)  |
| C2—C3—C4—C5  | 1.07 (16)    | C3—C2—C21—O22       | 3.94 (16)    |
| O41—C4—C5—C6 | 178.75 (10)  | N1-C6-C61-O61       | -0.11 (15)   |
| C3—C4—C5—C6  | -1.06 (16)   | C5-C6-C61-O61       | -179.77 (11) |
| C2—N1—C6—C5  | 0.43 (16)    | N1—C6—C61—O62       | 178.82 (9)   |
| C2—N1—C6—C61 | -179.24 (9)  | C5-C6-C61-O62       | -0.83 (16)   |

Hydrogen-bond geometry (Å, °)

| D—H···A                        | D—H        | H···A      | D····A      | <i>D</i> —H··· <i>A</i> |
|--------------------------------|------------|------------|-------------|-------------------------|
| N1—H1…O21                      | 0.818 (18) | 2.289 (18) | 2.6478 (12) | 107.2 (14)              |
| N1—H1…O61                      | 0.818 (18) | 2.331 (17) | 2.6720 (12) | 105.8 (14)              |
| C5—H5…O1 <i>S</i> <sup>i</sup> | 0.95       | 2.31       | 3.2593 (13) | 174                     |
| O22—H22…O22 <sup>ii</sup>      | 0.84       | 1.64       | 2.4703 (15) | 170                     |
| O41—H41…O41 <sup>iii</sup>     | 0.84       | 1.63       | 2.4509 (16) | 166                     |
| O62—H62…O1S                    | 0.94 (2)   | 1.61 (2)   | 2.5419 (12) | 173 (2)                 |

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+1, -z+2.

### (IIa) dimethyl 4-hydroxypyridine-2,6-dicarboxylate monohydrate

Crystal data

C<sub>9</sub>H<sub>9</sub>NO<sub>5</sub>·H<sub>2</sub>O  $M_r = 229.19$ Monoclinic, *I*2/*a* Hall symbol: -I 2ya a = 17.241 (3) Å b = 6.1519 (12) Å c = 20.710 (4) Å  $\beta = 107.96$  (3)° V = 2089.6 (7) Å<sup>3</sup> Z = 8

Data collection

Stoe IPDS II two-circle diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator ω scans
5752 measured reflections
1951 independent reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.039$  $wR(F^2) = 0.100$ S = 1.011951 reflections 159 parameters 0 restraints F(000) = 960  $D_x = 1.457 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4497 reflections  $\theta = 3.5-25.8^{\circ}$   $\mu = 0.12 \text{ mm}^{-1}$  T = 173 KPlate, colourless  $0.40 \times 0.28 \times 0.13 \text{ mm}$ 

1474 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.080$   $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 3.5^{\circ}$   $h = -18 \rightarrow 20$   $k = -7 \rightarrow 7$  $l = -25 \rightarrow 25$ 

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

| $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2]$ | $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$ |
|-----------------------------------------|-----------------------------------------------------------|
| where $P = (F_o^2 + 2F_c^2)/3$          | $\Delta  ho_{ m min} = -0.23 \  m e \  m \AA^{-3}$        |
| $(\Delta/\sigma)_{\rm max} < 0.001$     |                                                           |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F* with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|--------------|---------------|-----------------------------|-----------|
| N1   | 0.61782 (8)  | 0.8964 (2)   | 0.11852 (7)   | 0.0208 (3)                  |           |
| C2   | 0.65285 (10) | 0.7200 (3)   | 0.15439 (8)   | 0.0202 (4)                  |           |
| C3   | 0.73477 (10) | 0.6671 (3)   | 0.16862 (8)   | 0.0218 (4)                  |           |
| Н3   | 0.7565       | 0.5417       | 0.1947        | 0.026*                      |           |
| C4   | 0.78472 (10) | 0.8015 (3)   | 0.14384 (8)   | 0.0212 (4)                  |           |
| C5   | 0.74899 (10) | 0.9820 (3)   | 0.10443 (8)   | 0.0220 (4)                  |           |
| Н5   | 0.7801       | 1.0747       | 0.0853        | 0.026*                      |           |
| C6   | 0.66635 (10) | 1.0211 (3)   | 0.09425 (8)   | 0.0194 (4)                  |           |
| C21  | 0.59473 (10) | 0.5840 (3)   | 0.17920 (8)   | 0.0204 (4)                  |           |
| C22  | 0.58219 (12) | 0.2723 (3)   | 0.24261 (10)  | 0.0309 (4)                  |           |
| H22A | 0.5452       | 0.3622       | 0.2590        | 0.046*                      | 0.61 (2)  |
| H22B | 0.6174       | 0.1873       | 0.2804        | 0.046*                      | 0.61 (2)  |
| H22C | 0.5503       | 0.1736       | 0.2072        | 0.046*                      | 0.61 (2)  |
| H22D | 0.5917       | 0.1198       | 0.2336        | 0.046*                      | 0.39 (2)  |
| H22E | 0.5245       | 0.3079       | 0.2213        | 0.046*                      | 0.39 (2)  |
| H22F | 0.5966       | 0.2954       | 0.2917        | 0.046*                      | 0.39 (2)  |
| O21  | 0.52335 (7)  | 0.6269 (2)   | 0.16812 (6)   | 0.0277 (3)                  |           |
| O22  | 0.63235 (7)  | 0.41172 (19) | 0.21477 (6)   | 0.0260 (3)                  |           |
| O41  | 0.86443 (7)  | 0.7511 (2)   | 0.15935 (6)   | 0.0272 (3)                  |           |
| H41  | 0.8940 (18)  | 0.849 (4)    | 0.1359 (14)   | 0.063 (8)*                  |           |
| C61  | 0.62268 (11) | 1.2146 (3)   | 0.05374 (8)   | 0.0217 (4)                  |           |
| C62  | 0.63320 (13) | 1.5086 (3)   | -0.01640 (10) | 0.0333 (4)                  |           |
| H62A | 0.5876       | 1.4572       | -0.0546       | 0.050*                      | 0.70 (2)  |
| H62B | 0.6735       | 1.5805       | -0.0337       | 0.050*                      | 0.70 (2)  |
| H62C | 0.6130       | 1.6120       | 0.0106        | 0.050*                      | 0.70 (2)  |
| H62D | 0.6323       | 1.4821       | -0.0633       | 0.050*                      | 0.30 (2)  |
| H62E | 0.6646       | 1.6408       | 0.0007        | 0.050*                      | 0.30 (2)  |
| H62F | 0.5773       | 1.5268       | -0.0150       | 0.050*                      | 0.30 (2)  |
| O61  | 0.55315 (8)  | 1.2644 (2)   | 0.04852 (7)   | 0.0320 (3)                  |           |
| O62  | 0.67108 (8)  | 1.32419 (19) | 0.02594 (6)   | 0.0272 (3)                  |           |
| O1W  | 0.44055 (8)  | 1.0083 (2)   | 0.09349 (7)   | 0.0314 (3)                  |           |
| H1W  | 0.4801 (18)  | 1.090 (5)    | 0.0769 (14)   | 0.065 (8)*                  |           |
| H2W  | 0.4657 (17)  | 0.895 (4)    | 0.1095 (13)   | 0.052 (8)*                  |           |

|     | $U^{11}$    | $U^{22}$   | $U^{33}$    | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|-------------|------------|-------------|-------------|------------|-------------|
| N1  | 0.0174 (7)  | 0.0252 (7) | 0.0196 (7)  | 0.0014 (6)  | 0.0052 (6) | -0.0018 (6) |
| C2  | 0.0194 (9)  | 0.0236 (8) | 0.0178 (8)  | 0.0010 (7)  | 0.0061 (6) | -0.0032 (7) |
| C3  | 0.0193 (8)  | 0.0254 (8) | 0.0205 (9)  | 0.0028 (7)  | 0.0057 (7) | -0.0004 (7) |
| C4  | 0.0160 (8)  | 0.0270 (8) | 0.0207 (9)  | 0.0024 (7)  | 0.0056 (6) | -0.0045 (7) |
| C5  | 0.0190 (9)  | 0.0246 (8) | 0.0227 (9)  | -0.0012 (7) | 0.0069 (7) | -0.0013 (7) |
| C6  | 0.0168 (8)  | 0.0227 (8) | 0.0185 (8)  | 0.0002 (6)  | 0.0053 (6) | -0.0030 (6) |
| C21 | 0.0201 (9)  | 0.0230 (8) | 0.0189 (8)  | -0.0007 (7) | 0.0070 (7) | -0.0041 (7) |
| C22 | 0.0267 (10) | 0.0337 (9) | 0.0336 (10) | -0.0053 (8) | 0.0113 (8) | 0.0060 (8)  |
| O21 | 0.0187 (6)  | 0.0340 (7) | 0.0322 (7)  | 0.0020 (5)  | 0.0106 (5) | 0.0031 (5)  |
| O22 | 0.0215 (6)  | 0.0264 (6) | 0.0313 (7)  | 0.0007 (5)  | 0.0099 (5) | 0.0054 (5)  |
| O41 | 0.0122 (6)  | 0.0345 (7) | 0.0340 (7)  | 0.0038 (5)  | 0.0060 (5) | 0.0033 (6)  |
| C61 | 0.0208 (9)  | 0.0238 (8) | 0.0198 (8)  | 0.0007 (7)  | 0.0053 (7) | -0.0017 (7) |
| C62 | 0.0334 (10) | 0.0302 (9) | 0.0329 (10) | 0.0013 (8)  | 0.0052 (8) | 0.0118 (8)  |
| O61 | 0.0242 (7)  | 0.0347 (7) | 0.0401 (8)  | 0.0104 (6)  | 0.0141 (6) | 0.0094 (6)  |
| O62 | 0.0217 (6)  | 0.0282 (6) | 0.0304 (7)  | 0.0007 (5)  | 0.0062 (5) | 0.0078 (5)  |
| O1W | 0.0192 (7)  | 0.0365 (7) | 0.0394 (8)  | 0.0039 (6)  | 0.0103 (6) | -0.0002 (6) |

*Atomic displacement parameters*  $(Å^2)$ 

Geometric parameters (Å, °)

| N1—C6     | 1.342 (2)   | С22—Н22С      | 0.9800      |  |
|-----------|-------------|---------------|-------------|--|
| N1—C2     | 1.348 (2)   | C22—H22D      | 0.9800      |  |
| C2—C3     | 1.390 (2)   | C22—H22E      | 0.9800      |  |
| C2—C21    | 1.512 (2)   | C22—H22F      | 0.9800      |  |
| C3—C4     | 1.401 (2)   | O41—H41       | 1.00 (3)    |  |
| С3—Н3     | 0.9500      | C61—O61       | 1.209 (2)   |  |
| C4—O41    | 1.348 (2)   | C61—O62       | 1.333 (2)   |  |
| C4—C5     | 1.403 (2)   | C62—O62       | 1.459 (2)   |  |
| C5—C6     | 1.395 (2)   | C62—H62A      | 0.9800      |  |
| С5—Н5     | 0.9500      | C62—H62B      | 0.9800      |  |
| C6—C61    | 1.516 (2)   | С62—Н62С      | 0.9800      |  |
| C21—O21   | 1.210 (2)   | C62—H62D      | 0.9800      |  |
| C21—O22   | 1.339 (2)   | C62—H62E      | 0.9800      |  |
| C22—O22   | 1.457 (2)   | C62—H62F      | 0.9800      |  |
| C22—H22A  | 0.9800      | O1W—H1W       | 0.99 (3)    |  |
| C22—H22B  | 0.9800      | O1W—H2W       | 0.84 (3)    |  |
| C6—N1—C2  | 116.20 (14) | O22—C22—H22F  | 109.5       |  |
| N1-C2-C3  | 123.98 (15) | H22A—C22—H22F | 62.8        |  |
| N1-C2-C21 | 113.67 (14) | H22B—C22—H22F | 49.6        |  |
| C3—C2—C21 | 122.35 (15) | H22C—C22—H22F | 140.4       |  |
| C2—C3—C4  | 118.91 (15) | H22D—C22—H22F | 109.5       |  |
| С2—С3—Н3  | 120.5       | H22E—C22—H22F | 109.5       |  |
| С4—С3—Н3  | 120.5       | C21—O22—C22   | 115.96 (14) |  |
| O41—C4—C3 | 118.28 (15) | C4—O41—H41    | 112.3 (16)  |  |
| O41—C4—C5 | 123.61 (16) | O61—C61—O62   | 124.64 (15) |  |
| C3—C4—C5  | 118.11 (15) | O61—C61—C6    | 123.89 (16) |  |
| C6—C5—C4  | 117.98 (15) | O62—C61—C6    | 111.46 (14) |  |
|           |             |               |             |  |

| С6—С5—Н5      | 121.0        | O62—C62—H62A                      | 109.5        |
|---------------|--------------|-----------------------------------|--------------|
| C4—C5—H5      | 121.0        | O62—C62—H62B                      | 109.5        |
| N1—C6—C5      | 124.77 (15)  | H62A—C62—H62B                     | 109.5        |
| N1—C6—C61     | 113.31 (14)  | O62—C62—H62C                      | 109.5        |
| C5—C6—C61     | 121.92 (15)  | H62A—C62—H62C                     | 109.5        |
| O21—C21—O22   | 124.71 (16)  | H62B—C62—H62C                     | 109.5        |
| O21—C21—C2    | 123.84 (15)  | O62—C62—H62D                      | 109.5        |
| O22—C21—C2    | 111.45 (14)  | H62A—C62—H62D                     | 51.9         |
| O22—C22—H22A  | 109.5        | H62B—C62—H62D                     | 60.6         |
| O22—C22—H22B  | 109.5        | H62C—C62—H62D                     | 140.8        |
| H22A—C22—H22B | 109.5        | О62—С62—Н62Е                      | 109.5        |
| O22—C22—H22C  | 109.5        | H62A—C62—H62E                     | 140.8        |
| H22A—C22—H22C | 109.5        | Н62В—С62—Н62Е                     | 51.9         |
| H22B—C22—H22C | 109.5        | Н62С—С62—Н62Е                     | 60.6         |
| O22—C22—H22D  | 109.5        | H62D—C62—H62E                     | 109.5        |
| H22A—C22—H22D | 140.4        | O62—C62—H62F                      | 109.5        |
| H22B—C22—H22D | 62.8         | H62A—C62—H62F                     | 60.6         |
| H22C—C22—H22D | 49.6         | H62B—C62—H62F                     | 140.8        |
| O22—C22—H22E  | 109.5        | H62C—C62—H62F                     | 51.9         |
| H22A—C22—H22E | 49.6         | H62D—C62—H62F                     | 109.5        |
| H22B—C22—H22E | 140.4        | H62E—C62—H62F                     | 109.5        |
| H22C—C22—H22E | 62.8         | C61—O62—C62                       | 115.39 (14)  |
| H22D—C22—H22E | 109.5        | H1W—O1W—H2W                       | 104 (2)      |
| C6—N1—C2—C3   | 2.0 (2)      | N1 - C2 - C21 - O21               | 0.2 (2)      |
| C6—N1—C2—C21  | -178.91(14)  | $C_{3}$ $C_{2}$ $C_{21}$ $O_{21}$ | 179.35 (17)  |
| N1—C2—C3—C4   | -0.9(3)      | N1—C2—C21—O22                     | -179.68 (13) |
| C21—C2—C3—C4  | -179.95 (15) | C3—C2—C21—O22                     | -0.5 (2)     |
| C2—C3—C4—O41  | 178.48 (15)  | 021-C21-022-C22                   | -1.4(2)      |
| C2—C3—C4—C5   | -1.3 (2)     | C2—C21—O22—C22                    | 178.48 (14)  |
| O41—C4—C5—C6  | -177.52 (15) | N1—C6—C61—O61                     | 6.3 (2)      |
| C3—C4—C5—C6   | 2.2 (2)      | C5—C6—C61—O61                     | -173.56 (17) |
| C2—N1—C6—C5   | -0.9(2)      | N1—C6—C61—O62                     | -174.92 (14) |
| C2—N1—C6—C61  | 179.27 (13)  | C5—C6—C61—O62                     | 5.2 (2)      |
| C4—C5—C6—N1   | -1.2 (2)     | O61—C61—O62—C62                   | -3.6 (2)     |
| C4—C5—C6—C61  | 178.65 (14)  | C6—C61—O62—C62                    | 177.62 (14)  |

### Hydrogen-bond geometry (Å, °)

| D—H···A                          | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|----------------------------------|-------------|----------|--------------|---------|
| 041—H41…O1 <i>W</i> <sup>i</sup> | 1.00 (3)    | 1.62 (3) | 2.6225 (19)  | 176 (2) |
| O1 <i>W</i> —H1 <i>W</i> ···O61  | 0.99 (3)    | 1.88 (3) | 2.869 (2)    | 176 (2) |
| O1 <i>W</i> —H2 <i>W</i> ···O21  | 0.84 (3)    | 2.11 (3) | 2.928 (2)    | 168 (2) |

Symmetry code: (i) x+1/2, -y+2, z.

### Selected C—O bond lengths (Å)

|        | (I <i>a</i> ) | (I <i>b</i> ) | (I <i>c</i> ) |
|--------|---------------|---------------|---------------|
| C4—O41 | 1.3118 (18)   | 1.3410 (19)   | 1.2956 (13)   |

| C4'—O41'  |             | 1.2899 (18) |             |
|-----------|-------------|-------------|-------------|
| C21—O21   | 1.2644 (18) | 1.2285 (19) | 1.2317 (14) |
| C21′—O21′ |             | 1.246 (2)   |             |
| C21—O22   | 1.2409 (19) | 1.2998 (18) | 1.2823 (13) |
| C21′—O22′ |             | 1.2594 (19) |             |
| C61—O61   | 1.2124 (19) | 1.208 (2)   | 1.2180 (13) |
| C61'—O61' |             | 1.246 (2)   |             |
| C61—O62   | 1.3136 (18) | 1.318 (2)   | 1.3095 (13) |
| C61'—O62' |             | 1.261 (2)   |             |