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Structurally characterized tantalum–�2-alkyne complexes [TaCl3(�2-EtC�CEt)L2] (1, L2 = 1,2-dimethoxyethane
(DME); 2, L = py) acted as catalysts for the cyclotrimerization of terminal alkynes. The catalytic reaction proceeded
at 25 �C within few hours and the trisubstituted benzenes were obtained without the formation of linear oligomers. A
new tantalum complex having a terminal alkyne ligand, [TaCl3(�2-Me3SiC�CH)(dme)] (3), was prepared, and its cata-
lytic performance was also investigated.

The transition metal-catalyzed cyclotrimerization of alkynes
is one of the most attractive methods and atom economical
processes for the construction of aromatic rings.1–8 Recent re-
search in this field has been focused mainly on the regioselec-
tive formation of substituted aromatic compounds9 and the de-
velopment of new early transition metal catalysts10–14 besides
improvements of conventional late transition metal cata-
lysts.15–17 An �2-alkyne complex of an early transition metal
is of potential utility as a cyclotrimerization catalyst, because
the cyclotrimerization proceeds via the insertion of an alkyne
into a metal–alkyne bond of the alkyne complex. However,
the isolated �2-alkyne complexes of group 5 metals, except
for Wigley’s [(DIPP)3Ta(�2-RC�CR0)] (DIPP = 2,6-diisopro-
pylphenoxide),18,19 are known to be inert toward the insertion
of alkynes, which is the first step of cyclotrimerization.20,21 In
fact, catalytically active group 5 �2-alkyne complexes have
been prepared in situ in many previous studies.10,22–29 In
1995, we reported that the stoichiometric cyclotrimerization
proceeded when the treatment of terminal alkynes with low-
valent tantalum complexes generated in situ (Eq. 1).30 Recent-
ly, we isolated and determined the structures of several tanta-
lum–�2-internal alkyne complexes with the general formula,
[TaCl3(�2-RC�CR0)(dme)], which were postulated as the in-
termediates of cyclotrimerization.31 In this paper we report
on the catalytic behavior of [TaCl3(�2-EtC�CEt)(dme)] (1)
and [TaCl3(�2-EtC�CEt)(py)2] (2) as single-component termi-
nal alkyne cyclotrimerization catalysts (Scheme 1). In addition,
a new tantalum complex having a terminal alkyne ligand,
[TaCl3(�2-Me3SiC�CH)(dme)] (3), has been synthesized and

characterized; its catalytic behavior toward trimethylsilylacety-
lene is also presented.

ð1Þ

Results and Discussion

Tantalum–3-hexyne Complexes 1 and 2 Catalyzed
Cyclotrimerization. The catalytic behavior of the structurally
characterized 3-hexyne complex 131 toward the cyclotrimeriza-
tion of 1-hexyne was investigated. The reaction of 1-hexyne
catalyzed by 1 mol% of 1 proceeded in toluene at 25 �C for
18 h to give 1,2,4-tributylbenzene and 1,3,5-tributylbenzene
in almost quantitative yield with 72:28 isomeric ratio
(Table 1, run 1). No linear oligomer was formed, and a trace
amount of dibutyldiethylbenzene was detected, which was de-
rived from 1-hexyne and coordinated 3-hexyne. The [2 + 2 +
2] cycloaddition is known to be exothermic.4,22 Actually, upon
the addition of 1-hexyne to a solution of 1 in toluene, the sol-
vent toluene began to boil. The reaction pathway of the cyclo-
trimerization can be explained by a ‘common mechanism’5 in-
volving the formation of tantalacyclopentadiene and tantalum–
�2-terminal alkyne complexes. Therefore, the regioisomeric ra-
tio (A:B = 72:28) of the cyclotrimerization of 1-hexyne is stat-
istical, which are explained by a random insertion of 1-hexyne
into the tantalum–�2-hexyne bond of 1 due to the less bulky
ligand.

At low catalyst concentrations (S/C = 1000), the reactionScheme 1.
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stopped at 25% conversion is probably due to the deactivation
of the catalyst caused by the contamination of a trace amount of
oxygen (run 2). As the solvent, hexane gave the best results, and
the reaction was completed within 1.5 h (>99% conversion),
whereas dichloromethane led to incomplete conversion (run
4). The cyclotrimerization was suppressed by the donor sol-
vents, such as acetonitrile, DME, and THF (runs 5–7). In the
case of acetonitrile, pyridine derivatives derived from acetoni-
trile and 1-hexyne were not detected. Phenylacetylene and tri-
methylsilylacetylene were also trimerized with 1 in almost
quantitative yields (runs 8 and 9). Complex 1 did not catalyze
the cyclotrimerization of 2-propargyl alcohol, due to the de-
composition of the catalyst by the hydroxy group (run 10).
An internal alkyne, such as 1-phenylpropyne and 3-hexyne,
did not react with 1 at all. The catalytic reaction using bis(pyr-
idine) catalyst 2 was sluggish (run 11), which is presumably
due to a restraint of coordination of 1-hexyne to the tantalum
center by the strongly coordinated pyridine ligands. Although
the isomer ratio is low, 1,3,5-tributylbenzene was obtained as
a major isomer.

ð2Þ

Synthesis and Characterization of Tantalum–�2-Termi-
nal Alkyne Complex 3 and Its Catalytic Performance. Al-
though an tantalum–�2-terminal alkyne intermediate would
certainly be formed in the catalytic cycle, isolated �2-terminal
alkyne complexes are still unknown. We chose trimethylsilyl-
acetylene (Me3SiC�CH) as a sterically bulky terminal alkyne,
and tried to isolate the tantalum–�2-terminal alkyne complex.
The treatment of the low-valent tantalum with Me3SiC�CH
gave 3 in 22% isolated yield as a brown crystalline solid. Com-
plex 3 is the first example of a tantalum complex having an �2-
terminal alkyne ligand. The thermally stable 3 could be stored
at room temperature under argon for one year without decom-
position. Complex 3 is also stable in organic solvents in the ab-
sence of oxygen and water. The �2-coordination of the alkyne
and coordination environment around the tantalum was con-
firmed by NMR and IR spectroscopies. The terminal hydrogen

signals of Me3SiC�CH appeared at a remarkable lower field of
� 15.15 compared to that of the reported Pedersen’s niobium
analogue.26 In the 13C{1H}NMR spectral data, the two signals
of alkyne carbon were observed at � 239.1 and 255.3, which are
comparable to those reported for tantalum–�2-alkyne com-
plexes.21,32,33 Moreover, the IR absorption band at 1556 cm�1

supports the �2-coordination mode of the alkyne fragment.
Thus, the alkyne ligand donates four electrons to the tantalum
center, and the canonical structure of the tantalum–alkyne unit
can be best described as a tantalacyclopropene.34,35 The inequi-
valent methyl resonances of the coordinated DME ligand
(� 3.32 and 3.68 in 1HNMR and � 62.6 and 68.2 in
13C{1H}NMR) indicate that one of the oxygen occupies the
trans position to the alkyne ligand.36 We conclude that the co-
ordination environment around the tantalum of 1c is essentially
the same as those observed for Pedersen’s [NbX3(�2-alkyne)-
(dme)] (X = Cl, Br)26 and our crystallographically character-
ized [TaCl3(�2-alkyne)(dme)].31 The observation of the meth-
ylene protons of the DME as a singlet peak (� 3.10) accords
with that reported in the case of [NbBr3(�2-EtC�CEt)(dme)].26

The reaction of 3 with 100 equiv of Me3SiC�CH proceeded
smoothly to give tris(trimethylsilyl)benzenes in quantitative
yield without the formation of any organic by-products, such
as linear oligomer (run 12). Thus, the isolated �2-terminal al-
kyne complex 3 also catalyzed the cyclotrimerization, and co-
ordinated Me3SiC�CH was completely incorporated into the
cyclotrimers. The same isomer ratio as in the case of 1 (run
9) indicates that the cyclotrimerization by 3 probably proceed-
ed via the same intermediate in 1 catalyzed cyclotrimerization.

Experimental

All manipulations involving air- and moisture-sensitive com-
pounds were carried out using standard Schlenk techniques under
argon. 1,2-Dimethoxyethane (DME), THF, and toluene were pur-
chased from Wako Pure Chemical Industries, Ltd. and stored on
4A molecular sieves under argon. Tantalum(V) chloride was pur-
chased from Nacalai Tesque, Inc. tantalum–�2-alkyne complexes
[TaCl3(�2-EtC�CEt)(dme)] (1) and [TaCl3(�2-EtC�CEt)(py)2]
(2) were prepared according to our previously described proce-
dure.31 1H and 13C{1H}NMR spectra were measured on a JEOL
JNM-LA400 spectrometer. All 1HNMR chemical shifts were re-
ported in ppm relative to the protio impurity resonance as follows:
CDCl3, singlet at 7.26 ppm; C6D6, singlet at 7.20 ppm. IR spectra

Table 1. Tantalum–�2-Alkyne Complex Catalyzed Cyclotrimerization of Terminal Alkynes (RC�CH)

Run Cat. R S/C Solvent Time/h Yield/% Isomer ratio
A + B A/B

1 1 n-Bu 100 toluene 18 99 72/28
2 1 n-Bu 1000 toluene 23 25 74/26
3 1 n-Bu 100 hexane 1.5 99 76/24
4 1 n-Bu 100 CH2Cl2 1.5 88 68/32
5 1 n-Bu 100 CH3CN 1.5 trace —
6 1 n-Bu 100 DME 1.5 0 —
7 1 n-Bu 100 THF 1.5 0 —
8 1 Ph 100 toluene 20 93 58/42
9 1 Me3Si 100 hexane 20 99 52/48
10 1 HOCH2 100 toluene 7 0 —
11 2 n-Bu 100 toluene 1.5 56 44/56
12 3 Me3Si 100 hexane 20 99 52/48
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were recorded using Nicolet PROTÉGÉ 460-T. The melting point
was measured in a sealed tube on a Yanaco MP-S3 apparatus and
was uncorrected.

Preparation of [TaCl3(Me3SiC�CH)(dme)] (3). Toluene (12
mL) was added to TaCl5 (594 mg, 1.66 mmol) in a 80 mL Schlenk
tube, and then DME (12 mL) was slowly added to the resulting yel-
low suspension. Zn powder (163 mg, 2.49 mmol) was added to the
mixture in one portion at room temperature. After stirring the mix-
ture at room temperature for 60 min, low-valent tantalum was pre-
pared in almost quantitative yield. Trimethylsilylacetylene (235
mL, 1.66 mmol) was added to the suspension and stirred at 25 �C
for 2 h. All volatiles were removed in vacuo, and the resulting pale
brown powder was extracted with toluene (15 mL). Hexane (20
mL) was added as a layer to the solution, and placed in a �20
�C freezer. Upon standing overnight, brown crystals were deposit-
ed. Removal of the supernatant by a syringe afforded 174 mg (0.37
mmol) of 3 in 22% yield. Mp 105 �C (dec). IR (nujol/CsI) 1556
(�C�C), 309 (�Ta{Cl) cm�1. 1HNMR (C6D6) � 0.61 (s, 9H,
(CH3)3Si–), 3.10 (s, 4H, –OCH2CH2O–), 3.32 (s, 3H, –OCH3),
3.68 (s, 3H, –OCH3), 15.15 (s, 1H, HC�). 13C{1H}NMR (C6D6)
� 0.3 ((CH3)3Si–), 62.6 (–OCH3), 68.2 (–OCH3), 70.9
(–OCH2CH2O–), 75.4 (–OCH2CH2O–), 239.1 (�CSi), 255.3
(HC�).

Catalytic Cyclotrimerization of Terminal Alkynes. A typi-
cal procedure is described for the trimerization of 1-hexyne cata-
lyzed by 1. To a yellow solution of 1 (34.8 mg, 7.57 mmol) in tol-
uene (5 mL) was added 1-hexyne (0.87 mL, 7.57 mmol), which
was stirred at 25 �C for 18 h. After the reaction, the reaction mix-
ture expose to the air and a small amount of silica gel was added.
The mixture was passed through a short column on silica gel (hex-
ane as an eluent) to remove any inorganic products, and all vola-
tiles were removed in vacuo to give tributylbenzenes (620 mg,
2.52 mmol). The isomer ratio of the products was analyzed by
gas chromatography (Quadrex 007 OV-17 (50 m � 0.32 mm))
and 1HNMR spectroscopy.
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