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Fused 1,2,5-thiadiazoles have attracted much attention because
of their interesting chemical properties and various possibilities in
use as antibacterial and antiviral agents, agrochemicals, and as p-
type building blocks for organic electronics, particularly for both
low- and high-molecular weight organic light-emitting diodes
(OLEDs).1 Recently 1,2,5-thiadiazole derivatives were recognized
as efficient electron acceptors and were successfully used for the
preparation of radical-anion salts revealing antiferromagnetic ex-
change interactions in their spin systems,2 and conductive
charge-transfer complexes also possessing photoconductivity.3

Although methods for the preparation of fused 1,2,5-thiadiazoles
are numerous and well elaborated,1 there is still a lack of syntheses
of derivatives containing electron-deficient heterocycles or elec-
tron-withdrawing groups.

Recently, it was found that 3,4-diamino-1,2,5-oxadiazole (1), on
treatment with sulfur monochloride and pyridine in acetonitrile
gave, unexpectedly, [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (2)
in high yield (Scheme 1).3

The main feature of this transformation is that two processes
occur simultaneously: formation of a 1,2,5-thiadiazole ring via
base-assisted condensation of a vic-diamine with sulfur monochlo-
ride, and exchange of the oxygen atom in the 1,2,5-oxadiazole ring
with a sulfur atom. The first reaction can be envisaged easily be-
cause 3,4-diamino-1,2,5-thiadiazole and o-phenylenediamine have
ll rights reserved.

: +7 499 135 53 28.
been cyclized previously in the presence of S2Cl2 to give the corre-
sponding fused 1,2,5-thiadiazoles,4,5 however, to the best of our
knowledge, no direct exchange of oxygen with a sulfur atom in a
1,2,5-oxadiazole ring is known. Lawesson’s reagent, which per-
forms well in this exchange with various classes of compounds,6

does not react with 2,1,3-benzoxadiazole, even on heating to
150–160 �C in 1,2-dichlorobenzene.7 Further study of the synthesis
of 1,2,5-thiadiazoles led us to a new and even more unexpected
transformation of vic-amino-nitro derivatives into fused 1,2,5-thi-
adiazoles through their 1-oxides. In this Letter we report the syn-
thesis of fused 1,2,5-thiadiazoles from o-nitroamines and sulfur
monochloride.

We have studied the reaction between 3,4-dinitro- 3 and 4-ami-
no-3-nitro-1,2,5-oxadiazoles 4 and sulfur monochloride. Treat-
ment of compound 3 with S2Cl2 in the presence of pyridine in
acetonitrile under conditions similar to those used for the synthe-
sis of bicycle 2 from oxadiazole 13 gave no reaction, and starting
material 3 was recovered in almost quantitative yield. Treatment
of compound 4 with the same mixture led to derivative 2 in mod-
erate yield (Scheme 2).
2, 75%1

Scheme 1. Synthesis of [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (2) from 3,4-
diamino-1,2,5-oxadiazole (1).
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Scheme 2. Synthesis of compound 2 from oxadiazole 4.
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The results obtained suggested an important role of the amino
group in the transformation of the oxadiazole ring into a thiadia-
zole. Although it is the second example where an oxygen atom in
a 1,2,5-oxadiazole ring is exchanged by a sulfur atom, the forma-
tion of the second 1,2,5-thiadiazole ring from the vic-amino-nitro
moiety was even more surprising because no similar reaction
was described previously in the literature. Since the basicity of
compound 4 (pKaBH+ = �4.46)8 is near to that of o-nitroanilines
(pKaBH+ of 2,4-dinitroaniline is �4.52),9 we tried to extend these
S2Cl2 reactions to readily available or commercial 2,4,6-trinitroan-
iline, 2,4-dinitroaniline, and o-nitroaniline.

In an attempt to find the best conditions for the synthesis of
benzothiadiazoles, we investigated the reaction of 2,4-dinitroani-
line with sulfur monochloride in detail. Treatment of S2Cl2 in
NO2
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Scheme 3. Reaction of 2,4-dinitroaniline with S2Cl2 in DMF.
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DMF—a solvent, which is frequently used in S2Cl2 reactions10—gave
amidine 5 in 60% yield (Scheme 3). Thus, DMF was not a suitable
solvent for the reactions of anilines with S2Cl2.

The type of a base used was important for the success of reac-
tions with S2Cl2 in other solvents (acetonitrile or chloroform). Tri-
ethylamine and N-ethyldiisopropylamine did not catalyze these
reactions at room temperature or at reflux. Treatment of 2,4-dini-
troaniline with S2Cl2 and 1,4-diazabicyclooctane (DABCO) in MeCN
led to a mixture of the target thiadiazole together with uncon-
sumed starting material, even in the presence of a large excess of
reagents. Reaction of 2,4-dinitroaniline with a fivefold excess of
S2Cl2 and pyridine led, selectively, after prolonged refluxing, to 5-
nitro-2,1,3-benzothiadiazole (6) in a moderate yield (Scheme 4).11

On further investigation of the reaction between 2,4-dinitroan-
iline and S2Cl2 it was found that the transformation could be
stopped at the formation of 6-nitro-2,1,3-benzothiadiazole 1-oxide
(7) using DABCO as the base and chloroform as the solvent. Deriv-
ative 7 can be converted into compound 6 in high yield with S2Cl2

and pyridine in acetonitrile using the same protocol as for 2,4-dini-
troaniline (Scheme 4). The structures of compounds 6 and 7 were
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Scheme 6. Reaction of o-nitroaniline with S2Cl2.
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confirmed by X-ray diffraction (XRD, Fig. 1).12 The compounds
were also characterized by elemental analyses and spectral data
(NMR, MS, and IR).11

Treatment of 2,4,6-trinitroaniline (picramide) with a mixture of
S2Cl2 and DABCO in chloroform gave 4,6-dinitro-2,1,3-benzothiadi-
azole 1-oxide (8) in moderate yield (Scheme 5). Although a solu-
tion of compound 8 was unstable on storage at room
temperature in organic solvents (e.g., chloroform or acetonitrile),
its structure was confirmed by the aforementioned methods. Reac-
tion of picramide with a mixture of S2Cl2 and pyridine in acetoni-
trile led to the formation of 4,6-dinitro-2,1,3-benzothiadiazole (9)
(37%) together with picryl chloride (17%) (Scheme 5).

The more basic compound o-nitroaniline reacted differently in
the presence of S2Cl2 and pyridine in chloroform, and gave a mix-
ture of bis-anilines 10 in low yields connected by one or two sulfur
atoms (NMR, MS, and IR), the 2-nitro group on the benzene ring re-
mained intact (Scheme 6).

The described reaction provides a new synthetic pathway to
fused 1,2,5-thiadiazoles and their 1-oxides from vic-nitroamines.
To the best of our knowledge, this reaction was previously un-
known. The closest formal analogy is the reaction of nitroanilines
with (NSCl)3 affording 2,1,3-benzothiadiazoles.13 However, the
reaction pathways seem to be very different since the latter reac-
tion is thought to proceed via vicarious nucleophilic substitution
of hydrogen.14 Furthermore, persistent sulfur-nitrogen radicals
were detected in anilines/(NSCl)3 reaction mixtures by EPR.14

The key steps of the reactions described in this work may be ex-
plained by the sulfurization of the amine with sulfur monochloride
in the presence of the base to give N-thiosulfinylamines 11, as has
been described for other anilines,15 followed by cyclization into
1,2,5-thiadiazole 1-oxide 12 via a cycloaddition/retrocycloaddition
with extrusion of sulfur monooxide (SO) (the latter is thermody-
namically unstable and decomposes very rapidly).16 Final forma-
tion of 1,2,5-thiadiazole 13 from its 1-oxide 12 was confirmed by
separately converting the N-oxide 12 into 13 using the conditions
of the cyclization reaction (see Scheme 7). The obtained results
showed that vic-nitro-amines containing strong electron-with-
drawing substituents (nitro groups) on the benzene ring or at-
tached to an electron-deficient heterocycle (1,2,5-oxadiazole) can
take part in this reaction, since the ortho-nitro group should be
activated toward nucleophilic attack of an N-thiosulfinyl moiety.

It should be emphasized that 1,2,5-thiadiazole 1-oxides are rare
compounds. They have been obtained by the reaction of sulfur mono-
chloride with o-aminonitroso derivatives17–19 and a-dioximes.20 The
thermal behavior of these compounds was not investigated previ-
ously. We attempted to open the 1,2,5-thiadiazole ring to give o-nitr-
osothionitroso compounds 14 (similar to the ring-opening
transformation of 1,2,5-oxadiazole 1-oxides into o-dinitroso deriva-
tives).21 Earlier, reversible transformation of 2,1,3-benzothiadiazole
1-oxide into the corresponding o-nitrosothionitroso derivative was
observed in an argon matrix under low-temperature photochemical
conditions.22 In the thermal experiments, however, oxides 7 and 8,
upon heating at 190–200 �C, lose an oxygen atom to produce thi-
adiazoles 6 and 9 in high yields (Scheme 8). The thermal extrusion
of an oxygen atom from 1,2,5-oxadiazole 1-oxides is rare.23

In conclusion, a new reaction, namely that of vicinal nitroam-
ines with sulfur monochloride, has been described as a one-pot
synthetic route to fused 1,2,5-thiadiazoles and their 1-oxides.
The reaction contributes to synthetic approaches to sulfur-nitrogen
heterocycles via sulfur chlorides and nitrogen reagents.24 The ni-
trated 2,1,3-benzothiadiazoles synthesized are of interest as pre-
cursors of persistent radical anions.2,25 The described
experimental procedures may serve as an efficient basis for a
new synthesis of 1,2,5-thiadiazoles fused with both carbo- and
heterocycles.
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(0.96 mL, 12.0 mmol) in dry MeCN (20 mL) under argon at �25 �C. The mixture
was stirred for 20 h at room temperature and then refluxed for 15 h. The
mixture was cooled to 20 �C, filtered and the solvent evaporated under reduced
pressure. The residue was separated by column chromatography (silica gel
Merck 60, hexane/CH2Cl2 mixtures).
1,2,5Thiadiazolo[3,4-c][1,2,5]thiadiazole (2b). Yield 49%. Colorless needles, mp
116–118 �C (Lit.3 mp 117–118 �C).
5-Nitro-2,1,3-benzothiadiazole (6). Yield 33%. Colorless needles, mp 126–127 �C
(Lit.26 mp 128 �C).
4,6-Dinitro-2,1,3-benzothiadiazole (9). Yield 37%. Light yellow solid, mp 127–
128 �C (Lit.27 mp 136–138 �C). 1H NMR (300 MHz, CDCl3) d: 9.33 (1H, d, CH, J
3.0), 9.37 (1H, d, CH, J 3.0). 13C NMR (75 MHz, CDCl3) d: 121.1, 125.4, 139.7,
147.1, 148.4, 155.2. MS (EI, 70 eV), m/z (%): 226 (M+, 65), 92 (25), 83 (30), 64
(15), 46 (15), 30 (100). IR (KBr), mmax, cm�1: 3111, 3078 (C–H), 1619 (C@N),
1570, 1537, 1342 (NO2).
General procedure for the reaction of vic-amino-nitro derivatives with S2Cl2 and
DABCO in chloroform. S2Cl2 (0.80 mL, 5.0 mmol) was added dropwise to a
stirred solution of the vic-amino-nitro derivative (1.0 mmol) and DABCO
(1.12 g, 10.00 mmol) in CHCl3 (15 mL) under argon at �30 �C. The mixture was
stirred for 48 h at ambient temperature, refluxed for 5 h, cooled to 20 �C, and
worked-up as described above (silica gel Merck 60 was pretreated with
triethylamine prior to chromatography).
6-Nitro-2,1,3-benzothiadiazole 1-oxide (7). Yield 38%. Yellow solid, mp 149–
150 �C.
Anal. Calcd for C6H3N3O3S (197.17) C, 36.55; H, 1.53; N, 21.31. Found C, 36.37;
H, 1.46; N, 21.23. 1H NMR (300 MHz, CDCl3) d: 8.03 (1H, d, CH J 9.0), 8.27 (1H,
dd, CH, J 3.0 and 9.0), 8.46 (1H, d, CH, J 3.0). 13C NMR (75 MHz, CDCl3) d: 111.9,
124.6, 125.0, 138.1, 145.7, 151.2. MS (EI, 70 eV), m/z (%): 197 (M+, 65), 181 (90),
167 (40), 151 (15), 135 (80), 89 (35), 46 (100). IR (KBr), mmax, cm�1: 3091, 2926
(C–H), 1596 (C@N), 1564, 1504, 1335 (NO2).
4,6-Dinitro-2,1,3-benzothiadiazole 1-oxide (8). Yield 29%. Dark yellow solid, mp
186–187 �C. Anal. calcd for C6H2N4O5S (242.17) C, 29.76; H, 0.83; N, 23.14.
Found C, 29.83; H, 0.75; N, 23.02. 1H NMR (300 MHz, CDCl3) d: 8.94 (1H, d, CH, J
3.0), 9.19 (1H, d, CH, J 3.0). 13C NMR (75 MHz, CDCl3) d: 118.1, 121.3, 124.2,
124.3, 129.3, 141.6. MS (EI, 70 eV), m/z (%): 242 (M+, 20), 226 (10), 196 (5), 64
(25), 46 (15), 30 (100). IR (KBr): mmax = 3071, 2923 (C–H), 1608 (C@N), 1539,
1515, 1332 (NO2).
Thermolysis of 1,2,5-thiadiazole 1-oxides 7 and 8. Compound 7 or 8 (20 mg) was
heated for 1 min under argon at 190 �C (7) or at 200 �C (8). The residue was
separated by column chromatography (silica gel Merck 60, gradual elution
with light petroleum or mixtures with CH2Cl2). Yields: 6 (78%), 9 (67%).

12. XRD structures of compounds 6 (CCDC 929367) and 7 (CCDC 929368) will be
discussed elsewhere, crystallographic data can be obtained free of charge via
www.ccdc.cam.uk/conts/retrieving.html.
Compound 6: triclinic, space group P�1, a = 5.7385(4), b = 7.8571(5),
c = 8.3539(5) Å, a = 112.262(2), b = 93.986(2), c = 91.902(2)�, V = 347.02(4) Å3,
Z = 2, Dc = 1.734 g cm�3, l(Mo Ka) = 0.419 cm�1, 2016 unique reflections,
R1 = 0.0309 (1779 I >2r(I)).
Compound 7: triclinic, space group P�1, a = 4.1585(2), b = 9.5722(5),
c = 9.7750(6) Å, a = 106.169(2), b = 101.536(2), c = 98.104(2)�,
V = 358.08(3) Å3, Z = 2, Dc = 1.829 g cm�3, l(Mo Ka) = 0.424 cm�1, 2102
unique reflections, R1 = 0.0295 (1885 I >2r(I)).
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