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A library of paclitaxel (taxol) mimics was obtained by a straightforward strategy involving rational design
and an efficient synthesis of a simplified taxane core substitute, together with a click-chemistry combi-
natorial search for phenylisoserine side-chain surrogates.
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The tubulin/microtubule system plays a key role during mitosis
and disturbing its dynamic equilibrium can prevent cell division
and induce apoptosis. Up to now, most of the known microtu-
bule-stabilizing antitubulin agents, such as paclitaxel (taxol), dis-
codermolide, or epothilones, are characterized by a very complex
structure, and are therefore difficult to synthesize, especially on a
large scale. The structure–activity relationship for taxoids has been
extensively studied and the importance of the C-13 side-chain and
the ester group at C-2 have been highlighted.1,2 Moreover, studies
have been carried out in order to determine the bioactive confor-
mation of the taxoids, namely the conformation they adopt when
binding to and stabilizing microtubules.3–5 Using the 3.7 Å struc-
ture of the a,b-tubulin–taxol complex obtained by electron crystal-
lography of zinc-induced sheets3 and electron crystallographic
density, a ‘T-shaped’ taxol was proposed as the bioactive confor-
mation on b-tubulin.5 Numerous analogues of taxol have been syn-
thesized which possess the complex taxane skeleton. Until now, a
few structures exhibiting a simpler core have been elaborated,6

some of which show interesting biological activity.6c In these at-
tempts, the constructs have, however, retained the phenylisoserine
structure (or close analogues) of the side-chain at C-13 as an
important recognition unit, without (structures B–E) or with
(structures F–I) a mimic of the benzoate at C-2 (Fig. 1). Using geo-
metrical parameters from the tetracyclic taxane skeleton and
ll rights reserved.
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molecular modeling, we propose here the synthesis of a small
library of taxoid analogues with a simplified core structure suppos-
edly mimicking the taxane skeleton. Moreover, we show that click-
chemistry can efficiently be used to rapidly introduce simple
potential side-chain surrogates.

In order to properly define the relative orientation of the two
exit vectors corresponding to the anchoring of the phenylisoserine
and the benzoate side-chains onto the taxane core, we measured
the interatomic distance between C-13 and C-2 carbons, the dis-
tance between the two corresponding oxygens O-13 and O-2, as
well as the dihedral angle between the C-13–O-13 and the C-2–
O-2 bonds (Fig. 2) for T-shaped taxol,5,7 1JFF taxol,4 and docetaxel
(taxotere)8 in the crystal. These values showed a very good consen-
sus on the relative orientation of these two vectors. Searching for
simple structures that could present similar geometrical orienta-
tions, we found that bicyclic b-L-glucurono-c-lactone J could be a
good mimic for the taxane core in this respect.9,10 Molecular mod-
eling using MacroModel [MM3⁄, GB/SA water, Systematic Pseudo
Monte Carlo (SPMC) torsional sampling] showed a good correspon-
dence for these three parameters with the previously determined
taxane data (Table 1 and Fig. 2b), hence the synthesis of such deriv-
atives was selected. With further structural simplifications in
mind, we chose to conserve the benzoate group, which has been
shown to be essential for activity,1,2 and to replace the taxol
side-chain by diverse aromatic motifs introduced by click triazole
formation (Scheme 2). We decided to focus on side-chain surro-
gates bearing aromatic groups, which bring attractive interaction
with the corresponding hydrophobic pocket since the taxol side-
chain is known to make such hydrophobic interactions. Both aryl
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Table 1
Selected geometrical parameters for T-taxol, 1JFF taxol, taxotere, and b-L-glucurono-
c-lactone J

C13–C2 (tax.)/
C1–C5 (lact.) (Å)

O13–O2 (tax.)/
O1–O5 (lact.) (Å)

Dihedral
anglea (deg.)

T-taxol 3.70 4.86 �47.75
1JFF taxol 3.74 4.89 �44.07
Taxotere 3.68 4.93 �45.94
Lactone J (aver.)b 3.62 4.89 �51.59
Lactone J (min.)c 3.63 4.92 �52.91

a C13–O13/C2–O2 dihedral angle for taxoids, C1–O1/C5–O5 for lactone J.
b Average values over the 20 conformations obtained by SPMC (all within

5.0 kcal mol�1 above global minimum).
c Values for the lowest energy conformation obtained by SPMC and used in

Fig. 2b.
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Scheme 2. Reagents and conditions: (a) CuSO4 (0.05 equiv), sodium ascorbate
(0.1 equiv), H2O/CH2Cl2 (1:1), 20 �C overnight, (57–92%).
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Figure 1. The structure of paclitaxel (taxol) A, as well as some literature examples
of taxoid mimics with simpler structures replacing the taxane core.
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and benzyl groups were selected to probe the influence of side-
chain flexibility.

Since the core we selected is a derivative of non-natural L-glu-
cose, we had to elaborate this structure from another synthetic
precursor. The propargylic derivative 5 was therefore prepared
from commercially available D-glucoheptonolactone 1 in six steps
(Scheme 1). The first three steps provided L-glucurone 2 in a 60%
overall yield, using the large-scale optimization recently published
by Fleet11,12 from a strategy initially described by Sowa.13 Subse-
quent protection of the two contiguous hydroxy groups in the form
of an isopropylidene (3, 70%), followed by benzoylation of the
remaining hydroxy readily led to intermediate 4 (80%). Sulfuric
acid-catalyzed glycosylation of 4 in propargyl alcohol gave the de-
sired propargyl glycoside 5.14

Product 5 crystallized from ethyl acetate/cyclohexane, and the
stereoselectivity of this last glycosylation step, hence the required
b-configuration of the resulting product, was unambiguously as-
sessed by X-ray crystallographic studies (Fig. 3).15

Compound 5 was then engaged into copper-accelerated azide-
alkyne cycloadditions (CuAAC)16 with a series of substituted aryl
(6–12)17 or benzyl (13–15)18 azides which were prepared accord-
ing to literature procedures.19,20 The ten desired triazoles (16–25,
Fig. 4) were obtained using Soo-Kim reaction conditions,21 using
a biphasic dichoromethane/water system (Scheme 2) in yields
ranging from 57% to 92%.22

None of these triazoles showed an appreciable antitubulin
activity (tubulin depolymerization assay), although nitro phenol
derivative 19 moderately inhibited the tubulin depolymerization
(IC50 of 90 lM).23

In summary, we have developed a very simple and efficient
synthetic route to possible taxol substitutes by a stereoselective
b-glycosylation of L-glucurono-c-lactone followed by a click cyclo-
addition of aromatic structures, providing fast access to a small
library of compounds. The molecules obtained in this work will
be further studied for their biological activity, including potential
inhibition of tubulin depolymerization and possible cytotoxic
properties. This oversimplified taxoid core mimic certainly does
not contain some of the key taxoid–tubulin interactions for



Figure 3. X-ray structure of glycoside 5, confirming anomeric configuration.

Figure 2. (a) Schematic representation of the overlay of b-L-glucurono-c-lactone J with the taxane core of taxol A. (b) Overlay of the MM3⁄ conformation of J (white sticks)
with T-taxol, 1JFF-taxol, and taxotere (dark lines). Hydrogens have been omitted for clarity.
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Figure 4. Structure of azido precursors 6–15 and triazole derivatives 16–25 with
yields for the cycloaddition reaction.
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efficient tubulin binding activity (e.g., C and D rings). In future
work, the elaboration of closer mimics carrying the phenylisoserine
side-chain of taxol as b-glycosyl esters of the L-glucurono-c-lactone
scaffold will notably be elaborated and the results of these studies
will be reported in due course.
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