

Asymmetric Catalytic Insertion of α -Diazo Carbonyl Compounds into **O–H Bonds of Carboxylic Acids**

Fei Tan, Xiaohua Liu,* Xiaoyu Hao, Yu Tang, Lili Lin, and Xiaoming Feng

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

R²

2-10 mol % Guanid 0.5-2.5 mol % Rh2(AcO),

Et₂O, -50~25 °C

 $R^3 = O'Pr$ Ph Me etc

Supporting Information

ABSTRACT: An efficient enantioselective insertion of α diazoesters and α -diazoketones into O–H bonds of carboxylic R¹CO₂H acids was realized by the use of $Rh_2(OAc)_4$ and a chiral guanidine. Optically active α -acyloxy carbonyl compounds were generated under mild reaction conditions in high yields (up to 99%) and good enantioselectivities (up to 97.5:2.5 er).

KEYWORDS: asymmetric catalysis, rhodium, chiral guanidine, insertion, carboxylic acids

ransition-metal-catalyzed asymmetric insertion of α -diazo compounds into O-H bond donors, such as alcohols, phenols, H₂O, and carboxylic acids is highly selective and synthetically useful for the synthesis of α -alkoxy, α -aryloxy, α hydroxyl, or α -acyloxy carbonyl derivatives, respectively.¹ Chiral α -acyloxy carbonyl compounds were usually synthesized from chiral α -hydroxy carbonyl compounds, which, for example, can be obtained from copper- or iron-catalyzed O-H insertion of H₂O with α -diazocarbonyl compounds in excellent enantioselectivities.11,j Additionally, asymmetric Passerini reaction2 and carboxylation reaction³ could provide access to α -acyloxy carbonyl compounds. The O-H insertion of carboxylic acids with α -diazocarbonyl compounds provides a direct and convenient alternative for the α -acyloxy carbonyl compounds synthesis. The racemic synthesis of α -acyloxy carbonyl compounds via O-H insertion of carboxylic acids with α diazo compounds have been reported by several groups after the pioneering work of Wolfrom and co-workers in 1945.^{4a} Metal salts, including cupric chloride,^{4b} $Cu(acac)_2$,^{4c} $Cu(OAc)_2$,^{4g} $Rh_2(OAc)_4$,^{4e} $Rh_2(esp)_2$,^{4h} and $Pd(OAc)_2$,^{4h} have been used. However, the asymmetric catalytic version of O-H insertion of carboxylic acids has not been addressed, which is quite different from the other O-H bond donors. The only asymmetric example of $Cu(acac)_2$ -mediated carbenoid insertion into acetic acid and pivalic acid was exploited with the aid of a chiral auxiliary by Wang.4d The catalytic enantioselective O-H insertion of carboxylic acids is difficult, and one explanation could be that the acidity of carboxylic acids may compromise the stability of chiral metal complex and lead to dissociation, resulting in poor enantiocontrol.

A computational study from the Yu group suggests that a free-ylide pathway is favored in the neutral dirhodium(II) complex-catalyzed system in O-H insertion reaction, and water can act as an efficient proton-transport catalyst for the [1,2]-H shift.⁵ These useful inferences have been demonstrated by cooperative catalysis in asymmetric N-H, C-H, and S-H insertions,⁶ using chiral phosphoric acids or cinchona alkaloids

as the chiral proton shutters. Taking inspiration from our recently developed asymmetric catalysis using chiral guanidines as organocatalysts and ligands,⁷ we sought to extend the utility of chiral guanidine to the O-H insertion of carboxylic acids. We hypothesized that carboxylic acids could take precedence to react with basic guanidine over transition metal salt, forming chiral guanidinium salt, which can participate in an insertion reaction of Rh carbenoids, acting as a chiral proton-transport catalyst for the [1,2]-H shift. Herein, the first example of the catalytic enantioselective O-H insertion of α -diazoesters and α -diazoketones to carboxylic acids was reported. A catalytic system containing a simple chiral guanidine-amide and dirhodium(II) carboxylate was proven to be efficient, and various α -acyloxy carbonyl compounds were obtained with good enantioselectivities and yields under mild reaction conditions.

In the initial study, we conducted the reaction of ethyl α diazo- α -phenylacetate (2a) with benzoic acid (1a) in chloroform at 0 °C, and a selection of chiral guanidine G1 and Rh(II) salts were evaluated as the catalysts (Table 1, entries 1-4). In the presence of 2.5 mol % of $Rh_2(OAc)_4$, the O-H insertion product 3a was formed in 51% yield and 87:13 er (entry 1). When $Rh_2(oct)_4$ and $Rh_2(TPA)_4$ were used, the reaction results were comparable (entries 3 and 4). $Rh_2(TFA)_4$, which has electron-deficient carboxylate ligands, slowed the reaction and lowered the enantioselectivity (entry 2). In an attempt to improve the enantioselectivity, the structures of chiral guanidines were varied (entries 5-12). Guanidine-amides G2-G4, which carried different amino acid backbones, were unfavorable in terms of er value (entries 5-7). The use of guanidine G1 derived from L-proline and ether as the reaction solvent led to a slight improvement in the enantioselectivity (entry 8). The 2,6-diisopropylphenyl-substituted G8 was nearly

August 1, 2016 Received: **Revised:** September 9, 2016

	N ₂		2.5 mol % Rh ₂ >	(₄ 0	Ph
PhCO ₂ H	+ Ph CO	₂ R ¹	solvent, -10~0 °	C Ph	
1a	2a : R ¹ = E 2c : R ¹ = ⁱ f	it Pr		3a: 3ac	R ¹ = Et ∷ R ¹ = [/] Pr
	R G1: m = 1, R G2: m = 2, R G5: m = 1, R G6: m = 1, R G7: m = 1, R G8: m = 1, R (Cy = cycloh	= CHPh ₂ = CHPh ₂ = Ph = CPh ₃ = Bn = 2,6- ⁱ Pr(exyl)	G3: R = 0	N Cy CHPh ₂ G4	$ \begin{array}{c} $
entry	Rh(II)	G*	solvent	yield (%) ^b	er ^c
1	$Rh_2(OAc)_4$	G1	CHCl ₃	51	87:13
2^d	$Rh_2(TFA)_4$	G1	CHCl ₃	51	75.5:24.5
3	$Rh_2(oct)_4$	G1	CHCl ₃	56	85:15
4	$Rh_2(TPA)_4$	G1	CHCl ₃	51	86.5:13.5
5	$Rh_2(OAc)_4$	G2	CHCl ₃	53	71:29
6	$Rh_2(OAc)_4$	G3	CHCl ₃	35	62.5:37.5
7	$Rh_2(OAc)_4$	G4	CHCl ₃	50	72.5:27.5
8	$Rh_2(OAc)_4$	G1	Et ₂ O	54	91:9
9	$Rh_2(OAc)_4$	G5	Et ₂ O	48	73:27
10	$Rh_2(OAc)_4$	G6	Et ₂ O	61	80:20
11	$Rh_2(OAc)_4$	G 7	Et ₂ O	55	78:22
12	$Rh_2(OAc)_4$	G8	Et_2O	54	91.5:8.5
13 ^e	$Rh_2(OAc)_4$	G8	Et ₂ O	66	92:8
$14^{e_i f}$	$Rh_2(OAc)_4$	G8	Et ₂ O	79	92.5:7.5
15 ^{e,f,g}	$Rh_2(OAc)_4$	G8	Et ₂ O	72	94:6
$16^{e_{l}f,h}$	$Rh_2(OAc)_4$	G8	Et ₂ O	89	94:6

Table 1. Optimization of the Reaction Conditions^a

^{*a*}Unless otherwise noted, all reactions were performed with Rh₂X₄ (2.5 mol %), **G**^{*} (5 mol %), **1a** (0.1 mmol), and **2a** (1.0 equiv) in solvent (0.6 mL) at 0 °C for 3 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}The reaction time was 8 h. ^{*c*}Rh₂(OAc)₄ (2.5 mol %), **G8** (5 mol %) and **1a** (0.1 mmol) were stirred in THF (0.2 mL) at 30 °C for 0.5 h, then evaporated in vacuo and reacted with **2a** (1.0 equiv) in Et₂O (0.6 mL) at -10 °C for 2 h. ^{*f*}**G8** (10 mol %). ^{*g*}**2c** was used. ^{*h*}**2c** (1.4 equiv) was used.

as effective as the chiral guanidine G1 (entries 8 and 12). Changing the preparation procedure of the catalyst and lowering the reaction temperature, an improvement in yield and enantioselectivity was obtained (entry 13). Moreover, the best results for the product 3a (79% yield, and 92.5:7.5 er) could be achieved by the use of 2.5 mol % of $Rh_2(OAc)_4$ and 10 mol % of G8 (entry 14). The ester group of α -diazoesters influenced the reaction minimally (SI, Table S8), and the use of 2c gave the product 3ac in 89% yield and 94:6 er when its amount increased to 1.4 equiv (entries 15 and 16). Additionally, $G8-Rh_2(esp)_2$ exhibited high reactivity but with negative results for the desired product 3a (49% yield, 85.5:14.5 er), and a certain amount of byproduct α -ketoester (ethyl 2-oxo-2phenylacetate) was generated (see SI for details). In the absence of chiral guanidines, chiral dirhodium catalyst (Rh₂(5S- $MEPY_4$) alone showed low activity with the generation of trace amount of the racemic product, and α -ketoester was detected as the main product (see SI for details).

Next, we investigated the scope of carboxylic acids (Table 2). Methyl-substituted benzoic acid at *meta*-position reduced the yield remarkably in comparison with those at *ortho-* or *para*-positions (entries 2, 6, and 7). 2-Halo-substituted benzoic acids undergo the reaction smoothly, and the desired products were given in moderate yields with slightly improved enantioselectivities (entries 3-5). A sterically hindered group at *para*-

Table 2. Scope of Carboxylic Acids^a

R¹CO₂H 1	Ph [−] CO ₂ [′] Pr 2c	G8 (10 mol %) Rh ₂ (OAc) ₄ (2.5 mol %) Et ₂ O, -10∼0 °C		$R^1 \xrightarrow{O} H Ph$ $R^2 \xrightarrow{O} CO_2'Pr$ 3
entry	\mathbb{R}^1	<i>t</i> (h)	yield (%) ^b	er ^c
1	C_6H_5	2	89 (3ac)	94:6
2	2-MeC ₆ H ₄	2	99 (3bc)	93.5:6.5
3	$2\text{-}FC_6H_4$	2	78 (3cc)	95.5:4.5
4	$2\text{-}ClC_6H_4$	2	86 (3dc)	95:5
5	2-IC ₆ H ₄	2	80 (3ec)	94.5:5.5
6 ^{<i>d</i>}	3-MeC ₆ H ₄	7	61 (3fc)	92.5:7.5
7	4-MeC ₆ H ₄	2	95 (3gc)	94.5:5.5
8	4- ^t BuC ₆ H ₄	2	99 (3hc)	92.5:7.5
9	4-PhC_6H_4	2	75 (3ic)	94:6
10	1-naphthyl	2	96 (3jc)	93.5:6.5
11	2-thienyl	2	82 (3kc)	95.5:4.5
12	S - 2-	2	92 (3lc)	96:4
13	CI S	2	75 (3mc)	96.5:3.5
14	S Br	2	78 (3nc)	97:3 (R)
15		7	73 (3oc)	86.5:13.5
16	1-adamantyl	2	94 (3pc)	79:21

^{*a*}Unless otherwise noted, all reactions were performed with $Rh_2(OAC)_4$ (2.5 mol %), **G8** (10 mol %), and **1** (0.1 mmol) stirred in THF (0.2 mL) at 30 °C for 0.5 h, then evaporated in vacuo and reacted with **2c** (1.4 equiv) in Et₂O (0.6 mL) at -10 °C. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}At 0 °C.

position and a substituent at *meta*-position had a minor impact on the enantioselectivity (entries 6 and 8). 1-Naphthoic acid (1j) was a suitable substrate for the reaction and afforded the corresponding product 3jc in 96% yield and 93.5:6.5 er (entry 10). Thiophene-2-carboxylic acid and its derivatives reacted smoothly to generate the related insertion products 3kc-3ncwith satisfactory enantioselectivities and good yields (75–92% yields and 95.5:4.5–97:3 er; entries 11–14). The absolute configuration of 3nc was determined to be *R* by X-ray crystallographic analysis,⁸ and the others showed similar stereoarrangement from the CD spectra analysis (see SI for details). Additionally, cinnamic acid (1o) and aliphatic carboxylic acid (1p) can also undergo the O–H insertion reaction to form the products with moderate er values and good yields (entries 15 and 16).

Then, we continued to explore the substrate scope of α diazoesters by using thiophene-2-carboxylic acid **1k** as the O– H bond donor (Table 3). Either electron-donating or electronwithdrawing substituents at varied position of α -phenyl rings affected the enantioselection, and the corresponding α -acyloxy esters were formed in 92:8–96.5:3.5 er and 71–94% yields (entries 1–13). The α -diazoester **2w** bearing 1-naphthyl substituent underwent the reaction efficiently, resulting in 77% yield and 95:5 er (entry 14). (*E*)-2-diazo-4-phenylbut-3enoate was successfully employed in the reaction, albeit a

Table 3.	Substrate	Scope o	of α -Diazoesters"
----------	-----------	---------	---------------------------

	^{N₂} ^{CO₂H} + R ¹ [⊥] CO₂ ⁰ 2	Pr Et ₂	8 (10 mol 9 0Ac) ₄ (2.5 i O, -10∼25	%) mol %) ℃ ✓	$CO_2^{i}Pr$
entry	\mathbb{R}^1	T (°C)	<i>t</i> (h)	yield $(\%)^b$	er ^c
1	2-MeC ₆ H ₄	0	3	88 (3kk)	94:6
2	2-MeOC ₆ H ₄	-10	2	77 (3kl)	95:5
3	$2\text{-}FC_6H_4$	-10	1	94 (3km)	96:4
4 ^d	$2\text{-}FC_6H_4$	-10	2	99 (3km)	95.5:4.5
5	2-ClC ₆ H ₄	-10	2	84 (3kn)	96.5:3.5
6	2-BrC ₆ H ₄	-10	2	86 (3ko)	96.5:3.5
7	$2-IC_6H_4$	-10	15	87 (3kp)	96.5:3.5
8	3-MeC ₆ H ₄	0	3	71 (3kq)	94:6
9	4-MeC ₆ H ₄	-10	2	82 (3kr)	96:4
10	4-PhC ₆ H ₄	-10	2	79 (3ks)	94:6
11	$4-FC_6H_4$	-10	2	86 (3kt)	95:5
12	4-ClC ₆ H ₄	-10	2	77 (3ku)	92:8
13	2,4-F ₂ C ₆ H ₃	-10	2	86 (3kv)	96:4
14	1-naphthyl	-10	2	77 (3kw)	95:5
15	3-thienyl	-10	2	78 (3kx)	69.5:30.5
16	C	25	15	48 (3ky)	90:10
17	isobutyl	-10	2	65 (3kz)	67.5:32.5

^{*a*}Unless otherwise noted, all reactions were performed with $Rh_2(OAc)_4$ (2.5 mol %), G8 (10 mol %) and 1k (0.1 mmol) in THF (0.2 mL) at 30 °C for 0.5 h, then evaporated in vacuo and reacted with 2 (1.4 equiv) in Et₂O (0.6 mL) at indicate temperature. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Rh₂(OAc)₄ (1.25 mol %), G8 (5 mol %), 1k (4.0 mmol) and 2m (5.6 mmol).

higher reaction temperature was required to achieve acceptable yield and enantioselectivity (entry 16). Meanwhile, α diazoesters with 3-thienyl or isobutyl substituent performed smoothly with moderate enantioselectivities (entries 15 and 17). The reaction between carboxylic acid 1k and α -diazoester **2m** was run on a gram scale in the presence of 1.25 mol % of Rh₂(OAc)₄ and 5 mol % of **G8**, and it performed well with 99% yield and 95.5:4.5 er (entry 4).

The chiral catalyst for the asymmetric O–H insertion of α diazoesters can be applied without modification to the reaction of α -diazoketones. Compared with α -diazoesters, the use of α diazoketones as carbene precursors for the X-H (X = O, B, N, etc.) insertion reaction is far less studied.^{6d,9} As summarized in Scheme 1, O-H insertion of thiophene-2-carboxylic acid with α -diazoketone containing an acetyl substituent showed higher enantioselectivity than benzoyl-substituted one (5a vs 5b). Fluoro-substituted 1-diazo-1-phenylpropan-2-ones afforded the desired products 5g-5i in slightly higher yields and similar enantioselectivities. The O-H insertion of benzoic acid gave better results than adamantane-1-carboxylic acid (5c vs 5d). Moreover, *n*-butyl and cyclopropyl-substituted α -diazoketones could perform the products 5e and 5f in good yields and excellent enantioselectivities, and up to 95:5 er (5e) and 97.5:2.5 er (5f) could be given when the reaction temperature dropped. Notably, the O-H insertion of cyclopropylsubstituted α -diazoketone could proceed efficiently even at

Scheme 1. Substrate Scope of Asymmetric O–H Insertion of α -Diazoketones with Carboxylic Acids^{*a*}

^{*a*}Unless otherwise noted, all reactions were performed with $Rh_2(OAC)_4$ (2.5 mol %), **G8** (10 mol %) and **1** (0.1 mmol) in THF (0.2 mL) at 30 °C for 0.5 h, then evaporated in vacuo and reacted with 4 (1.4 equiv) in Et₂O (0.6 mL) at -10 °C for 3 h. ^{*b*}At -30 °C for 23 h. ^{*c*}At -30 °C for 3 h. ^{*d*}At -50 °C for 27 h. ^{*e*}Rh₂(OAc)₄ (0.5 mol %) and **G8** (2 mol %) at -10 °C for 9 h.

0.5 mol % of $Rh_2(OAc)_4$ and 2.0 mol % of guanidine G8, affording 5f in 97% yield and 95.5:4.5 er.

In order to gain insight into the mechanism, some additional experiments were carried out. First, we investigated the effect of guanidine on the reactions between α -diazoester **2m** and acid **1k** (Scheme 2). With 2.5 mol % of Rh₂(OAc)₄, a 99% yield of

Scheme 2. Control Experiments for Mechanism Study

the racemic product 3km was found within 1 h. Using amino amide L1 as the chiral source instead of guanidine G8 resulted in a 91% yield but with dramatically decreased enantioselectivity after a longer reaction time. It indicates the chiral guanidine benefits the proton transfer process in an enantioselective manner. Using cinchonine as the chiral proton-transfer shuttle instead resulted in a dramatically reduced yield (18%) with moderate er (79:21 er) even at improved reaction temperature. Moreover, by using 0.5 mol % of $Rh_2(OAc)_4$ and 2.0 mol % of guanidine G8, a complete conversion to the O-H insertion product was given, whereas the yields dropped gradually, and the enantioselectivity was maintained if the amount of guanidine G8 increased. It is consistent with our hypothesis that carboxylic acid will tightly interact with guanidine to generate guanidinium salt, and it could not easily disassociate to participate in the O-H insertion reaction. The interaction among guanidine, carboxylic acid, and $Rh_2(OAc)_4$ was further detected by CD and NMR studies (see SI for details). The phenomena indicate negligible interaction between $Rh_2(OAc)_4$ and guanidine but strong interaction between guanidine and carboxylic acid.

On the basis of the aforementioned results and previous reports, 5,6,10 a plausible cooperative catalysis mechanism of the asymmetric O–H insertion of carboxylic acid is proposed (Scheme 3). Dinitrogen is extruded from α -diazo carbonyl

Scheme 3. Proposed Reaction Mechanism

compounds, generating a metallo-carbene intermediate. Subsequent nucleophilic attack by free carboxylic acid gives free oxonium ylide intermediates. On the other hand, the chiral guanidinium carboxylate generates in situ from guanidine **G8** and the acid. Lastly, the pathway that involves chiral guanidinium salt assisted proton transfer to an enol intermediate or oxonium ylide affords enantiomerically enriched α -acyloxy ester or ketone, respectively.

In summary, the first catalytic asymmetric O–H insertion of carboxylic acids with α -diazo carbonyl compounds was achieved under mild conditions. Dirhodium(II) complex with chiral guanidine-amide was proved to be efficient cooperative catalysts. Various α -acyloxy esters and ketones were obtained in good enantioselectivities and yields. Additional studies directed at expanding the application of chiral guanidine and mechanism are underway.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.6b02184.

Experimental details, analytic data (NMR, HPLC, CD, and ESI-HRMS) (PDF) X-ray data (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: liuxh@scu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (Nos. 21222206, 21332003, and 21321061), the Fok Ying Tung Education Foundation (141115), and National Program

for Support of Top-notch Young Professionals for financial support.

REFERENCES

(1) For selected reviews, see: (a) Ye, T.; Mckervey, M. A. Chem. Rev. **1994**, 94, 1091–1160. (b) Coppola, G. M.; Schuster, H. F. α-Hydroxy Acids in Enantioselective synthesis; Wiley-VCH: Weinheim, 1997; pp 1-513. (c) Doyle, M. P.; Mckervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998; Chapters 8.3 and 8.4. (d) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577-6605. (e) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012. 45. 1365–1377. For selected enantioselective examples, see: (f) Bulugahapitiya, P.; Landais, Y.; Parra-Rapado, L.; Planchenault, D.; Weber, V. J. Org. Chem. 1997, 62, 1630-1641. (g) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594-4595. (h) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 12616-12617. (i) Zhu, S.-F.; Chen, C.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 932-934. (j) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546-551. (k) Song, X.-G.; Zhu, S.-F.; Xie, X.-L.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 2555-2558. (1) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 2978-2981.

(2) Zhang, J.; Lin, S.-X.; Cheng, D.-J.; Liu, X.-Y.; Tan, B. J. Am. Chem. Soc. 2015, 137, 14039–14042.

(3) Bai, X.; Jing, Z.; Liu, Q.; Ye, X.; Zhang, G.; Zhao, X.; Jiang, Z. J. Org. Chem. 2015, 80, 12686–12696.

(4) (a) Wolfrom, M. L.; Thompson, A.; Evans, E. F. J. Am. Chem. Soc. 1945, 67, 1793–1797. (b) Erickson, J. L. E.; Dechary, J. M.; Kesling, M. R. J. Am. Chem. Soc. 1951, 73, 5301–5302. (c) Shinada, T.; Kawakami, T.; Sakai, H.; Takada, I.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 3757–3760. (d) Jiang, N.; Wang, J.; Chan, A. S. C. Tetrahedron Lett. 2001, 42, 8511–8513. (e) Bertelsen, S.; Nielsen, M.; Bachmann, S.; Jørgensen, K. A. Synthesis 2005, 13, 2234–2238. (f) Kitamura, M.; Kisanuki, M.; Sakata, R.; Okauchi, T. Chem. Lett. 2011, 40, 1129– 1131. (g) Wang, Z. K.; Bi, X. H.; Liang, Y. J.; Liao, P. Q.; Dong, D. W. Chem. Commun. 2014, 50, 3976–3978. (h) Hunter, A. C.; Chinthapally, K.; Sharma, I. Eur. J. Org. Chem. 2016, 2260–2263.

(5) Liang, Y.; Zhou, H.; Yu, Z.-X. J. Am. Chem. Soc. 2009, 131, 17783-17785.

(6) For N-H insertions, see: (a) Saito, H.; Uchiyama, T.; Miyake, M.; Anada, M.; Hashimoto, S.; Takabatake, T.; Miyairi, S. *Heterocycles* **2010**, *81*, 1149–1155. (b) Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L. *Angew. Chem., Int. Ed.* **2011**, *50*, 11483–11486. (c) Saito, H.; Morita, D.; Uchiyama, T.; Miyake, M.; Miyairi, S. *Tetrahedron Lett.* **2012**, *53*, 6662–6664. (d) Xu, B.; Zhu, S.-F.; Zuo, X.-D.; Zhang, Z.-C.; Zhou, Q.-L. *Angew. Chem., Int. Ed.* **2014**, *53*, 3913–3916. For C-H insertion, see: (e) Qiu, H.; Zhang, D.; Liu, S.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C.; Hu, W. *Acta Chim. Sin.* **2012**, *70*, 2484–2488. For S-H insertion, see: (f) Xu, B.; Zhu, S.-F.; Zhang, Z.-C.; Yu, Z.-X.; Ma, Y.; Zhou, Q.-L. *Chem. Sci.* **2014**, *5*, 1442–1448.

(7) For selected reviews, see: (a) Terada, M. Yuki Gosei Kagaku Kyokaishi 2010, 68, 1159-1168. (b) Fu, X.; Tan, C.-H. Chem. Commun. 2011, 47, 8210-8222. (c) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109-2121. For selected examples, see: (d) Yu, Z. P.; Liu, X. H.; Zhou, L.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2009, 48, 5195-5198. (e) Liu, H.; Leow, D.; Huang, K.-W.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 7212-7213. (f) Dong, S. X.; Liu, X. H.; Chen, X. H.; Mei, F.; Zhang, Y. L.; Gao, B.; Lin, L. L.; Feng, X. M. J. Am. Chem. Soc. 2010, 132, 10650-10651. (g) Dong, S. X.; Liu, X. H.; Zhu, Y.; He, P.; Lin, L. L.; Feng, X. M. J. Am. Chem. Soc. 2013, 135, 10026-10029. (h) Zhu, Y.; Liu, X. H.; Dong, S. X.; Zhou, Y. H.; Li, W.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2014, 53, 1636-1640. (i) Tang, Y.; Chen, Q. G.; Liu, X. H.; Wang, G.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2015, 54, 9512-9516. (j) Chen, Q. G.; Tang, Y.; Huang, T. Y.; Liu, X. H.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2016, 55, 5286-5289.

 $(\hat{8})$ CCDC 1403604 (3nc) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambrige Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.

(10) For a crystal study of Rh(II) carbene, see: (a) Werlé, C.; Goddard, R.; Philipps, P.; Farès, C.; Fürstner, A. J. Am. Chem. Soc. **2016**, 138, 3797–3805. For a study of organocatalysts in reactions of diazo compounds, see: (b) Bernardim, B.; Couch, E. D.; Hardman-Baldwin, A. M.; Burtoloso, A. C. B.; Mattson, A. E. Synthesis **2016**, 48, 677–686.

⁽⁹⁾ For an example of B-H insertion, see: Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268-5271.