

Tetrahedron: Asymmetry 11 (2000) 2359-2366

TETRAHEDRON: ASYMMETRY

Enantioselective modification of the Pomeranz–Fritsch– Bobbitt synthesis of tetrahydroisoquinoline alkaloids: synthesis of (–)-salsolidine and (–)-carnegine

Agata Głuszyńska and Maria D. Rozwadowska*

Faculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

Received 30 March 2000; accepted 16 May 2000

Abstract

(-)-Salsolidine 7 and (-)-carnegine 8 were prepared in 46 and 36% *e.e.*, respectively, by enantioselective addition of methyllithium to the Pomeranz–Fritsch imine 13 in the presence of ligands 9-12, followed by acid-catalyzed cyclization and hydrogenolysis. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Bobbitt modification¹ of the traditional Pomeranz–Fritsch isoquinoline synthesis,² which enables the synthesis of 1,2,3,4-tetrahydroisoquinoline derivatives, involves benzylaminoacetaldehyde acetal **2** as the key intermediate (Scheme 1). This aminoacetal **2** is usually prepared from the classic Pomeranz–Fritsch imine **1** by in situ catalytic hydrogenation of the imine C=N double bond¹ or by addition of Grignard reagents.^{3–6} Recently, this type of benzylaminoacetal intermediate **2** has been prepared from the corresponding benzyl alcohol on reaction with aminoacetaldehyde derivatives,^{7–10} or by *N*-alkylation of benzylamine with bromoacetaldehyde acetal.⁶

* Corresponding author. E-mail: wzantk@main.amu.edu.pl

In the next step, intermediate **2** is cyclized in acidic solution to give unstable 1,2-dihydroisoquinoline, which may be reduced in situ to 1,2,3,4-tetrahydroisoquinoline (the Bobbitt modification¹), or dehydrogenated, preferably via an *N*-tosyl derivative, to a fully aromatic system (the Jackson modification¹¹).

Only a few examples of stereochemical modification of the Pomeranz–Fritsch–Bobbitt cyclization resulting in chiral non-racemic isoquinoline alkaloids have been repeorted.^{6,8,9} This approach has been investigated much less frequently then the two other classic syntheses, the Bischler–Napieralski and the Pictet–Spengler ones, which have made important contributions to the many strategies available for stereoselective synthesis of isoquinoline alkaloids.¹²

In the published stereoselective Pomeranz–Fritsch–Bobbitt syntheses a source of the C-1 stereogenic center has already been present in the precursors of amine **2**. Thus, in the synthesis of (+)- and (–)-reticuline, Hirsenkorn⁸ used alternatively optically active hydrobenzoin **3** or epoxide **4** and converted each into type **2** amines by aminolysis with *N*-methyl aminoacetaldehyde acetal. In Kaufman's⁹ synthesis of (–)-salsolidine **7**, non-racemic benzyl alcohol **5** was treated with *N*-tosyl-aminoacetaldehyde acetal under Mitsunobu reaction conditions to give *N*-tosylated amine type **2**. Several optically active benzylamines, type **6**, alkylated with bromoacetaldehyde acetal, have been applied by Badia et al.⁶ for the synthesis of a series of isopavine alkaloids (Scheme 2).

2. Results and discussion

Herein we report the enantioselective synthesis of isoquinoline alkaloids performed according to the Pomeranz–Fritsch–Bobbitt methodology based on the enantioselective addition of methyllithium to type 1 imines induced by ligands 9–12, prior to isoquinoline cyclization. It should be mentioned that enantioselective addition of carbon nucleophiles to imines, recently reviewed by Denmark and Nicaise¹³ and Enders and Reinhold,¹⁴ has not been studied as intensively as that of the analogous reaction involving prochiral carbonyl compounds.

To achieve enantioselectivity in the addition step for the two isoquinoline alkaloids, salsolidine 7 and carnegine 8, we have used non-racemic oxazolines 9–12. These compounds were chosen not only because of the well-known efficiency of oxazolines in stereoselective transformations, both in the reactions based on chiral auxiliary and in asymmetric catalysis,^{15–17} but also because they could be obtained from (1*S*,2*S*)-2-amino-1-aryl-1,3-propandiols (industrial waste products) which we have used successfully as a source and/or promoter of stereochemistry in many types of organic synthesis.^{18,19}

The starting Schiff base **13** was obtained in good yield, as a single isomer, by condensation of veratraldehyde with aminoacetaldehyde dimethyl acetal in the usual manner.^{18b} The *E*-configuration of **13** was established by ¹H NMR spectroscopy on the basis of NOESY spectrum, which showed through space interaction between H-1 and both the H-3 and OCH₃ group protons.

Ligands 10 and 12 were synthesized from the known (4S,5S)-oxazolines 9 and 11, prepared easily from (+)-thiomicamine or (1S,2S)-2-amino-1-phenyl-1,3-propandiol, respectively, in reaction with benzonitrile, according to a known procedure.^{18a} Compounds 9 and 11 were *O*-methylated with CH₃I–NaH in DMF to give *O*-methyl derivatives (4S,5S)-10 and 12,²⁰ respectively, in a satisfactory yield (Scheme 3).

Scheme 3.

In order to optimize the reaction conditions of the key step, the enantioselective addition of MeLi to imine 13, we have undertaken initial studies with the use of ligand 10 as a promoter (Table 1). Before addition of methyllithium the imine 13 was allowed to react with the catalyst for 30 min to 1 h (data in parentheses, Table 1). It was found that 2.5 equiv. of MeLi and 2.5–3.5 h reaction time (TLC monitoring) were necessary for conversion of imine 13 to amine 14. Imine 13 was essentially unreactive toward MeLi at low temperatures in the absence of the ligands, indicating the catalytic activity of the latter compounds. Toluene, a solvent with a low coordination ability for organolithium reagents, was found to be superior to ethyl ether and THF (entries 5, 10, 11). The influence of temperature on enantioselectivity was also evaluated. The results in Table 1 show that the selectivity successively increased with lowering temperature from rt to -65° C (entries 13, 12, 7, 6, 5), while at -90° C no further increase was observed (entry 8). In the reactions carried out with substoichiometric quantities of 10 (0.1–0.5 equiv., entries 1 and 2), enantioselectivity was much lower than that in which 1.0–2.0 equiv. were used (entries 3 and 4); however, the best results (49% *e.e.*) were obtained in the presence of 2.6 equiv. of 10 (entry 5), a quantity applied by Tomioka et al.,²¹ which was even better than with 3.0 equiv. (entry 9).

As a result of the above experiments we conclude that the optimum conditions for the addition step involve the use of: 2.5 equiv. of MeLi, toluene as a solvent, -65° C as the reaction temperature, 2.6 equiv. of the ligand and 1 h of interaction of the imine with the catalyst. The optimized conditions were applied in further studies in which other ligands 9, 11 and 12 were used. Poor asymmetric induction (1–9%) was achieved with the use of ligands 9 and 11; however, in the case of 12 the enantioselectivity reached 40%.

The enantiomeric excess of amine 14 was determined by integrating absorption bands of the acetal methoxy group protons split into two singlets at 3.31 and 3.36 ppm in the ¹H NMR spectrum recorded in the presence of 3 equiv. of TADDOL,²² used as a solvating agent. Its (*S*)-configuration was established in the course of subsequent transformation of a sample of optically active amine 14 into (1S)-(–)-salsolidine 7 of known absolute stereochemistry.²³

	Reaction conditions			amine 14			
Entry	Ligand	Solvent	Temp.(°C) ^a	Y (%) ^b		e.e. (%) ^c	
	(equiv.)						
1	0.1	toluene	- 65	43		7	
2	0.5	toluene	- 65	55	(44) ^d	23	(22) ^d
3	1.0	toluene	- 65	78		28	
4	2.0	toluene	- 65	85	(78) ^d	37	(34) ^d
5	2.6	toluene	- 65	85	(92) ^d	38	(49) ^d
6	2.6	toluene	- 42	85		33	
7	2.6	toluene	- 42→ - 20	81		15	
8	2.6	toluene	- 90		(14) ^d		(45) ^d
9	3.0	toluene	- 65		(78) ^d		(42) ^d
10	2.6	THF	- 65	no reaction			
11	2.6	Et ₂ O	- 60		(40) ^d		(14) ^d
12	2.6	toluene	0	56		8	
13	2.6	toluene	R.T.		(47) ^d		(8) ^d

 Table 1

 Addition of methyllithium to imine 13 in the presence of ligand 10

^a (±) 2°C;

^b determined by ¹H NMR of crude reaction products;

^c *e.e.* established by ¹H NMR run in the presence of TADDOL²²;

^d 1 h of preliminary interaction of imine 13 with ligand 10.

For the synthesis of salsolidine 7, amine 14 of 49% *e.e.* in 6N hydrochloric acid was subject to catalytic hydrogenolysis in the presence of 5% palladium on carbon at rt to afford levorotatory salsolidine 7^{23} in 57% yield and with 46% enantioselectivity (Scheme 4). In its ¹H NMR spectrum, recorded in the presence of 2 equiv. of TADDOL, the doublet of CH₃ group protons was split into two doublets from which the lower-field one (1.26 ppm), which was dominant, represented the (*S*)-(–)-enantiomer, since the other one (1.21 ppm) was earlier identified as belonging to the (*R*)-(+)-salsolidine.^{18b}

In another series of experiments amine 14 showing 38% *e.e.* was first *N*-methylated with the HCOH/CH₃COOH–NaBH₄ system to give *N*-methyl derivative (–)-15 in 86% yield and with 38% *e.e.*, before it was cyclized in the conditions employed for the synthesis of 7 to give (–)-carnegine 8 of known (*S*)-configuration²³ in 79% yield and 36% *e.e.* (Scheme 4).

3. Conclusion

The first enantioselective modification of the known Pomeranz–Fritsch–Bobbitt synthesis of tetrahydroisoquinoline alkaloids has been achieved. The concept of the synthesis is built upon enantioselective addition of organometallic reagents to the Pomeranz–Fritsch imine 13 prior to

Scheme 4. Reagents and conditions: (i) CH₃Li, toluene, -65°C, ligands 9-12; (ii) HCHO, CH₃COOH/NaBH₄, EtOH; (iii) 6N HCl, 1 day, H₂/Pd-C; (iv) 6N HCl, 2 days, H₂/Pd-C

cyclization of the heterocyclic ring. The steric course of the addition step is controlled by oxazolines 9-12 used as external ligands. The most important points of the strategy employed are that the C-1 stereogenic center of the alkaloids is formed at an early stage of the synthesis, and no covalently bonded chiral auxiliary is involved. The enantiomeric excess achieved in the addition step leading to amine 14 was not lost during the synthesis of the alkaloids (–)-salsolidine 7 and (–)-carnegine 8.

4. Experimental

4.1. General

Melting points: determined on a Koffler block and are uncorrected. IR spectra: Perkin–Elmer 180 in KBr pellets. NMR spectra: Varian Gemini 300, in CDCl₃, with TMS as internal standard. Mass spectra (EI): Joel D-100, 75 eV. Specific rotation: Perkin–Elmer polarimeter 243B at 20°C. Merck Kieselgel 60 (70–230 mesh) was used for column chromatography and Merck DC-Alufolien Kieselgel 60_{254} for TLC.

4.2. O-Methylation of oxazoline 9

To oxazoline 9^{18a} (13.16 g, 44 mmol) in DMF (128 ml), NaH (1.32 g, 55 mmol) was added portionwise at ice-bath temperature. The mixture was stirred at this temperature for 1 h before CH₃I (3.5 ml, 56 mmol) was introduced. The whole mixture was stirred at rt for 17 h, then poured onto ice and after rt was reached the solid was filtered off. It was washed with water and air-dried to give crude oxazoline **10**. An additional amount of **10** was obtained from the filtrate by extraction with ethyl ether until the Dragendorff test was negative. The two bunches of the product were combined and recrystallized from ethyl ether to give 12.5 g (91%) of enantiomerically pure (4*S*,5*S*)-oxazoline **10**; m.p. 85.5–86.5°C; $[\alpha]_D = +60.5$ (*c* 0.5, CH₂Cl₂). IR cm⁻¹: 1645 (C=N); ¹H NMR δ : 2.47 (s, 3H, SCH₃), 3.43 (s, 3H, OCH₃), 3.60 (dd, J=6.6, 9.6 Hz, 1H, CHHOCH₃), 3.73 (dd, J=4.7, 9.6 Hz, 1H, CHHOCH₃), 4.31 (ddd, J=6.9, 6.6, 4.7 Hz, 1H, CHN), 5.45 (d, J=7.1 Hz, 1H, CHPh), 7.23–7.54 (m, 7H, ArH), 8.01–8.05 (m, 2H, ArH); MS *m*/*z* (%): 313 (M⁺, 37), 268 (70), 192 (73), 165 (100), 105 (50); found: C, 68.92; H, 6.06; N, 4.49. C₁₈H₁₉NO₂S (313.11) requires: C, 68.98; H, 6.11; N, 4.47.

4.3. Addition of CH_3Li to imine 13. A typical procedure

A mixture of imine 13^{18b} (0.127 g, 0.5 mmol) and ligand 10 (0.407 g, 1.3 mmol) in toluene (30 ml) was stirred under an argon atmosphere at -65° C for 1 h. CH₃Li (1.6 M solution in ether, 0.78 ml, 1.25 mmol) was then added and stirring was continued until the end of the reaction (ca. 2 h, TLC). The reaction mixture was quenched with 20% NH₄Cl at -65° C and, after rt was reached, phases were separated and the aqueous one was extracted with ethyl ether until the Dragendorff test was negative. The combined organic extracts were dried and the solvent was evaporated under reduced pressure. The residue was dissolved in methanol from which ligand 10 precipitated overnight at 0°C. It was filtered off, the filtrate was concentrated in vacuo, and the *e.e.* of the crude product was determined by ¹H NMR spectrum measured in the presence of 2 equiv. of TADDOL²² by integration peaks at 3.31 and 3.36 ppm.

For further transformation the crude amine **14** was purified by column chromatography (crude **14**:silica gel, 1:10; toluene:ethyl ether, 99:1). TLC comparison with an authentic sample of racemic **14** and spectral characteristics of the oily base **14**, obtained in 92% yield, corresponded to the literature data.^{18b}

4.4. (S)-(-)-(2,2-Dimethoxyethyl)-[1-(3,4-dimethoxyphenyl)ethyl]-N-methylamine 15

To a mixture composed of amine **14** (1.32 g, 4.91 mmol), glacial acetic acid (0.46 ml, 8 mmol) and aqueous formaldehyde (37%, 1.18 ml, 15.9 mmol) in ethanol (10 ml), sodium borohydride (1.26 g, 33.3 mmol) was added in portions over a 40 min period at ice-bath temperature. The solvent was then evaporated under reduced pressure and water was added, followed by extraction with ethyl ether until the Dragendorff test was negative. The organic extracts were dried and the solvent was evaporated to afford crude amine **15**. It was purified by column chromatography (crude **15**:silica gel, 1:10; toluene:ethyl ether, 9:1) to give 1.19 g yellow oil (86%); $[\alpha]_D = ca. -6.0$ (*c* 0.7, CH₂Cl₂); ¹H NMR δ : 1.35 (d, J = 7.0 Hz, 3H, CCH₃), 2.30 (s, 3H, NCH₃), 2.38 (dd, J = 5.1, 13.2 Hz, 1H, CHHN), 2.60 (dd, J = 5.5, 13.2 Hz, 1H, CHHN), 3.28, 3.29 (2s, 3H each, OCH₃), 3.56 (q, J = 7.0 Hz, 1H, CH), 3.87, 3.89 (2s, 3H each, OCH₃), 4.44 (dd, J = 5.1, 5.5 Hz, 1H, CH), 6.78–6.94 (m, 3H, ArH); MS m/z (%): 283 (M⁺, 4), 252 (3), 165 (100), 75 (5), 28 (9); HRMS found: 283.1783; calcd for C₁₅H₂₅NO₄: 283.1782.

4.5. (S)-(-)-Salsolidine 7

Amine 14 (0.269 g, 1 mmol) (49% *e.e.*) was dissolved in 6N hydrochloric acid (5 ml) and the solution was stirred at rt for 26 h. It was then hydrogenated with hydrogen at 0.3 MPa in the presence of 5% palladium on carbon (0.27 g). When no more starting material was present in the

reaction mixture (TLC, 21 h) the catalyst was removed by filtration through a pad of Celite, the filtrate was basified with 20% NaOH and extracted with CHCl₃. After work-up the crude reaction product was purified by column chromatography (crude 7:silica gel, 1:10; dichloromethane:methanol, 100:1) to give pure (–)-salsolidine 7 in 57% yield, identical with an authentic sample by TLC and spectral data comparison.^{18b,23} Enantioselectivity (46%) was established by integration of absorption bands at 1.21 and 1.26 ppm in the ¹H NMR spectrum recorded in the presence of 2 equiv. of TADDOL.²²

4.6. (S)-(-)-Carnegine 8

Amine 15 (0.283 g, 1 mmol) (prepared from amine 14 showing 38% e.e.) was dissolved in 6N hydrochloric acid (10 ml) and stirred at rt for 48 h, then hydrogenated with hydrogen at 0.3 MPa in the presence of 5% palladium on carbon (0.28 g) (TLC, 20 h) and worked up as described above. After column chromatography (crude 8:silica gel, 1:20; dichloromethane) pure (–)-carnegine 8 was obtained with 79% yield and 36% *e.e.* Enantiomeric composition was established by integration of absorption bands at 2.25 and 2.27 ppm in the ¹H NMR spectrum recorded in the presence of 2 equiv. of TADDOL.²² It was identical with natural (–)-carnegine²³ in terms of spectral data and TLC comparison.

Acknowledgements

This work was financially supported by KBN grant no. 3 T09A 027 17 and 3 T09A 145 18.

References

- 1. Bobbitt, J. M.; McNew Kiely, J.; Khanna, K. L.; Eberman, R. J. Org. Chem. 1965, 30, 2247–2250.
- (a) Shamma, M. *The Isoquinoline Alkaloids, Chemistry and Pharmacology*; Academic Press: New York, 1972. (b) Shamma, M.; Moniot, L. *Isoquinoline Alkaloid Research 1972–1977*; Plenum Press: New York, 1978.
- 3. Bobbitt, J. M.; Steinfeld, A. S.; Weisgraber, K. H.; Dutta, S. J. Org. Chem. 1969, 34, 2478-2479.
- 4. Birch, A. J.; Jackson, A. H.; Shannon, P. V. R. J. Chem. Soc., Perkin Trans. 1 1974, 2190-2194.
- 5. Yamada, K.; Takeda, M.; Itoh, N.; Ohtsuka, H.; Tsunashima, A.; Iwakuma, T. Chem. Pharm. Bull. 1982, 30, 3197–3201.
- 6. Carillo, L.; Badia, D.; Dominguez, E.; Vicario, J.; Tellitu, I. J. Org. Chem. 1997, 62, 6716-6721.
- 7. (a) Garcia, A.; Castedo, L.; Dominguez, D. *Synlett* **1993**, 271–272. (b) Garcia, A.; Castedo, L.; Dominguez, D. *Tetrahedron Lett.* **1993**, *34*, 1797–1798.
- (a) Hirsenkorn, R. Tetrahedron Lett. 1990, 31, 7591–7594. (b) Hirsenkorn, R. Tetrahedron Lett. 1991, 32, 1775– 1779.
- 9. Ponzo, V. L.; Kaufman, T. S. Tetrahedron Lett. 1995, 36, 9105-9108.
- 10. Kaufman, T. S. Synth. Commun. 1993, 23, 473-476.
- 11. Birch, A. J.; Jackson, A. H.; Shannon, P. V. R. J. Chem. Soc., Perkin Trans. 1 1974, 2185–2190.
- 12. Rozwadowska, M. D. Heterocycles 1994, 39, 903-931.
- 13. Denmark, S. E.; Nicaise, O. J. C. J. Chem. Soc., Chem. Commun. 1996, 999-1004.
- 14. Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895–1946.
- 15. Gant, T. G.; Meyers, A. I. Tetrahedron 1997, 50, 2297-2360.
- 16. Meyers, A. I. J. Heterocyclic Chem. 1998, 35, 991-1002.
- 17. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 859-875.
- (a) Rozwadowska, M. D. Tetrahedron: Asymmetry 1998, 9, 1615–1618. (b) Brózda, D.; Chrzanowska, M.; Głuszyńska, A.; Rozwadowska, M. D. Tetrahedron: Asymmetry 1999, 10, 4791–4796.

- (a) Rozwadowska, M. D. Tetrahedron: Asymmetry 1993, 4, 1619–1624. (b) Fiedorow, P.; Ratajczak-Sitarz, M.; Rozwadowska, M. D.; Rozwadowski, Z. J. Mol. Struct. 1998, 442, 65–70.
- 20. Kamata, K.; Agata, I. J. Org. Chem. 1998, 63, 3113-3116.

2366

- (a) Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. *Tetrahedron Lett.* 1991, *32*, 3095–3098. (b) Inoue, I.; Shindo, M.; Koga, K.; Tomioka, K. *Tetrahedron* 1994, *50*, 4429–4438.
- 22. Bussche-Hunnefeld, C.; Beck, A. K.; Seebach, D. Helv. Chim. Acta 1992, 75, 438-441.
- 23. Battersby, A. R.; Edwards, T. P. J. Chem. Soc. 1960, 1214–1221.