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Abstract 26 

Napropamide (N,N-diethyl-2-(1-naphthalenyloxy)propenamide, NAP) is a highly 27 

efficient and broad-spectrum amide herbicide. Little is known about the bacterial 28 

catabolism of its different enantiomers. Here, we report the isolation of two NAP-29 

degrading strains of Sphingobium sp., A1 and B2, and the different catabolic pathways 30 

of different enantiomers in these two strains. Strain A1 di-oxygenated NAP at different 31 

positions of the naphthalene ring of different enantiomers, leading to the complete 32 

degradation of R-NAP, while producing a dead-end product from S-NAP. Strain B2 33 

cleaved the amido bonds of both enantiomers, but only the product from S-NAP could 34 

be further transformed to form α-naphthol and mineralize in strain B2. The degradation 35 

rates of R-NAP and S-NAP in the combination degradation by strain A1 and B2 were 36 

24.8- and 7.5-times that in the single strain degradation by strain B2 or strain A1, 37 

respectively, showing enhanced synergistic catabolism between strains A1 and B2. This 38 

study provides new insights into the enantioselective catabolic network of the chiral 39 

herbicide NAP in microorganisms. 40 

 41 

Key words: Synergistic catabolism; Stereospecific; Napropamide; Mineralized 42 
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Introduction 51 

Chiral pesticides comprise 28% of the global pesticide market. In China, the proportion 52 

of chiral pesticides has increased from 19% during the 1980s to approximately 40% 53 

currently.1, 2 There are 14 classes and 19 major types of herbicides with chiral centers, 54 

accounting for a greater proportion in pesticides. Because of the enantiomeric 55 

selectivity from the different effects of the enantiomers on target and non-target 56 

organisms, different chiral isomers have been reported to show different biological 57 

activities, environmental toxicities, and environmental behaviors.3, 4 For example, the 58 

demethylation of (S)-dichlorprop methyl in soil is faster than that of (R)-dichlorprop 59 

methyl, leading to plant phytotoxicity because of the accumulation of the highly 60 

herbicidal (R)-dichlorprop methyl in the soil.3 Some chiral herbicides show the opposite 61 

physiological effects.4 For instance, the R-enantiomer of the herbicide diclofop is 62 

effective in weed control, while the S-enantiomer has no weeding effects but shows 63 

more toxicity toward algae than the R-enantiomer.5, 6 The microbial community is one 64 

of the important factors affecting the biodegradation of chiral herbicides. Under 65 

nonsterilized conditions, more than 99% of the (R)- and (S)-indoxacarb are dissipated 66 

after 75 days of incubation in acidic soil. However, only 5-10% of the initial 67 

concentration of (R)- and (S)-indoxacarb are degraded after 75 days of incubation in 68 

sterilized acidic soil.7 Moreover, R- and S-enantiomers can be inter-converted by soil 69 

microorganisms.8, 9 (S)-indoxacarb had a significantly higher inversion rate to (R)-70 

indoxacarb than its antipode in alkaline soil.7 Because most of the chiral pesticides are 71 

chemically synthesized in racemate for use, they inevitably release all isomers into the 72 
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environment, despite their activity and toxicity. Consequently, there is an increasing 73 

concern of the pollution risk of different isomers of chiral pesticides in the 74 

environment.10 The environmental fate of different isomers, especially their catabolism 75 

by microorganisms, needs extensive investigation. 76 

Napropamide (N,N-diethyl-2-(naphthalen-1-yloxy)propanamide) is a selective 77 

systemic amide herbicide used in soils to control several annual grasses and broad-78 

leaved weeds.11 Napropamide (NAP) is characterized by its efficiency and broad 79 

spectrum and selectivity,11, 12 and it is also found in formulations with other pesticides 80 

such as monolinuron, nitralin, simazine, trifluralin, tefluthrin, and tebutam. NAP is a 81 

typical chiral herbicide and contains two enantiomers, R-NAP and S-NAP (Figure S1). 82 

Because the chemically synthesized racemic NAP (Rac-NAP) is commonly used, both 83 

enantiomers enter the environment through point and non-point sources and are 84 

distributed in water, soil, sediment and biota.13 The NAP concentrations detected in the 85 

environment range from 0.1 to 0.46 mg/kg.14, 15 A recent study showed that R-NAP had 86 

the strongest herbicidal activity, followed by Rac-NAP, while S-NAP was the weakest. 87 

The inhibition effect of R-NAP on the root growth of Echinochloa crusgalli L. was 9.4 88 

times higher than that of S-NAP at the concentration of 0.05 mg/L.16 Meanwhile, the 89 

toxicity of S-NAP toward Microcystis aeruginosa (EC20<0.1 mg/L) was notably higher 90 

than that of R-NAP (EC20= 0.1-1.0 mg/L).16 The molecular docking of NAP 91 

enantiomers with the thyroxine receptor (TR) showed that S-NAP combined more 92 

closely with TR, leading to higher toxicity toward organisms.16 Therefore, S-NAP tends 93 

to cause a much more serious threat to ecological systems than R-NAP, although both 94 

of them are negative to ecosystems. Although microbial degradation has been 95 

recognized as the key pathway for the dissipation of NAP from the environment,17 NAP 96 

catabolism via microorganisms has not been extensively studied. Bacillus sp. LGY06 97 
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is the only pure strain reported to be capable of degrading Rac-NAP. However, the 98 

complete catabolic pathway of Rac-NAP in strain LGY06 has not been elucidated.18 99 

Moreover, the enantioselective catabolism of the two enantiomers of NAP has never 100 

been studied.18 101 

In this study, the different catabolic efficiencies and pathways of the two enantiomers 102 

of Rac-NAP in the two strains of Sphingobium sp. A1 and B2 isolated from a Rac-NAP-103 

contaminated soil were systematically studied. The enantioselective catabolism of 104 

different NAP chiral isomers in strains A1 and B2 was found, and these strains could 105 

use complementary pathways to enhance the degradation of Rac-NAP and synergistic 106 

catabolism to accelerate the degradation of Rac-NAP. Our study provides new insights 107 

into the enantioselective catabolic network of chiral NAP in microorganisms. 108 

 109 

Materials and Methods 110 

1. Chemical reagents, primers, and media 111 

Rac-NAP (99.7%) was purchased from Shanghai Pesticide Research Institute Co., 112 

Ltd. (Shanghai, China). Methanol (chromatography grade) and acetic acid 113 

(chromatography grade) were purchased from EMD Millipore corporation (Darmstadt, 114 

Germany). The other reagents used in this study were commercially available. Luria-115 

Bertani (LB) medium or minimal salt medium (MSM) was used to culture isolated 116 

strains at 30°C. Streptomycin (Sm) was added to the medium at 100 mg/L to culture 117 

Sphingobium species because of their natural resistance to streptomycin.19 118 

 119 

2. Isolation and characterization of two bacterial strains from a Rac-NAP-contaminated 120 

soil 121 

Rac-NAP-contaminated soil was collected from Jiangsu Kuaida Agrochemical Co., 122 
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Ltd, China. The isolation of NAP-degrading strains was performed using the traditional 123 

enrichment method as previously described with minor modifications.20 Rac-NAP (0.2 124 

mM) was provided as the sole carbon source in MSM for enrichment. Colonies selected 125 

from the enrichment were checked for their capacities to degrade Rac-NAP via a UV-126 

Visible Spectrophotometer (UV-2450, Shimadzu, Japan) and high-performance liquid 127 

chromatography (HPLC, UltiMate 3000 RSLC, Thermo Fisher Scientific, America) 128 

with a C18 reversed-phase column (4.6 × 250 mm, 5 μm). The separation conditions of 129 

the HPLC were as follows: the mobile phase was a mixed solution of methanol: water: 130 

acetic acid (75:24:1, v:v:v), the flow rate was 0.8 mL/min, the column temperature was 131 

30°C, the detection wavelength was 250 nm, and the injection volume was 20 μL.21 All 132 

experiments were performed in triplicate. Two strains termed A1 and B2, capable of 133 

degrading R-NAP and/or S-NAP, were finally isolated and purified. The isolates were 134 

identified based on their morphological, physiological and biochemical properties as 135 

well as 16S rRNA gene analysis. The primers 27F (5’-agagtttgatcmtggctcag-3’) and 136 

1492R (5’-tacggytaccttgttacgactt-3’) were used to amplify the nearly complete 16S 137 

rRNA gene. The sequenced 16S rRNA gene sequences of strains A1 and B2 were 138 

deposited in the GenBank database under the accession numbers MK411213 and 139 

MK447612, respectively.  140 

 141 

3. Chiral separation and identification  142 

The enantiomers of Rac-NAP were separated using the Shimadzu LC-20AT HPLC 143 

system (Shimadzu, Japan). The CHIRALPAK IC (Daicel Corp., Japan) was used as the 144 

separation column (4.6 × 150 mm, 5 μm), and the mobile phase was hexane: 145 

isopropanol (80:20, v:v) at a flow rate of 1.0 mL/min. The detection wavelength and 146 

temperature were 231 nm and 35°C, respectively. The electronic circular dichroism 147 
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(ECD) spectra of the NAP enantiomers were recorded using a circular dichroism 148 

spectropolarimeter J-810 (JASCO Company, Japan) with methanol as the solvent under 149 

a wavelength range of from 200 to 400 nm.22 The ECD plots of R-NAP and S-NAP 150 

were simulated using SpecDis software.23 The average map was obtained by the 151 

Boltzmann-weighted average method and then was compared with the experimental 152 

ECD spectrum to determine the absolute configuration.24-26 153 

 154 

4. Synergistic catabolism via the combination of strains A1 and B2 155 

Strains A1 and B2 were separately cultured in LB medium at 30°C until the mid-log 156 

phase. The cells were pelleted by centrifugation at 8000 × g for 10 min and then were 157 

washed twice with sterilized H2O. Strain A1, strain B2 or the combination of strains A1 158 

and B2 (cell number 1:1) were inoculated to MSM with 0.2 mM Rac-NAP (0.1 mM R-159 

NAP plus 0.1 mM S-NAP), 0.2 mM R-NAP or 0.2 mM S-NAP, respectively, at a final 160 

concentration of OD600 = 0.1. All treatments were incubated at 30°C and 160 rpm. 161 

Samples (500 μL) were collected from each treatment at regular intervals and then were 162 

mixed with an equal volume of methanol and completely vortexed for 2 min. After 163 

centrifugation at 15,000 × g for 3 min, the concentration of each added substrate (Rac-164 

NAP, R-NAP, and S-NAP) in the supernatant was determined using HPLC analysis. 165 

Cell growth was determined via OD600 measurement. Inoculation with sterilized strain 166 

A1 or B2 cells under the same conditions was used as the negative control. All the 167 

experiments were performed in triplicate. 168 

 169 

5. Metabolic analysis and identification 170 

Strain A1 or strain B2 was incubated in MSM containing 0.2 mM R-NAP or S-NAP 171 

at an initial OD600 = 0.1. A sample (1 mL) of the S-NAP degradation by strain A1 was 172 
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collected at 48 h, while other samples (1 mL) were collected at 6 h. Each collected 173 

sample was mixed with an equal methanol volume. After filtration using a 0.22-μm 174 

membrane (Millipore, USA), the metabolites were identified using HPLC and liquid 175 

chromatography-tandem mass spectrometry (LC-MS/MS). For the HPLC-MS/MS 176 

analysis, the HPLC system (Shimadzu, Japan) was connected to a TripleTOF 5600 mass 177 

spectrometer (AB SCIEX, American) that was equipped with an electrospray ionization 178 

(ESI) probe. The HPLC column was a Kinetex C18 (100 mm × 2.1 mm, particle size 2.6 179 

μm). The mobile phase consisted of solvents A (ultrapure water) and B (methanol) with 180 

a gradient program that started by maintaining 30% B for 3 min, followed by increasing 181 

to 75% B from 3 to 15 min, maintaining 75% B from 15 to 30 min, and then returning 182 

to 30% B within 5 min. The flow rate was 0.2 mL/min. The injection volume was 10 183 

μL, and the compounds were first ionized in negative or positive polarity based on their 184 

features.  185 

To collect and purify compound 1, strain A1 was cultured and harvested according 186 

to the method of Chen et al.27 The cells were inoculated into MSM medium 187 

supplemented with 0.2 mM S-napropamide with an initial OD600 of 2.0. The cultures 188 

were shaken in an incubator at 180 rpm and 30°C. The crude extract of compound 1 189 

was collected as described previously when the substrate was completely degraded.28 190 

The crude extract of compound 1 was purified using a silica gel column using petroleum 191 

ether:acetone (35:1 to 10:1, v/v) as an eluent, followed by elution with acetone to yield 192 

compound 1. 1H nuclear magnetic resonance (NMR) (δ), 1H-1H correlation 193 

spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear 194 

multiple bond correlation (HMBC), and nuclear Overhauser effect spectroscopy 195 

(NOESY) data (δ) were measured in Acetone-d6 at 400 MHz, and 13C NMR data (δ) 196 

were measured in Acetone-d6 at 100 MHz using Bruker Avance spectrometers (Bruker 197 
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BioSpin GmbH, Beijing, China). 198 

 199 

6. Cell-free extract preparation and amidohydrolase activity assay in strain B2 200 

Strain B2 cells were grown in 100 mL of LB medium containing 100 mg/L of Sm for 201 

12 h. After centrifugation at 8000 × g for 10 min, the cells were washed twice with 202 

deionized water and resuspended in 15 mL of 50 mM phosphate buffer 203 

(Na2HPO4/NaH2PO4, pH 7.4) and disrupted via sonication (Ultrasonic Cell Crusher, 204 

Thermo Fisher Scientific, USA). The disrupted cell suspension was centrifuged at 205 

14,000 × g at 4°C for 30 min, and the supernatant was used as the cell-free extract for 206 

the amidohydrolase activity assay. A denatured crude enzyme via boiling was prepared 207 

as the negative control. The standard enzymatic reaction was performed as previously 208 

described with minor modifications.27 The reaction was stopped by boiling for 1 min. 209 

The amidohydrolase activity toward the two enantiomers of NAP was determined using 210 

HPLC analysis. One unit of activity (U) was defined as the amount of enzyme that 211 

catalyzed the hydrolysis of 1 μmol of R-NAP or S-NAP per minute. Specific activity 212 

was expressed as units per milligram of cell-free extract. The kinetic parameters Km and 213 

Vmax were calculated using the substrates within a concentration range of 0.1 -1 mM. 214 

All the experiments were performed in triplicate. 215 

 216 

Results 217 

1. Isolation and identification of two NAP-degrading strains A1 and B2 218 

When the enrichment was subcultured for three rounds, the 0.2 mM Rac-NAP in the 219 

enrichment nearly disappeared as detected by UV-Visible spectroscopy (Figure 1A). 220 

The enrichment was diluted and plated onto MSM agar containing 1 mM Rac-NAP at 221 

30°C. Only four morphologically different colonies appeared on the plates after 5 days 222 
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of incubation. These four distinct colonies were selected and checked for their 223 

capacities to degrade NAP; only two strains, designated A1 and B2, were found to be 224 

capable of degrading NAP. Strains A1 and B2 were both strictly aerobic, Gram-negative 225 

and rod-shaped. Strain A1 was approximately 1.3-1.6 μm in length and 0.6-0.7 μm in 226 

width, and strain B2 was approximately 1.3-1.7 μm in length and 0.6-0.7 μm in width. 227 

Strain A1 was determined to be related to the Sphingobium species lineage and was 228 

closely clustered with Sphingobium hydrophobicum C1T and Sphingobium 229 

xenophagum NBRC 107872T, with 16S rRNA gene identities of 99.65% and 99.57%, 230 

respectively. The 16S rRNA gene sequence of strain B2 shared 99.93% and 99.86% 231 

identities with those of Sphingobium xenophagum NBRC 107872T and Sphingobium 232 

hydrophobicum C1T, respectively. Based on the above phenotypic characteristics and 233 

phylogenetic analyses, strains A1 and B2 were finally identified as two different species 234 

of the genus Sphingobium. Interestingly, neither of the two isolates could mineralize 235 

Rac-NAP, while the combination of strains A1 and B2 enhanced degradation of 0.2 mM 236 

Rac-NAP (Figure 1B). 237 

 238 

2. Chiral separation of the two enantiomers of NAP 239 

Rac-NAP was separated by the CHIRALPAK IC (IC00CD-NA012) column of the 240 

Shimadzu LC-20AT HPLC system, and two peaks with a retention time of 4.8 min 241 

(peak 1) and 6.7 min (peak 2) appeared in the chromatogram (Figure S3). The 242 

compounds corresponding to peaks 1 and 2 were collected, and the solvent was 243 

removed using rotary evaporation to obtain the pure enantiomers (ee > 99%). The 244 

experimental ECD spectra of peak 1 was consistent with the calculated ECD spectra of 245 

R-NAP and experimental ECD spectra of peak 2 was consistent with the calculated 246 

ECD spectra of S-NAP. Based on these results, the two compounds corresponding to 247 
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peaks 1 and 2 respectively were identified as R-NAP and S-NAP. (Figure 2). 248 

 249 

3. Catabolism of NAP via strains A1 and B2 250 

Strain A1 could use Rac-NAP and R-NAP as the sole carbon source for growth in 251 

MSM (Figure S4A), while strain B2 could not use R/S/Rac-NAP for growth (Figure 252 

S4B). Strain A1 completely degraded 0.2 mM R-NAP and S-NAP over 12 and 108 h, 253 

respectively, showing a degrading preference to R-NAP (Figure 3A). In contrast to 254 

strain A1, strain B2 completely degraded 0.2 mM S-NAP over 7 h, while no obvious 255 

degradation of R-NAP was observed during this time (Figure 3B). Strain B2 showed a 256 

weak R-NAP degradation ability, and it degraded 49.8% of the 0.2 mM R-NAP over 257 

156 h when the cells were inoculated at OD600 =2.0 (Figure 3D). The combination of 258 

strains A1 and B2 completely degraded 0.2 mM Rac-NAP, R-NAP or S-NAP over 6, 12 259 

and 12 h (Figure 3C), and the degrading efficiencies were higher than those of the single 260 

strain. Although the inoculated cell numbers of strain A1/strain B2 in the combination 261 

degradation were one-half of that in the single strain degradation, the degradation rates 262 

of R-NAP and S-NAP in the combination degradation were 24.8- and 7.5-times that in 263 

the single strain degradation by strain B2 or strain A1, respectively. Additionally, the 264 

degradation rate of Rac-NAP in the combination degradation was 13.4- or 1.2-times 265 

that in the single strain degradation by strain A1 or strain B2, respectively. These data 266 

showed enhanced synergistic catabolism between strains A1 and B2. 267 

 268 

4. Proposed metabolic pathways of R-NAP and S-NAP in strain A1 and strain B2 269 

HPLC analysis of samples collected at various times during the degradation of Rac-270 

NAP, R-NAP or S-NAP by strain A1 or strain B2 showed that the decrease in the 271 

substrates was accompanied by the appearance of new peaks (metabolites) (Figure 4). 272 
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In strain A1, when Rac-NAP was used as the substrate, two peaks (Retention time 273 

(RT)=4.1 min and 4.7 min) gradually increased and then remained unchanged. For R-274 

NAP, two peaks (RT=4.1 min and 6.4 min) occurred at the beginning, and the peak at 275 

RT=6.4 min finally disappeared. For S-NAP, a peak at RT= 4.7 min (compound 1) 276 

mainly accumulated; a small peak at RT=4.1 min was also found (Figure 4A, B and C).  277 

In strain B2, when Rac-NAP or S-NAP was used as the substrate, two peaks (RT= 278 

7.2 min and 9.4 min) gradually increased, and the peak with RT=7.2 min finally 279 

decreased, showing S-NAP could be transformed to a metabolite (RT=7.2 min) via the 280 

intermediate (RT=9.4 min). For R-NAP, no peak at RT=7.2 min formed, and a peak at 281 

RT=9.4 min was very small and could not be further degraded (Figure 4D, E and F). 282 

Additionally, the metabolite (RT=4.7 min) (compound 1) produced from S-NAP by 283 

strain A1 could be further transformed to an end-product (RT=3.8 min) by strain B2 284 

(Figure S5). 285 

The two metabolites (RT=4.1 min and 6.4 min) produced from R-NAP by strain A1 286 

were identified by HPLC-MS/MS as (R)-N,N-diethyl-2-hydroxypropanamide and 287 

(1R,2S)-1,2-dihydronaphthalene-1,2-diol, with molecular ion peaks [M+H]+ at d 146.11 288 

and 163.06, respectively (Figure 5A, C). The metabolite (RT=4.7 min) was identified 289 

as (S)-2-(((2S,3S)-2,3-dihydroxy-2,3-dihydronaphthalen-1-yl)oxy)-N,N-290 

diethylpropanamide at a peak of m/z 304.15 and fragments at m/z 177.06 (loss of 291 

C7H14NO from 304.15) and m/z 159.04 (loss of H2O from 177.06) (Figure 5B). 292 

The metabolite (RT=9.4 min) produced by strain B2 was identified as R-2-(1-293 

naphthalenyloxy)-propanoic acid or S-2-(1-naphthalenyloxy)-propanoic acid at a peak 294 

of m/z 217.10 and its fragments under ionization conditions were at m/z 171.08 (loss of 295 

CHO2 from 217.10), m/z 143.05 (loss of C2H4 from 171.08) and m/z 127.05 (loss of O 296 

from 143.05) (Figure 5D). The metabolite (RT=7.2 min) was identified as naphthol, 297 
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with a molecular ion peak [M+H]+ at 145.06 and a fragment at m/z 127.05 (loss of HO 298 

from 145.06) (Figure 5E). Another metabolite (RT=3.8 min) was identified as (S)-2-299 

(((2S,3S)-2,3-dihydroxy-2,3-dihydronaphthalen-1-yl)oxy)propanoic acid with a peak at 300 

m/z 249.07 and a fragment at m/z 177.06 (loss of C3H5O2 from 249.07) (Figure 5F). 301 

According to the results of the HPLC and HPLC-MS/MS analyses, we speculated on 302 

the metabolic pathways of S-NAP and R-NAP in strains A1 and B2. In strain B2, the 303 

amide bond of S-NAP was broken to generate S-2-(1-naphthalenyloxy)-propanoic acid 304 

(S-NP) and diethylamine. The ether bond of S-NP was then cleaved to form α-naphthol, 305 

which finally entered the tricarboxylic acid (TCA) cycle (Figure 6B, green). Meanwhile, 306 

for R-NAP, the amide bond was also broken to generate R-2-(1-naphthalenyloxy)-307 

propanoic acid (R-NP) and diethylamine, but none of them could be further transformed 308 

(Figure 6A, green). In strain A1, S-NAP slowly transformed to the end-products (S)-2-309 

(((2S,3S)-2,3-dihydroxy-2,3-dihydronaphthalen-1-yl)oxy)-N,N-diethylpropanamide 310 

and (S)-N,N-diethyl-2-hydroxypropanamide (Figure 6B, orange). Although (S)-2-311 

(((2S,3S)-2,3-dihydroxy-2,3-dihydronaphthalen-1-yl)oxy)-N,N-diethylpropanamide 312 

could not be further transformed by strain A1, it could be further transformed to 313 

(1R,2S)-1,2-dihydronaphthalene-1,2-diol (RT=3.8 min) by strain B2 (Figure S5). By 314 

contrast, strain A1 could transform R-NAP to (R)-N,N-diethyl-2-hydroxypropanamide 315 

and (1R,2S)-1,2-dihydronaphthalene-1,2-diol, which could be further metabolized to 316 

CO2 and H2O, respectively (Figure 6A, orange).  317 

 318 

5. Structural determination of compound 1 by NMR analysis 319 

HRTOF-MS analysis of compound 1 (RT=4.7 min) showed a molecular ion peak at 320 

m/z = 304.1578 [M - H]- (Figure 5B), suggesting the molecular formula C17H23NO4, 321 

accounting for seven degrees of unsaturation (Figure 7). The 1H NMR spectrum of 322 
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compound 1 showed three aromatic proton signals in an ABC spin system at δH 7.18 323 

(1H, dd, J = 8.0, 8.0 Hz), 6.82 (1H, d, J = 8.0 Hz), and 6.75 (1H, d, J = 8.0 Hz), 324 

corresponding to a 1,2,3-trisubstituted benzene ring (Figure S6). It also showed 325 

resonances for a disubstituted double bond at δH 6.36 (1H, dd, 9.6, 2.4) and 5.83 (1H, 326 

dt, 9.6, 2.0), and two NCH2CH3 groups at 3.33 (2H, m), 1.05 (3H, t, J = 6.8 Hz), 3.48 327 

(2H, m), and 1.13 (3H, t, J = 6.8 Hz). The resonances at δH 5.05 (1H, d, J = 3.2 Hz) and 328 

4.40 (1H, m) were assigned to the two vicinal oxymethine groups and those at δH 5.16 329 

(1H, q, J = 6.4 Hz) and 1.52 (3H, d, J = 6.4) to the mutually coupled oxymethine and 330 

methyl groups (Table 1), respectively. The 13C NMR data for compound 1 showed the 331 

presence of 17 carbons comprising an amide carbonyl, eight aromatic/olefinic carbons, 332 

and eight aliphatic carbons (Figure S7). The 1H and 13C NMR spectroscopic data were 333 

similar to those of napropamide except for the replacement of the resonances of a 334 

double bond at C-6/C-7 in the napropamide by signals for a vicinal diol in compound 1 335 

(Figure S8, S9). HMBC from H-4 (δH 6.75) to C-6 (δC 63.7) confirmed this assignment 336 

(Figure S10). The relatively small coupling constant (J = 3.2 Hz) between H-6 (δH 5.05) 337 

and H-7 (δH 4.40) suggested that they were oriented on the same side of the cyclohexene 338 

ring. This deduction was supported by an NOE correlation of H-6/H-7 (Figure S11). 339 

Based on these data, compound 1 was identified as 2-((5,6-dihydroxy-5,6-340 

dihydronaphthalen-1-yl)oxy)-N,N-diethylpropanamide. 341 

 342 

6. Amidohydrolase activity in strain B2 343 

The metabolic pathways of NAP in strain B2 showed the presence of amidohydrolase. 344 

HPLC results confirmed that the cell-free extract of strain B2 could transform S-345 
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NAP/R-NAP to S-NP/R-NP (Figure S12). The kinetic parameters and catalytic 346 

efficiency (kcat/Km) of the crude amidohydrolase extracted from strain B2 are 347 

summarized in Table 2. The amidohydrolase from strain B2 showed a catalytic 348 

preference for S-NAP compared with that for R-NAP. It transformed 29% of 0.2 mM 349 

S-NAP within 10 min when 12 μg of cell-free extract was used, while it only 350 

transformed 18% of 0.2 mM R-NAP within 72 h when 600 μg of cell-free extract was 351 

used.  352 

 353 

Discussion 354 

Napropamide (NAP) belongs to the amide herbicide family. It is a chiral herbicide 355 

and among the most commonly used pre-emergence herbicides for fruits, vegetables 356 

and crops to control broadleaf weeds.29 NAP is polar and slightly soluble in water, and 357 

easily passes into the tissues of organisms and soil layer,30 showing a threat to the safety 358 

of drinking water. Although previous investigations have shown that NAP in the 359 

environment was mainly eliminated by microbial transformation, only a few published 360 

studies regarding NAP microbial degradation have been reported and the catabolism of 361 

the different NAP chiral isomers has not been investigated. In this study, we isolated 362 

two Sphingobium species from a Rac-NAP-contaminated soil. Neither strain A1 nor 363 

strain B2 or the combination of strains A1 and B2 could mineralize Rac-NAP, but the 364 

combination of strains A1 and B2 could enhance the degradation of Rac-NAP, 365 

indicating synergistic degradation of the two enantiomers of NAP by strains A1 and B2. 366 

The degradation of R/S-NAP by strain A1 or strain B2 was shown to be 367 

enantioselective. The degradation rates of S/R-NAP by strain A1 and strain B2 were 368 

also different. Under the same inoculum, the degradation rate of R-NAP by strain A1 369 

was 12-times faster than that of S-NAP, while strain B2 completely degraded 0.2 mM 370 
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S-NAP within 7 h and showed no significant degradation of R-NAP. The 371 

enantioselective degradation of the enantiomers might be because of the different 372 

spatial structures of the different enantiomers, causing a different distance between the 373 

catalytic site of the degrading enzymes and target group of enantiomers to be 374 

catalyzed.26 Nevertheless, the specific mechanism involved needs further research. For 375 

example, Wen et al. showed that the main reason for the selectivity of Aspergillus niger 376 

lipase (ANL, EC3.1.1.3) to 2,4-dichlorprop-methyl was enzymatic conformation and 377 

the binding pattern of 2,4-dichlorprop-methyl to this enzyme.31 378 

Strain A1 transformed R-NAP to (R)-N,N-diethyl-2-hydroxypropanamide and 379 

(1R,2S)-1,2-dihydronaphthalene-1,2-diol, and the latter metabolite could be completely 380 

mineralized. However, strain A1 could only transform S-NAP to the end-products (S)-381 

2-(((2S,3S)-2,3-dihydroxy-2,3-dihydronaphthalen-1-yl)oxy)-N,N-diethylpropanamide 382 

and (S)-N,N-diethyl-2-hydroxypropanamide. Interestingly, strain B2 only transformed 383 

R-NAP to the end-products diethylamine and R-NP but mineralized S-NAP via the 384 

intermediate S-NP. These results showed that strain A1 preferred to degrade R-NAP, 385 

while strain B2 preferred to degrade S-NAP, and strains A1 and B2 complemented each 386 

other to enhance the degradation of both enantiomers. The reason that one single strain 387 

has not evolved the mineralizing pathways for both enantiomers might be that the i) 388 

evolution of complementary pathways for both enantiomers is difficult and needs a long 389 

time; ii) distribution of metabolic pathways in different strains is beneficial to hosts, 390 

and the toxic effects of NAP, as well as its metabolites, are reduced in a single strain; 391 

iii) the degradation efficiency of NAP is enhanced via synergism; and iv) the ecological 392 

balance among the bacterial consortium is maintained.32 393 

During the degradation of R/S-NAP via a single strain A1 or strain B2, end-products 394 

were produced. However, no end-product was detected in the enrichment, suggesting 395 
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that some unisolated strains in the enrichment could degrade these end-products. 396 

Organic pollutants synergistically degraded by bacterial consortia are common.33, 34 For 397 

example, the combination of the Diaphorobacter sp. strain LR2014-1 with 398 

Achromobacter sp. strain ANB-1 resulted in enhanced degradation of the phenylurea 399 

herbicide linuron.35 400 

Notably, the degradation of naphthol, the downstream product of S-NAP, by strain 401 

B2 in MSM was greatly enhanced by the addition of glucose or LB (data not shown). 402 

This phenomenon was similar to that mentioned by Teramoto et al.36 We speculated the 403 

presence of a regulator that can interact with glucose or its metabolite regulates 404 

naphthol degradation in strain B2. 405 

Taken together, we isolated two strains of Sphingobium sp., A1 and B2, which 406 

showed different preferences for the catabolism of the different NAP enantiomers. 407 

Strains A1 and B2 could complement each other to synergistically enhance the 408 

catabolism of both enantiomers. Our study provides new insights into the 409 

enantioselective catabolism of chiral NAP in microorganisms. 410 

 411 

Abbreviations  412 

NAP: Napropamide; Rac-NAP: racemic NAP or Rac-napropamide; TR: thyroxine 413 

receptor; LB: Luria-Bertani medium; MSM: minimal salt medium; Sm: Streptomycin; 414 

HPLC: high-performance liquid chromatography; ECD: electronic circular dichroism; 415 

OD600: optical cell density at 600 nm; HPLC-MS/MS: high-performance liquid 416 

chromatography-tandem mass spectrometry; ESI: electrospray ionization; S-NP: S-2-417 

(1-naphthalenyloxy)-propanoic acid; R-NP: R-2-(1-naphthalenyloxy)-propanoic acid; 418 

NMR: nuclear magnetic resonance; 1H-1H COSY: 1H-1H correlation spectroscopy; 419 
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HSQC: heteronuclear single quantum coherence; HMBC: heteronuclear multiple bond 420 

correlations; NOESY: nuclear Overhauser effect spectroscopy; RT: retention time; TCA 421 

cycle: tricarboxylic acid cycle; ANL: Aspergillus niger lipase. 422 
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Figure captions 555 

Figure 1. UV spectrum scanning of Rac-napropamide (Rac-NAP) after one-week 556 

degradation by the enrichment culture (A) and isolated strain(s) (B). MSM containing 557 

0.2 mM Rac-napropamide and inoculated with sterilized enrichment culture was used 558 

as the control. 559 

 560 

Figure 2. Calculated ECD spectra of configurations R-napropamide (red) and S-561 

napropamide (blue) were compared with the experimental ECD spectra (black) of peak 562 

1 (A) and peak 2 (B) shown in Figure S3. 563 

 564 

Figure 3. Degradation of Rac-napropamide (Rac-NAP), R-napropamide (R-NAP) and 565 

S-napropamide (S-NAP) by strain A1 (A), strain B2 (B) and the combination of strains 566 

A1 and B2 (C), respectively. Degradation of R-NAP by strain B2 with a high amount 567 

inoculation (D). Cells of strain A1 or strain B2 were inoculated for individual 568 

degradation in 100 mL of MSM at an initial OD600 value of 0.1 (A and B) and 2.0 (D), 569 

and cells of strain A1 and strain B2 were simultaneously inoculated for a combination 570 

degradation in 100 mL of MSM at an initial OD600 value of 0.05 for every strain (C). 571 

The concentration of Rac-napropamide, R-napropamide and S-napropamide for each 572 

treatment was 0.2 mM. The data are expressed as the mean and standard deviation of 573 

three replicates. 574 

 575 

Figure 4. HPLC spectral analysis of the metabolites of Rac-napropamide (A, D), R-576 
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napropamide (B, E) and S-napropamide (C, F) during the degradation by strain A1 (A, 577 

B, C) or strain B2 (D, E, F). 578 

 579 

Figure 5. HPLC-MS/MS analysis of the metabolites during R-napropamide or S-580 

napropamide degradation by strain A1 or strain B2. Tandem mass spectrometry of 581 

metabolites at 4.1 min (A), 4.7 min (B) and 6.4 min (C) produced by strain A1 (see in 582 

Figure 4A, 4B and 4C). Tandem mass spectrometry of metabolites at 9.4 min (D), 7.2 583 

min (E) and 3.8 min (F) produced by strain B2 (see Figure 4D, 4E, and 4F and Figure 584 

S4). 585 

 586 

Figure 6. Proposed metabolic pathways of R-napropamide (A) and S-napropamide (B) 587 

in strain A1 (in orange) or strain B2 (in green). TCA is an abbreviation for tricarboxylic 588 

acid cycle. 589 

 590 

Figure 7. Structure of compound 1. 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 
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Table 1 1H-NMR and 13C-NMR data of compound 1a 599 

NO.  δH δC 

1   156.8 

2  6.82, d (8.0) 114.3 

3  7.18, dd (8.0, 8.0) 130.0 

4  6.75, d (8.0) 120.9 

5   135.0 

6  5.05, d (3.2) 63.7 

7  4.40, m 70.7 

8  5.83, dt (9.6, 2.0) 133.7 

9  6.36, dd (9.6, 2.4) 127.0 

10   125.5 

11  5.16, dd (13.2, 6.4) 73.7 

12  1.52, d (6.4) 18.5 

13   170.5 

14  3.33, m 40.7 

15  1.05, t (6.8) 13.0 

16  3.48, m 41.8 

17  1.13, t (6.8) 14.8 
a 1H NMR data (δ) were measured in Acetone-d6 at 400 MHz; 13C NMR data (δ) were 600 

measured in Acetone-d6 at 100 MHz. 601 
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Table 2 Kinetic parameters a of crude amidohydrolase extracted from strain B2 624 

Substrate Specific activity (U/mg) Km (μM) Vmax (umol/min·mg) 

S-napropamide 227.4 ± 3.6 24.6 ± 1.1 336.7 ± 0.4 

R-napropamide 3.2 ± 1.9 32.2 ± 0.3 6.4 ± 0.6 

a Kinetic experiments were performed at 30°C in phosphate buffer (50 mM, pH 7.4) 625 

with a final volume of 500 μL. The data are expressed as the mean and standard 626 

deviation of three replicates. 627 
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Figure 1 664 

 665 

Figure 1. UV spectrum scanning of Rac-napropamide (Rac-NAP) after one-week 666 

degradation by the enrichment culture (A) and isolated strain(s) (B). An MSM 667 

containing 0.2 mM Rac-napropamide and inoculated with sterilized enrichment culture 668 

was used as the control. 669 
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Figure 2 698 

 699 
Figure 2. Calculated ECD spectra of configurations R-napropamide (red) and S-700 

napropamide (blue) were compared with the experimental ECD spectra (black) of peak 701 

1 (A) and peak 2 (B) shown in Figure S3. 702 
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Figure 3 732 

 733 
Figure 3. Degradation of Rac-napropamide (Rac-NAP), R-napropamide (R-NAP) and 734 

S-napropamide (S-NAP) by strain A1 (A), strain B2 (B) and the combination of strains 735 

A1 and B2 (C), respectively. Degradation of R-NAP by strain B2 with a high amount 736 

inoculation (D). Cells of strain A1 or strain B2 were inoculated for individual 737 

degradation in 100 mL of MSM at an initial OD600 value of 0.1 (A and B) and 2.0 (D), 738 

and cells of strain A1 and strain B2 were simultaneously inoculated for a combination 739 

degradation in 100 mL of MSM at an initial OD600 value of 0.05 for every strain (C). 740 

The concentration of Rac-napropamide, R-napropamide and S-napropamide for each 741 

treatment was 0.2 mM. The data are expressed as the mean and standard deviation of 742 

three replicates. 743 
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Figure 4 756 

 757 

Figure 4. HPLC spectral analysis of the metabolites of Rac-napropamide (A, D), R-758 

napropamide (B, E) and S-napropamide (C, F) during the degradation by strain A1 (A, 759 

B, C) or strain B2 (D, E, F). 760 
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Figure 5 785 

 786 

Figure 5. HPLC-MS/MS analysis of the metabolites during R-napropamide or S-787 

napropamide degradation by strain A1 or strain B2. Tandem mass spectrometry of 788 

metabolites at 4.1 min (A), 4.7 min (B) and 6.4 min (C) produced by strain A1 (see in 789 

Figure 4A, 4B and 4C). Tandem mass spectrometry of metabolites at 9.4 min (D), 7.2 790 

min (E) and 3.8 min (F) produced by strain B2 (see Figure 4D, 4E, and 4F and Figure 791 

S5). 792 
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Figure 6 804 

 805 

Figure 6. Proposed metabolic pathways of R-napropamide (A) and S-napropamide (B) 806 

in strain A1 (in orange) or strain B2 (in green). TCA is an abbreviation for tricarboxylic 807 

acid cycle. 808 
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Figure 7 837 

 838 

Figure 7. Structure of compound 1. 839 
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