Multicomponent Reactions

Enantioselective Synthesis of β-Iodo Morita–Baylis–Hillman Esters by a Catalytic Asymmetric Three-Component Coupling Reaction**

Bidyut Kumar Senapati, Geum-Sook Hwang, Sungil Lee, and Do Hyun Ryu*

Dedicated to Professor Sung Ho Kang on the occasion of his 60th birthday

Optically active α -methylene- β -hydroxy carbonyl derivatives can be prepared by the asymmetric Morita–Baylis–Hillman (MBH) reaction.^[1] These derivatives are useful chiral building blocks for biologically active molecules and natural products because of their multifunctional composition.^[2] Even with recent advances in this area, asymmetric synthesis of β substituted MBH products such as β -branched MBH ketones or esters have not been successful by this method.^[2] One efficient route to give various β -branched MBH products^[3] can be achieved through the cross-coupling reaction of chiral β -halo MBH products (Scheme 1). The presence of a halogen

Scheme 1. Enantioselective synthesis of Z-selective β -branched MBH esters through β -halo MBH esters.

atom in the β position is beneficial for numerous further transformations on the products and is useful for the rapid construction of complex organic molecules.^[4] Consequently, the development of efficient methods for enantioselective and

[*] Dr. B. K. Senapati, S. Lee, Prof. Dr. D. H. Ryu Department of Chemistry, Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu, Suwon City Gyeonggi-do, 440-746 (Korea) Fax: (+ 82) 31-290-5976 E-mail: dhryu@skku.edu
Prof. Dr. G.-S. Hwang KoreaBasic Science Institute and Graduate School of Analytical Science and Technology Chungnam National University 5St, Anam-Dong, Seongbuk-Gu, Seoul, 136-713 (Korea)

- [**] This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MEST) (grant nos. KRF-2008-005-J00701, KRF-2008-331-C00160), by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (grant no. R01-2008-000-11094-0), and by the Postdoctoral Research Program of Sungkyunkwan University (2008).
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200900351.

E/Z-stereocontrolled synthesis of β-halo MBH products can provide efficient entry to give various optically active βsubstituted MBH products. Although racemic $E^{-[5]}$ or Zstereocontrolled^[6] synthetic approaches to give β-halo MBH esters or ketones have been reported by our research group and others, methods for asymmetric conversion^[7] are currently limited. Li et al. have reported the asymmetric synthesis of β-iodo MBH ketones by using an aldol reaction between preformed silyl allenolates and aldehydes that was catalyzed by *N*-heptafluorobutyryl oxazaborolidine.^[7a] They also reported a catalytic, asymmetric synthetic method to give β-iodo MBH esters, which are more useful than their ketone counterparts.^[7b] However, there have been no reports of highly enantioselective and E/Z-stereocontrolled synthetic methods to give optically active β-halo MBH esters.

We report herein the highly enantioselective and Zstereocontrolled three-component coupling reaction of α , β acetylenic esters, aldehydes, and trimethylsilyl iodide (TMSI) using chiral cationic oxazaborolidinium catalysts (Scheme 1). The reaction provides the optically active β -iodo MBH esters with good to excellent yield and enantioselectivity in a straightforward way. In addition, the subsequent metalcatalyzed cross-coupling of these esters are performed directly to access the synthetically more useful β -branched MBH esters through a single step (Scheme 1). The stereochemical course of the reaction and its high Z selectivity are rationalized by the preassembly of the transition state, shown in Scheme 3.

The chiral oxazaborolidinium salts (1 and 2; Scheme 2) behave as powerful Lewis acids and have been proven to be effective catalysts for enantioselective Diels–Alder reaction-s,^[8a,e,f] cyanosilylations,^[8b,c] and Michael reactions.^[8d] There is much evidence for the formation of the complex between catalyst 1 and aldehydes.^[8a,b] We applied these oxazaborolidinium catalysts in a three-component coupling reaction involving an aldehyde, an alkyl propiolate, and TMSI.

 $\textit{Scheme 2.}\ Catalysts$ screened for enantioselective synthesis of $\beta\text{-iodo}$ MBH esters.

4398

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Benzaldehyde was selected as a model substrate for the initial optimization (Table 1). The three-component coupling reaction between benzaldehyde, ethyl propiolate, and nBu_4NI , using 0.2 equivalents of catalyst **1a** in CH₂Cl₂ at

Table 1: Enantioselective Z stereocontrolled three-component coupling between benzaldehyde, alkyl propiolate, and TMSI^[a]

QH Q

O

Ö

Ph	`H +	//	OR^1 + iodide source	cat. (20 mol%)		
					3	ا سی
Entry	Cat.	R ¹	Reaction conditions	Yield [%] ^[b]	$Z/E^{[c]}$	ee [%] ^[d]
1	la	Et	<i>n</i> Bu ₄ NI, CH ₂ Cl ₂ , -40 °C, 10 h	26	85:15	20
2	la	Et	TMSI, CH ₂ Cl ₂ , -40 °C, 3 h	68	90:10	77
3	la	Et	TMSI, CH ₃ CH ₂ CN, -40°C, 10 h	38	88:12	69
4	la	Et	TMSI, toluene, -78°C, 5 h	85	92:8	84
5	1 b	Et	TMSI, CH ₂ Cl ₂ , -78 °C, 3 h	92	94:6	67
6	la	Me	TMSI, CH ₂ Cl ₂ , -78 °C, 1.5 h	92	99:1	84
7	la	tBu	TMSI, CH ₂ Cl ₂ , -78 °C, 10 h	0	-	-
8	la	Et	TMSI, CH ₂ Cl ₂ , -78 °C, 2 h	93	>99:1	87 ^[e]
9	2	Et	TMSI, CH ₂ Cl ₂ , -78 °C, 2 h	90	>99:1	87 ^[f]
10	1c	Et	TMSI, CH ₂ Cl ₂ , -78°C, 1 h	95	>99:1	94 ^[e]

[a] Reactions run with 1.0 mmol of benzaldehyde, 2.0 mmol of ethylpropiolate, 1.5 mmol of the iodide source, and 0.2 mmol of catalyst. [b] Yield of isolated product. [c] Determined after separation by column chromatography. [d] Determined by HPLC on a chiral stationary phase. [e] The absolute configuration of **3** was determined to be *R* enriched. For details see the Supporting Information. [f] The absolute configuration of **3** was determined to be *S* enriched.

-40°C gave the desired product (26% yield) with a poor enantioselectivity (20% ee) for the Z isomer (Table 1, entry 1). Replacement of nBu₄NI by TMSI under similar reaction conditions produced the desired product with an improved yield and ee value (Table 1, entry 2). The resulting Z and E isomers of **3** could be easily separated by column chromatography on silica gel. The Z configuration of the major product was determined unambiguously by 2D ROESY analysis, as mentioned in our previous report.^[6g] The reaction conditions were then optimized by varying the reaction parameters and catalysts. During our investigation, it emerged that catalyst 1a provided better ee values than 1b in CH_2Cl_2 compared to toluene or propionitrile. The Z selectivity of product 3 was excellent (>99:1) at -78 °C compared to -40 °C (compare Table 1, entries 2 and 8). This high stereoselectivity obtained at low temperature is due to the multicoordinating Lewis acidic catalyst 1, which prefers the chairlike transition state 5a to give the kinetically favored Z product (Scheme 3).^[6g,7a] Both ethyl and methyl propiolates provided high enantioselectivity under similar conditions (Table 1, entries 6 and 8). However, in the case of tert-butyl propiolate a coupling product could not be isolated (Table 1, entries 7). Both catalysts 1a and 2 were effective at providing (R)- and (S)- β -iodo MBH esters in high yield and ee, respectively (Table 1, entries 8 and 9). The use of mexylsubstituted catalyst 1c improved the ee value of 3 up to 94% (Table 1, entry 10).

After optimization of the reaction parameters for Z stereoselective, asymmetric three-component coupling reactions, the scope of this methodology was studied (Table 2). Reactions with various aldehydes provided the corresponding Zselective β -iodo MBH esters **4** in high to excellent enantio-

Table 2: Results of the catalytic enantioselective synthesis of Z-selective β -iodo MBH esters.^[a]

	· +			cat. 1 (20 mol%)	OI I	но
кн	· //	OEt TI		CH ₂ Cl ₂ , -78 °C	* R (R)	OEt
					4	
Entry	Catalyst	R	<i>t</i> [h]	Yield [%] ^[b]	$Z/E^{[c]}$	ee [%] ^[d]
1	lc	Ph	1	95	> 99:1	94
2	lc	$4-FC_6H_4$	3	92	> 99:1	92
3	la	$4-CF_3C_6H_4$	4	75	99:1	92
4	la	$4-C C_6H_4$	2	99	99:1	96
5	la	2-BrC ₆ H₄	5	95	>99:1	90
6	la	$4-BrC_6H_4$	5	90	96:4	93
7	la	$4-CNC_6H_4$	6	91	97:3	95
8	la	4-NO ₂ C ₆ H ₄	30	66	92:8	90
9	lc	$4-MeC_6H_4$	1.5	92	99:1	62
10	lc	4-PhC ₆ H₄	1.5	95	92:8	90
11	la	2-naphthyl	12	65	98:2	91
12 ^[e]	1 b	<i>n</i> Pr	8	72	96:4	93
13 ^[e]	1 b	<i>n</i> -hexyl	12	61	97:3	90
14 ^[e]	1 b	iPr	12	50	95:5	90

[a] Reactions run with 1.0 mmol of aldehyde, 2.0 mmol of ethylpropiolate, 1.5 mmol of TMSI, and 0.2 mmol of catalyst. [b] Yield of isolated product. [c] Determined after separation by column chromatography. [d] Determined by HPLC on a chiral stationary phase. [e] Reaction run using 2.5 equivalents of ethyl propiolate and 2.0 equivalents of TMSI at -60 °C.

meric excess. For aromatic aldehydes, substitution with electron-withdrawing groups lowered the reaction rate but provided excellent enantioselectivites (90-96% ee; Table 2, entries 2-8). The strong electron-withdrawing 4-nitro group can be expected to lower the basicity of the aldehyde carbonyl group and thereby reduce the degree of complexation which results in the catalyst reacting at a slow rate (Table 2, entry 8). Conversely, electron-donating substituents such as p-tolualdehyde caused a significant loss in enantioselectivity (62% ee; Table 2, entry 9).^[9] Similar results were observed for the cyanosilylation of ketones.^[8c] 4-Biphenyl and 2naphthyl carboxaldehyde were also treated under similar reaction condition to produce β-iodo MBH esters with excellent yield and enantioselectivity (Table 2, entry 10 and 11). The reaction rate of aliphatic aldehydes was considerably slow at -78°C. Optimal results were obtained at -60°C when 1a was replaced with the triflimide-activated catalyst 1b owing to the higher stability of triflimide-activated catalysts^[8a] (Table 2, entries 12-14). The reaction of iosobutyraldehyde (Table 2, entry 14) resulted in high enantioselectivities and moderate yield.

The absolute configuration of the major enantiomeric isomer was assigned as R by chemical correlations. Product **3** (Table 1, entries 8 or 10) was transformed into (R)-2-methoxy-2-phenylacetic acid (see the Supporting Informa-

tion) and its ¹H NMR spectrum and specific rotation data correlates with those reported earlier.^[10] The resulting *Z* geometry and stereochemical course of the three-component coupling reactions (represented in Table 2) can be explained by the asymmetric aldol reaction between trime-thylsilyl β -iodo allenoate and aldehydes via a cyclic transition state of pentacoordinated^[11] catalyst **1** (Scheme 3).^[7a] As

Scheme 3. Transition-state model for the asymmetric Michael-aldol reaction.

serious steric interactions between the I and R groups are obvious in transition state **5b**, therefore transition state **5a** is favored and predominantly affords the Z isomer. In terms of R chirality, the mode of complexation of the aldehydes is the same as that shown in the enantioselective formation of (R)cyanohydrins from aldehydes and trimethylsilyl cyanide.^[8b] The formyl carbon atom is situated above the nearby bulky aryl groups, which effectively shields the *re* face (back) from attack by the β -iodo allenoate intermediate. Thus, nucleophilic attack of the allenoate carbon atom from the *si* face (front) of the formyl carbon atom is facilitated and leads to R enantioselectivity. Owing to the greater shielding ability of the mexyl groups, catalyst **1c** provided a 1–7% higher *ee* value than catalyst **1a**.

To extend the application of the resulting β -iodo MBH adducts, we performed various cross-coupling reactions to generate chiral (*Z*)- β -branched MBH adducts without the need to protect the chiral alcohol (Scheme 4). Suzuki coupling of **4** (Table 2, entry 1) with phenyl boronic acid in

Scheme 4. Synthesis of Z-selective β -branched chiral MBH esters by a direct cross-coupling reaction. DME = 1,2-dimethoxyethane, DMSO = dimethyl sulfoxide.

the presence of $Pd(OAc)_2$ under known reaction conditions proceeded smoothly to give (*Z*)- β -phenyl MBH ester **6** with a 91% yield without an obvious loss of enantiopurity.^[12] Sonogashira coupling with phenyl acetylene and [PdCl₂-(PPh₃)₂] produced **7** in a 95% yield.^[13] Similarly, organocuprate-promoted conjugate addition of Grignard reagent provided exclusively (*Z*)- β -branched allylic alcohols **8** with an excellent yield without loss of enantiopurity.^[14]

In summary, we have developed a highly enantioselective, catalytic three-component coupling reaction between an aldehyde, ethyl propiolate, and TMSI to give chiral (Z)- β -iodo MBH esters. Both the enantiomers of (Z)- β -iodo MBH esters (*R/S*) could be obtained enantioselectively by using an *S*- or *R*-oxazaborolidinium catalyst (**1** or **2**). These esters can be directly converted into the optically active (Z)- β -branched derivatives with retention of configuration. The absolute configuration of the product was that predicted by the transition state model **5a**. We believe that these results should be useful in the synthesis of various optically active (Z)- β -branched Morita–Baylis–Hillman esters. Further optimization of this catalytic asymmetric reaction, extension of the scope, and synthetic applications are in progress.

Experimental Section

Synthesis of 4: A freshly prepared solution of triflic acid in CH₂Cl₂ (0.200M solution, 0.690 µL, 0.138 mmol) was added dropwise to an aliquot of oxazaborolidine precursor 1c (0.166 mmol, ca. 20 mol%, theoretical) in of CH₂Cl₂ (1.5 mL) at -40 °C under nitrogen. During the addition, the catalyst solution turned orange in color but then became clear instantaneously. Towards the end of the reaction, a small amount of orange precipitate was observed. After stirring for 15-20 min at -40 °C, the orange precipitate disappeared and a colourless homogeneous solution of catalyst was obtained. Benzaldehyde (0.691 mmol, 70.5 μ L) was then added dropwise to the cooled (-78°C) solution of catalyst. After 20 min of stirring at -78°C, ethyl propiolate (1.383 mmol, 140 µL) and TMSI (1.04 mmol, 148 µL) were quickly added to the mixture sequentially. After stirring for 1 h at -78°C, the reaction mixture was quenched with H₂O (2 mL) and the aqueous layer was extracted with CH2Cl2. The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and the solvent removed under vacuum to produce the crude product. Purification by flash column chromatography on silica gel (eluent: 1:10 EtOAc/hexanes) afforded the corresponding β-iodo MBH ester 4 as a colourless oil in 95% yield (218 mg, 94% ee; Table 2, entry 1).

Received: January 20, 2009 Published online: May 4, 2009

Keywords: asymmetric synthesis · Morita-Baylis-Hillman esters · multicomponent reactions · oxazaborolidinium catalyst · synthetic methods

4400 www.angewandte.org

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

For recent reviews on the Morita-Baylis–Hillman reaction, see

 a) G. Masson, C. Housseman, J. Zhu, *Angew. Chem.* 2007, 119, 4698; *Angew. Chem. Int. Ed.* 2007, 46, 4614; b) Y.-L. Shi, M. Shi, *Eur. J. Org. Chem.* 2007, 2905; c) D. Basavaiah, K. V. Rao, R. J. Reddy, *Chem. Soc. Rev.* 2007, 36, 1581.

 ^[2] a) D. Basavaiah, A. J. Rao, T. J. Satyanarayana, *Chem. Rev.* 2003, 103, 811; b) K. Y. Lee, K. Y. Gowrisankar, J. N. Kim, *Bull. Korean Chem. Soc.* 2005, 26, 1481.

- [3] For other routes to β-branched MBH products, see: a) T. Kataoka, H. Kinoshita, S. Kinoshita, T. Iwamura, S. Watanabe, *Angew. Chem.* 2000, *112*, 2448; *Angew. Chem. Int. Ed.* 2000, *39*, 2358; b) P. Ramachandran, M. T. Rudd, T. E. Burghardt, M. V. R. Reddy, *J. Org. Chem.* 2003, *68*, 9310; c) T. E. Reynolds, A. R. Bharadwaj, K. A. Scheidt, *J. Am. Chem. Soc.* 2006, *128*, 15382; d) T. E. Reynolds, K. A. Scheidt, *Angew. Chem.* 2007, *119*, 7952; *Angew. Chem. Int. Ed.* 2007, *46*, 7806; e) E. Tarsis, A. Gromova, D. Lim, G. Zhou, C. Guoqiang, D. M. Coltart, *Org. Lett.* 2008, *10*, 4819; f) A. J. Mueller, M. P. Jennings, *Org. Lett.* 2008, *10*, 1649.
- [4] For the transformation of vinyl halides, see: a) G. S. Zweifel, M. H. Nantz in *Modern Organic Synthesis: An Introduction*, W. H. Freeman and Company, New York, 2007, pp. 290–358; b) J. Tsuji in *Palladium Reagents and Catalysts*, Wiley, New York, 2004, pp. 109–176; c) M. C. Walczak, R. S. Coleman, *Org. Lett.* 2005, 7, 2289.
- [5] a) Q. Li, M. Shi, J. M. Lyte, G. Li, *Tetrahedron Lett.* **2006**, *47*, 7699; b) S. Lee, G.-S. Hwang, S. C. Shin, T. G. Lee, R. H. Jo, D. H. Ryu, Org. Lett. **2007**, *9*, 5087.
- [6] For a review on (Z)-β-halo MBH synthesis, see: a) G. Li, J. Hook, H.-X. Wei in *Recent Research Developments in Organic & Bioorganic Chemistry*; Transworld Research Network, Vol. 4, 2001, pp. 49–61; b) T. Kataoka, Y. Banno, S. Watanabe, T. Iwamura, H. Shimizu, *Tetrahedron Lett.* 1997, 38, 1809; c) S. Watanabe, K. Yamamoto, Y. Itagaki, T. Kataoka, J. Chem. Soc. Perkin Trans. 1 1999, 2053; d) G. Li, H.-X. Wei, T. D. Caputo, *Tetrahedron Lett.* 2000, 41, 1; e) G. Li, J. Gao, H.-X. Wei, M.

Enright, *Org. Lett.* **2000**, *2*, 617; f) C. Timmons, A. Kattuboina, S. Banerjee, G. Li, *Tetrahedron Lett.* **2006**, *62*, 7151; g) S. Lee, G.-S. Hwang, D. H. Ryu, *Synlett* **2007**, 59.

- [7] a) G. Li, H.-X. Wei, B. S. Phelps, D. W. Purkiss, S. H. Kim, Org. Lett. 2001, 3, 823; b) D. Chen, C. Timmons, J. Liu, A. Headley, G. Li, Eur. J. Org. Chem. 2004, 3330; c) D. Chen, G. Li, Guo, S. R. S. S. Kotti, G. Li, Tetrahedron: Asymmetry 2005, 16, 1757.
- [8] a) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2003, 125, 6388;
 b) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 8106;
 c) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2005, 127, 5384;
 d) D. Liu, S. Hong, E. J. Corey, J. Am. Chem. Soc. 2006, 128, 8160;
 e) J. Y. Sim, G.-S. Hwang, K. H. Kim, E. M. Ko, D. H. Ryu, Chem. Commun. 2007, 5064;
 f) M. Y. Lee, K. H. Kim, S. Jiang, Y. H. Jung, J. Y. Sim, G.-S. Hwang, D. H. Ryu, Tetrahedron Lett. 2008, 49, 1965.
- [9] 4-Methoxybenzaldehyde was found to be incompatible under our catalytic conditions; it gave a complex mixture. The 4methoxy group might be causing problems through some kind of complexation with the boron atom of the oxazaborolidinium catalyst.
- [10] E. Boyd, S. Chavada, J. Eames, Y. Yohannes, *Tetrahedron: Asymmetry* 2007, 18, 476.
- [11] T. Ooi, D. Uraguchi, N. Kagoshima, K. Maruoka, J. Am. Chem. Soc. 1998, 120, 5327.
- [12] N. A. Bumagin, V. V. Bykov, Tetrahedron 1997, 53, 14437.
- [13] Z. Lu, S. Ma, J. Org. Chem. 2006, 71, 2655.
- [14] T. B. Ayed, J. Villiéras, H. Amri, Tetrahedron 2000, 56, 805.