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Abstract: An organocatalyzed intramolecular carbonyl-ene reaction was developed to produce
carbocyclic and heterocyclic 5- and 6-membered rings from a citronellal-derived trifluoroketone
and a variety of aldehydes. A phosphoramide derivative was found to promote the cyclization of
the trifluoroketone, whereas a less acidic phosphoric acid proved to be a superior catalyst for the
aldehyde substrates.
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1. Introduction

The carbonyl-ene reaction is a well-studied transformation in organic chemistry, as it affords
an atom-economical method for synthesizing homoallylic alcohols [1]. Traditionally, Lewis acids have
been used to catalyze this reaction [2,3], but organocatalysis has recently emerged as a powerful means
for facilitating many organic transformations [4–6], including carbonyl-ene reactions. Clarke and
co-workers developed the first organocatalyzed carbonyl-ene reaction using the Schreiner catalyst [7],
a thiourea derivative [8]. An asymmetric variant was then developed by Rueping et al. using a chiral
N-triflylphosphoramide [9]. The reaction yielded α-hydroxyesters in good yield and enantioselectivity,
but the scope was limited to intermolecular reactions and required the use of an activated
enophile. Recently, List and co-workers reported an intramolecular carbonyl-ene cyclization to afford
pyrrolidines, tetrahydrofurans, and cyclopentanes using a chiral imidodiphosphate catalyst [10]. While
this report serves as a hallmark for Brønsted-acid-catalyzed intramolecular carbonyl-ene reactions, the
scope was limited to the formation of the kinetically-favored five-membered rings [11]. The majority
of these products were pyrrolidines derived from N-tosylated aminoaldehyde, the parent molecule
which was known to spontaneously undergo intramolecular carbonyl-ene cyclization [12], while
less activated substrates required up to 11 days to reach completion. Noting the utility of this
reaction, but also the limitations of current reports, we set out to develop a Brønsted-acid-catalyzed
intramolecular carbonyl-ene reaction with a complementary substrate scope and faster reaction times.
Herein, we describe organocatalyzed intramolecular carbonyl-ene reactions that produced carbocyclic
and heterocyclic 5- and 6-membered rings.

2. Results and Discussion

We began our investigation by screening a variety of Brønsted acids for their ability to cyclize
citronellal-derived trifluoromethylketone 1 (Table 1), selecting this activated substrate based on
previous reports of trifluoropyruvate derivatives serving as carbonyl-acceptors in intermolecular
carbonyl-ene reactions [8,9]. Simple Brønsted acid catalysts such as H3PO4 and HCl were unable to
catalyze the reaction at an acceptable rate, producing little to no product within 24 h (Table 1, Entries 1
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and 2) [13]. Similarly, the phosphoric acid derivative diphenyl phosphate (Figure 1, 3a), induced very
slow conversion of substrate, resulting in a low yield of ene product (Table 1, Entry 3). In contrast, the
more acidic N-triflyl phosphoric amide 3b (Figure 1) catalyzed the reaction at a significantly higher
rate, resulting in complete conversion and good yields in as few as 7 h (Table 1, Entries 4 and 8) [14].
Notably, we were able to decrease the catalyst loading from 0.5 to 0.2 equivalents without a significant
loss in yield (Table 1, Entries 4 and 5). Decreasing the concentration of the reaction resulted in a longer
reaction time with a small drop in yield (Table 1, Entries 6 and 7).
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Concurrently, we screened Brønsted acids for their ability to catalyze the cyclization of citronellal
(4a). While citronellal is less activated than the corresponding trifluoromethyl ketone, it serves as the
prototypical substrate for a Type I carbonyl-ene cyclization, as it is commercially available [15–17].
Surprisingly, the use of phosphoramide 3b resulted in the isolation of a complex mixture of products
with only a trace yield of ene product 5a and no starting material recovery (Table 2, Entry 1). Diethyl
phosphate (3c) successfully promoted the reaction, albeit slowly, resulting in a low yield and a 77%
recovery of starting material after 24 h (Table 2, Entry 2). We were pleased to find a significant
increase in reaction rate and yield after 24 h when phosphoric acid derivative 3a was used as a catalyst.
Under these mild reaction conditions [18], isopulegol (5a) was the primary diastereomer isolated
from the reaction mixture in addition to a small amount of neoisopulegol (5a1), typically in a 2:1 ratio
(Entries 3–5). A similar yield of product 5a was obtained when only 0.06 equivalents of catalyst were
used at a higher concentration (0.5 M) compared to 0.5 equivalents at 0.1 M, but a decreased selectivity
was observed in the isolated products (compare Entries 3 and 4) [19]. At an even higher substrate
concentration (2 M), additional uncharacterized products were formed and the yield of 5a decreased
considerably (Table 2, Entry 5).
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3. Materials and Methods

3.1. General

Citronellal (93%) was obtained from Acros and was purified with normal-phase column
chromatography. 2,4-dimethylheptenal (80%) was purchased from Aldrich and was purified
via normal phase chromatography before use. Diphenyl phosphate (3a) was purchased from
Aldrich. Trifluoromethyl ketone 1 was prepared from citronellic acid as previously described [20].
Diphenylphosphoramide (3b) was prepared as previously described [21]; following chromatographic
purification, catalyst 3b was washed with 6 M of HCl and extracted with chloroform to ensure
protonation of the catalyst, as discussed for the preparation of related N-triflylphosphoramide
catalysts [22]. 2-(4-methyl-3-pentenyl)benzaldehyde [23] and 4-methyl-N-(3-methylbut-2-enyl)-
N-(3-oxopropyl)benzenesulfonamide [24] were prepared as previously described. Anhydrous
dichloromethane was obtained from a solvent system purchased by Pure Process Technology.
Normal-phase flash-chromatography was carried out manually on silica gel (Mallinckrodt Chemicals,
60 Å, 40–63 micron) or with a Combi-flash MPLC system equipped with Redi-Sep Gold
chromatography cartridges. 1H-NMR spectra were obtained by using a Jeol 400 MHz spectrometer
(Jeol USA, Inc., Peabody, MA, USA). Chemical shifts are reported in parts per million relative to TMS.
Coupling constants were reported in Hertz, and multiplicities were indicated using the following
symbols: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), ddd (doublet of doublets
of doublets), etc. 13C-NMR data was obtained using Jeol 400 MHz NMR operating at 100 MHz.
All products were characterized by 1H-NMR and 13C-NMR and compared with available literature
data. High-resolution mass spectra (HRMS) of 2a/a1 were obtained on a Thermo LTQ-FTMS instrument
(ThermoFisher Scientific, Waltham, MA, USA).

3.2. General Procedure for Intramolecular Carbonyl-Ene Reactions

Aldehyde or CF3-ketone substrate (0.4–2 mmol), catalyst 3 (0.1–1 equivalents), and anhydrous
dichloromethane (0.1–2 M with respect to aldehyde) were added to a small glass vial containing a stir
bar. After stirring at room temperature for 24–48 h, the reaction was concentrated and purified by
column chromatography.

3.2.1. Synthesis of Compounds 2a/a1

Compounds 2a/a1 were prepared according to the above-described general procedure by stirring
CF3 ketone 1 (208 mg, 1 mmol) and diphenylphosphoramide 3b (76 mg, 0.2 mmol) in anhydrous
dichloromethane (0.5 mL) at room temperature for 24 h to provide a mixture of diastereomers as
a colorless oil in 86% yield (flash-chromatography: 20% diethyl ether in petroleum ether). Retention
factor of 2a/2a1 = 0.3 (5% ethyl acetate: 95% hexanes). The relative stereochemical assignments of
2a/2a1 were made on the basis of coupling constants for H2 and H6ax [25]. For 2a, the coupling
constants for H2 = 3.6 and 12.8 Hz indicated axial orientation, and the coupling constants for
H6ax = 12.4 and 14.0 Hz indicated axial-axial splitting with H5 and germinal coupling. Therefore, H5
must be in the axial position and trans to H2. For 2a1, H2 had a coupling constant of 13.2 Hz, indicating
axial orientation, and one of the coupling constants for H6ax = 4.5 Hz indicated axial-equatorial
splitting with H5. Therefore, H5 must be in the equatorial position and cis to H2. 1H-NMR of
2a (400 MHz, CDCl3): δ 4.94 (s, 1H, vinylic H); 4.83 (s, 1H, vinylic H); 2.37 (s, 1H, -OH); 2.25 (dd, J = 3.7,
12.7 Hz, 1H, H2); 1.96 (ddd, J = 1.8, 3.2, 13.9 Hz, 1H, H6eq); 1.84 (m, 1H, H5eq); 1.83 (s, 3H, vinylic Me);
1.80 (m, 1H, H3eq); 1.73 (m, 1H, H4eq); 1.55 (m, 1H, H3ax); 1.18 (ddd, J = 1.9, 12.4, 13.9, H6ax); 0.94 (m,
1H, H4ax); 0.93 (d, J = 8.0 Hz, 3H, C5-Me). 13C-NMR (100 MHz): δ 147.6 (vinylic C); 126.1 (q, J = 290 Hz,
-CF3); 112.2 (vinylic C); 74.3 (q, J = 26 Hz, C1); 46.3 (C2); 39.0 (C6); 34.3 (C4); 28.5 (C3); 26.5 (C5); 24.2
(vinylic Me); 21.9 (C5-Me). HRMS, APCI: Calcd. for C11H17F3O (M+): 222.12315; found: 223.13509.
1H-NMR of 2a1 (400 MHz): δ 5.01 (m, 1H, vinylic H); 4.90 (m, 1H, vinylic H); 2.92 (s, 1H, -OH); 2.31
(m, 1H, H2); 2.25 (ddd, J = 1.9, 3.4, 13.6 Hz, 1H, H6eq); 1.89 (m, 1H, H3eq); 1.82 (m, 1H, H4eq); 1.75 (s,
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3H, vinylic Me); 1.73 (m, 1H, H5); 1.66 (m, 1H, H3ax); 1.125 (tq, J = 2.4, 2.4, 2.4, 13.6, 13.6 Hz, H6); 1.00
(m, 1H, H4ax); 0.94 (d, J = 6.5 Hz, 3H, C5-Me). 13C-NMR (100 MHz, CDCl3): δ 144.1 (vinylic C); 126.6
(q, J = 286 Hz, -CF3); 115.7 (vinylic C); 73.0 (q, J = 27 Hz, C1); 53.2 (C2); 42.2 (C6); 34.1 (C4); 28.2 (C5);
26.3 (C3); 22.4 (C5-Me); 19.7 (vinylic Me). HRMS, ESI: Calcd. for C11H18F3O+ (M + H+): 223.13043;
found: 223.13041.

3.2.2. Synthesis of Compounds 5a/a1

Compounds 5a/a1 were prepared according to the above-described general procedure by stirring
citronellal (101.5 mg, 0.658 mmol) and diphenyl phosphate (3a) (82.0 mg, 0.328 mmol) in anhydrous
dichloromethane (6.6 mL) at room temperature for 22 h to provide a colorless oil in a 61% yield
(products were purified by flash-chromatography with 10% diethyl ether in petroleum ether). The NMR
spectra of isopulegol (5a) and neoisopulegol (5a1) matched those previously reported [26]. 1H-NMR of
isopulegol ((1α, 2α,5β)-5-methyl-2-(1-methylethenyl)cyclohexanol, 5a) (400 MHz, CDCl3): δ 4.91 (m,
1H); 4.86 (br s, 1H); 3.46 (dt, J = 4.3, 10.4, 10.4 Hz, 1H); 2.04 (m, 1H); 1.89 (ddd, J = 3.4, 10.0, 12.8 Hz, 1H);
1.71 (d, J = 1.0 Hz, 3H); 1.65 (m, 2H); 1.48 (m, 2H); 1.34 (dt, J = 3.4, 12.4, 12.4 Hz, 1H); 0.96 (m, 2H); 0.95
(d, J = 6.5 Hz, 3H). 1H-NMR of neoisopulegol ((1α, 2α, 5β)-5-methyl-2-(1-methylethenyl)cyclohexanol,
5a1) (400 MHz, CDCl3): δ 4.95 (br s, 1H); 4.78 (br s, 1H); 3.98 (m, 1H); 1.98 (m, 2H); 1.79 (s, 3H); 1.73 (m,
2H); 1.55 (br s, 1H); 1.45 (m, 1H); 1.12 (m, 1H); 0.95 (m, 2H); 0.88 (d, J = 6.4 Hz, 3H).

3.2.3. Synthesis of Compounds 5b/b1

Compounds 5b/b1 were prepared according to the above-described general procedure by using
4-methyl-N-(3-methylbu-2-enyl)-N-(3-oxopropyl)benzenesulfonamide (106.3 mg, 0.378 mmol) and
diphenyl phosphate (3a) (48 mg, 0.192 mmol) in anhydrous dichloromethane (3.8 mL) at room
temperature for 24 h to provide an oil in a 89% yield (products were purified by flash-chromatography
with a stepwise gradient of 20%–30% ethyl acetate in hexanes). The NMR spectra of isolated piperidines
matched those previously reported [13]. 1H-NMR of trans-3-isopropenyl-1-(toluene-4-sulfonyl)
piperidin-4-ol, 5b, (400 MHz, CDCl3): δ 7.64 (d, J = 8.0 Hz, 2H); 7.32 (d, J = 8.0 Hz, 2H); 5.01 (s,
1H); 4.89 (s, 1H); 3.84 (m, 1H); 3.76 (m, 1H); 3.44 (dt, J = 4.5, 10.1, 10.1 Hz, 1H); 2.44 (s, 3H); 2.37 (dt,
J = 2.8, 12.4, 12.4 Hz, 1H); 2.26 (dt, J = 3.4, 11, 11 Hz, 1H); 2.17 (t, J = 11 Hz); 2.04 (m, 1H); 1.71 (s, 3H);
1.64 (m, 1H). 1H-NMR of cis-3-isopropenyl-1-(toluene-4-sulfonyl)piperidin-4-ol, 5b1 (400 MHz, CDCl3):
δ 7.66 (d, J = 8.1 Hz, 2H); 7.32 (d, J = 8.1 Hz, 2H); 4.99 (s, 1H); 4.59 (s, 1H); 3.97 (m, 1H); 3.59 (m, 2H);
2.60 (dt, J = 3.1, 12, 12 Hz, 1H); 2.57 (t, J = 11.5 Hz, 1H); 2.42 (s, 3H); 2.37 (d, J = 12.1 Hz, 1H); 1.96 (dq,
J = 2.8, 2.8, 2.8, 13.9 Hz, 1H); 1.87 (m, 1H); 1.77 (s, 3H).

3.2.4. Synthesis of Compounds 5c/c1

Compounds 5c/c1 were prepared according to the above-described general procedure by using
2-(4-methyl-3-pentenyl)benzaldehyde (123.6 mg, 0.656 mmol) and diphenyl phosphate (3a) (183.0 mg,
0.656 mmol) in anhydrous dichloromethane (7.3 mL) at room temperature for 24 h to provide a mixture
of diastereomers in a 44% yield (products were purified by flash-chromatography with a stepwise
gradient of 0%–1% diethyl ether in petroleum ether). The NMR spectra of alcohol products (5c
and 5c1) [27], and the elimination product [28] matched those previously reported. 1H-NMR of
trans-2-isoprenyl-1,2,3,4-tetrahydro-1-naphthalenol, 5c, (400 MHz, CDCl3): δ 7.61 (d, J = 7.6 Hz,
1H); 7.23 (m, 1H); 7.19 (m, 1H); 7.09 (d, J = 7.2 Hz, 1H); 4.96 (m, 1H); 4.89 (m, 1H); 4.70 (d,
J = 9.5 Hz, 1H); 2.89 (ddd, J = 5.5, 11.2, 16.7 Hz, 1H); 2.82 (ddd, J = 3.2, 5.4, 16.7 Hz, 1H); 2.39
(ddd, J = 3.1, 9.5, 11.8 Hz, 1H); 2.07 (br s, 1H); 1.93 (m, 1H); 1.83 (m, 1H); 1.81 (s, 3H). 1H-NMR of
cis-2-isoprenyl-1,2,3,4-tetrahydro-1-naphthalenol, 5c1 (400 MHz, CDCl3): δ 7.38 (dd, J = 2.1, 7.0 Hz, 1H);
7.23 (m, 1H); 7.22 (m, 1H); 7.16 (m, 1H); 5.08 (m, 1H); 4.91 (m, 1H); 4.76 (m, 1H); 2.95 (ddd, J = 2.0, 5.4,
17.0 Hz, 1H); 2.81 (ddd, J = 5.9, 12.3, 17.0 Hz, 1H); 2.40 (m, 1H); 2.06 (dq, J = 5.4, 12.7, 12.7, 12.7 Hz,1H);
1.91 (s, 3H); 1.79 (m, 2H). 1H-NMR of 3-isopropenyl-1,2-dihydronaphthalene (400 MHz, CDCl3): δ 7.11
(m, 4H); 6.57 (s, 1H); 5.22 (s, 1H); 5.04 (s, 1H); 2.85 (t, J = 8 Hz, 2H); 2.53 (t, J = 8 Hz, 2H); 2.05 (s, 3H).
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3.2.5. Synthesis of Compounds 5d/d1

Compounds 5d/d1 were prepared according to the above-described general procedure by using 2,
6-dimethyl-5-heptenal (280 mg, 2 mmol) and diphenyl phosphate (3a) (250 mg, 1 mmol) in anhydrous
dichloromethane (20 mL) at room temperature for 19 h to provide a mixture of diastereomers in a 37%
yield (products were purified by flash-chromatography with a stepwise gradient of 5–20% diethyl ether
in petroleum ether). 1H-NMR of 5d (major isomer), (400 MHz, CDCl3): δ 4.81 (d, J = 6.2 Hz, 2H); 3.4 (t,
J = 9.3 Hz, 1H); 2.38 (q, J = 9.3 Hz, 1H); 1.78–1.95 (m, 3H); 1.74 (bs, 1H, -OH); 1.73 (s, 3H); 1.5 (m, 1H);
1.15 (m, 1H); 1.08 (d, J = 6.5 Hz, 3H). 13C-NMR (100 MHz): δ 146.3, 110.8, 81.8, 55.0, 41.0, 29.3, 26.0, 19.7,
18.1. The NMR spectra of 5d/d1 match those previously reported for an analogous compound [29].
The protons of 5d1 overlapped with the major isomer (5d) except for H1, which appeared at 3.93 ppm,
and the β-methyl group at 1.00 ppm.

NMR spectra for products 2a/a1 and 5d/d1 can be found in the Supplementary Materials.

4. Conclusions

In summary, we have reported organocatalyzed intramolecular carbonyl-ene cyclizations of
a citronellal-derived trifluoroketone and several aldehydes. The scope of this reaction is more general
than previous reports and produces various trans–configured carbocyclic and heterocyclic 5- and
6-membered rings in moderate-to-good yield. In addition, these reactions are complete within 7–24 h.
Further exploration of the scope of the reaction as well as screening enantioselective catalysts are
ongoing in our laboratory.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
6/713/s1.
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