AGRICULTURAL AND FOOD CHEMISTRY

Article

Subscriber access provided by UNIV OF TASMANIA

Lignosulfonate improves photostability and bioactivity of abscisic acid under UV radiation

Fei Gao, Sha Yu, Qun Tao, Weiming Tan, Liusheng Duan, Zhaohu Li, and Haixin Cui

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.7b02002 • Publication Date (Web): 29 Aug 2017

Downloaded from http://pubs.acs.org on September 4, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Lignosulfonate improves photostability and bioactivity of abscisic acid under UV radiation						
2	Fei Gao ^{a, b} , Sha Yu ^b , Qun Tao ^b , Weiming Tan ^b , Liusheng Duan ^b *, Zhaohu Li ^b , Haixin Cui ^a						
3							
4	a Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of						
5	Agricultural Sciences, Beijing 100081, PR China						
6	b State Key Laboratory of Plant Physiology and biochemistry / Engineering Research Center of						
7	Plant Growth Regulators, Ministry of Education / College of Agronomy and Biotechnology, China						
8	Agricultural University, Beijing 100193, PR China						
9							
10	*Corresponding author: Liusheng Duan (Tel: +86 10 62731301; E-mail: duanlsh@cau.edu.cn)						
11							
12	This research was supported by Innovation and Development of New Plant Growth Regulator and						
13	Bio-herbicide in the National Key Research and Development Program of China						
14	(2017YFD0201300), Synergistic Key Technology of Chemical Pesticide and Product						
15	Development in the National Key Research and Development Program of China						
16	(2016YFD0200500), the Major National Scientific Research Program of China (2014CB932200),						
17	and the Agricultural Science and Technology Innovation Program.						

19	Abstract: Abscisic acid (ABA), as a commonly used plant growth regulator, is easy to be
20	degraded and lose its bioactivity under sunshine. To select an eco-friendly and efficient
21	photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to
22	UV light, we tested the effects of three biodegradable natural derived high polymers - sodium
23	lignosulfonates 3A (molecular weight (MW) > 50000, degree of sulfonation (DS) 0.48), NA
24	(20000 < MW < 50000, DS 0.7) and calcium lignosulfonate CASA (MW < 20000, DS 0.7) on the
25	photodegradation of ABA. Both 3A, NA and CASA showed significant photo-stabilizing
26	capability on ABA. 3A showed preferable photostabilizing effects on ABA than CASA, while NA
27	showed an intermediate effect. That indicated lignosulfonate with high molecular weight and low
28	degree of sulfonation had a stronger UV absorption and the hollow aggregates micelles formatted
29	by lignosulfonate protect ABA from UV damage. Approximately 50 % more ABA was kept when
30	280 mg/l ABA aqueous solution was irradiated by UV light for 2 hours in the presence of 2000
31	mg/l lignosulfonate 3A. The bioactivity on wheat (JIMAI 22) seed germination was greatly kept
32	by 3A, comparing to that of ABA alone. The 300 times diluent of 280 mg/l ABA plus 2000 mg/l $$
33	3A after 2 hours irradiation showed 20.8 %, 19.3 % and 9.3% more inhibition on shoot growth,
34	root growth and root numbers of wheat seed, separately, comparing to ABA diluent alone. We
35	conclude that lignosulfonate 3A was an eco-friendly and efficient agent to keep ABA activity
36	under UV radiation. This research could be used in UV-sensitive and water soluble agrichemicals
37	and to optimize the application times and dosages of ABA products.
38	Keywords: abscisic acid (ABA); UV light; photodegradation; lignosulfonate; shoot and root

39 growth

40 1 Introduction

41	Most of bio-agrichemicals are susceptible to UV damage in the field and their half-lives were
42	very short, for example, 6 hours for avermectin (1) and 1 hour for spinosad (2) . Therefore,
43	bio-agrichemicals requires more applications and high amount to ensure their effectiveness (3) .
44	Abscisic acid (ABA) is an effective bio-plant-growth-regulator, which could prolong florescence
45	(4-7), promote differentiation of flower bud (8-10), enhance the growth of root and shoot (11-13),
46	raise fruit coloring rate and quality (14-19), and improve resistance to drought stress (20-25). ABA
47	also had curative effects on inflammation, type II diabetes and tumor of animals and humans
48	(26-28). ABA is a potential product that would be widely applied both in agriculture and medical
49	care. However, due to UV light of sunshine, ABA is readily losing its bioactivity by isomerizing to
50	inactive trans-ABA (Figure 1) (29-31). The half-life of ABA is only 24 min (32). This increases
51	economic cost for ABA field application.
52	Many efforts have been made to keep the bioactivity of ABA and reduce its photosensitivity
53	(33-36), such as replaced the double bond or hydrogen in Δ^2 (the location of double bond) of ABA
54	side chain to benzene ring and cyclopropyl or fluorine to relieve <i>cis-trans</i> isomerization. However,
55	the bioactivities of these new compounds were much less than that of ABA. Our previous study
56	found benzophenone-type UV absorbers (BPs) UV-531 (2-Hydroxy-4-n-octoxy-benzophenone)
57	and BP-4 (2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid) greatly improved the stability and
58	bioactivity of ABA under UV radiation (37). However, potential endocrine disrupting effects of
59	these UV absorbers were reported (38-43). They have been revealed to act in a similar way to
60	estrogen and/or antiandrogen (38, 39), exert mutagenic effects on Salmonella (40), generate
61	oxidative stress in Carassius auratus (41), suppress immunity of the immune system (42) and

62	induce sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovarian cells
63	(43). What's worse, BPs contained in personal care products, industrial and agricultural products
64	might pollute the aquatic environment and be bioaccumulated through food chains, as residues
65	have been detected in water, sediments, human breast milk, urine and blood (38). Though the toxic
66	of BP-4 is rather low (39), the potential impacts cannot be excluded. Potential environmental
67	impacts of BPs have led to an increase concern over their usage in commercial products and their
68	presence in the environment. Therefore, it is better to develop eco-friendly photoprotectants to
69	alleviate the photosensitivity of ABA in application.
70	Lignosulfonate is sulfonated, fragmented lignin from the waste liquor of sulfite pulp mills
71	(44-48) (Figure 2). It is highly cross-linked polymer formed from different phenyl-propanoid units
72	and keeps approximately the original chemical structure of native lignin except for the
73	introduction of a great number of sulfonic acid groups on the α -carbons of lignin side chains (49).
74	The sulfonic acid groups make it easy to be soluble in the water. Due to hydrophilic groups
75	(sulphonic, phenylic hydroxyl, carboxylic and alcoholic hydroxyl) and hydrophobic groups
76	(aromatic, aliphatic and carbon chains), lignosulfonate showed surface activities (44, 46, 47, 50).
77	Due to the existence of phenolic hydroxyl group, carbonyl and other chromophores, some
78	researchers used lignin and lignosulfonate as sun blockers added into the emulsions of cosmetics
79	(51), or as wall material of microcapsule for protecting the agrichemicals and microbial pesticide
80	from UV damage and controlling actives release (52-54). The physico-chemical properties of three
81	commercialized lignosulfonates 3A, CASA and NA were shown in Table 1. 3A has low degree of
82	sulfonation and high molecular weight which might make it has more α -O-4 ether bonds and
83	conjugated systems separately. CASA has low sulfonation degree and molecular weight which

84	might make it have fewer α -O-4 ether bonds and conjugated systems. NA has high sulfonation
85	degree and intermediate value of molecular weight which might make it have fewer α -O-4 ether
86	bonds and intermediate levels of conjugated systems.
87	We hypothesized that applying lignosulfonate could reduce photosensitivity of ABA. The
88	objective of this study was therefore to test the hypothesis and to further select an efficient
89	photoprotectant. The dynamics of ABA degradation at different doses of selected lignosulfonate
90	and afterwards bioactivity of ABA plus lignosulfonate on plant growth were also analyzed. The
91	bioactivity of lignosulfonate itself at different doses on plant growth was analyzed as well.
92	
93	2 Materials and methods
94	2.1 Experimental design and managements
95	Experiment 1 was designed for comparing the stabilizing effects of three lignosulfonates on
96	ABA degradation under UV light. Three lignosulfonates were calcium lignosulfonate Borresperse
97	CA-SA, abbreviated as CASA; sodium lignosulfonate Borresperse NA, abbreviated as NA; and
98	modified and purified sodium lignosulfonate 3A, abbreviated as 3A. Solid contents all above were
99	greater than 93 % and main properties were listed in Table 1. All lignosulfonates were purchased
100	from Borregaard LignoTech. These lignosulfonates at the dose of 0 mg/l and 500 mg/l were added
101	into 5 mg/l ABA (pure content above 98 %, purchased from J&K Scientific Ltd.) aqueous solution.
102	Quartz test tubes (16 mm×13 mm×150 mm, obtained from Nanjing Xujiang Electromechanical
103	Plant) with 10 ml corresponding ABA solution prepared above were exposed to UV light in
104	photochemical reactor (XPA-7, obtained from Nanjing Xujiang Electromechanical Plant). Test
105	tube of each treatment covered with aluminum foil was set as dark control. Mercury lamp (300 W)

106	equipped with 365 nm light filter (both obtained from Nanjing Xujiang Electromechanical Plant)
107	was applied as UV radiation source (S1), around which the test tubes could orbit. The actual
108	irradiance is the energy of mercury lamp multiplying the transmittance of UV filter. The actual
109	irradiance of UVA was detected as 9974 $\mu W/cm^2,~UVB$ as 2730 $\mu W/cm^2.$ And the actual
110	irradiance ratio of UVA to UVB was 3.7. Solutions in the tubes were stirred in order to achieve
111	uniform irradiation. At intervals of 1 min, 0.5 ml solution of each treatment under irradiation was
112	sampled and directly injected into high performance liquid chromatography (HPLC) after high
113	speed centrifugation. Dark control of each treatment was determined after irradiation ended. Total
114	radiation time lasted for 8 min and the experiments were repeated three times.
115	Experiment 2 was for further optimizing the dosage of lignosulfonates added into ABA
116	application. The lignosulfonate 3A was added into ABA aqueous solution (280 mg/l). The dose of
117	3A was 0 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l, 4000 mg/l and 5000 mg/l respectively. Referring
118	to the method of experiment 1, the solutions were exposed to UV light for 8 h. At intervals of 1
119	hour, 20 μ l solution of each treatment under irradiation was sampled and injected into HPLC after
120	diluted by 100 times and filtered by strainer (0.22 μm). Dark control of each treatment was
121	determined after irradiation ended. The experiments were repeated three times.
122	Experiment 3 was for testing the remaining bioactivity of ABA in the presence of selected
123	lignosulfonate after irradiation. In order to compare the bioactivity of ABA with and without 3A
124	after irradiation, ABA were diluted to lower concentrations, as pre-bioassay of ABA above 2 mg/l
125	showed badly suppression on wheat (JIMAI 22) seed germination and growth, which resulted in a
126	difficulty to compare the differences among treatments. Therefore, ABA (280 mg/l) with and
127	without 3A (2000 mg/l) were exposed to UV light for two hours and then diluted 300 times to

128	prepare 25 ml solution each and added with 20 μ l Tween-20 for bioactivity assay. Petri dish (Φ =
129	90 mm) placed with two layers of filter paper was immersed by 4 ml each prepared solution and
130	then seeded by twenty wheat seeds disinfected with 10 % hydrogen peroxide solution for 10 min.
131	Five dishes were applied for each treatment as repeats. Artificial climate chest (PRX-450C,
132	obtained from Ningbo Saifu Experimental Instrument Co., Ltd.) was used to incubate wheat seeds
133	of all treatments in darkness at the temperature of 25 °C and humidity of 85 %. After three days'
134	incubation, 10 seeds were chosen randomly in each dish to measure the shoot length, root length
135	and root numbers of each treatment.
136	Experiment 4 was for examining the bioactivity of lignosulfonate 3A at different dosages on
137	wheat seed germination. 25 ml lignosulfonate solution at the dose of 0 mg/l, 1.3 mg/l, 6.7 mg/l,
138	33.3 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l and 5000 mg/l were prepared separately for bioactivity
139	assay referring the methods of experiment 3. After three days' incubation, 10 seeds were chosen
140	randomly in each dish to measure the shoot length, root length and root numbers of each
141	treatment.
142	Experiment 5 was for determination of critical aggregation concentration (CAC). CAC was
143	determined with Platinum ring ($\phi = 20.5 \text{ mm} \times 0.6 \text{ mm}$) on automatic interfacial tension meter
144	(JK99BM, obtained from Shanghai Zhongchen Digital Technic Apparatus Co., Ltd) at 20 °C.
145	Surface tensions of lignosulfonate 3A at a series of concentration were determined and the turning
146	point on the curve of γ -c plot was CAC. Surface tension of water was 73.7 mN/m.
147	Experiment 6 was for the measurements of particle size distribution of lignosulfonate 3A at a
148	series of concentration by dynamic light scattering (DLS). The measurements were carried out by
149	ZETASIZER Nano series (Nano - ZS90, obtained from Malvern Instruments) with a scattering

angle of 90° at 25 \pm 0.01 °C. The light source is a standard laser with a power of 4 mW and a wavelength of 633 nm. The range of the particle size measurement was from 0.3 nm to 5000 nm. Accurate concentrations of lignosulfonate 3A were prepared in ultrapure water and then equilibrated for 24 h before data collection. 4 ml of each prepared solution was added into polystyrene disposable cuvette (12 mm × 12 mm × 45 mm). Each measurement was repeated three times, and the average result was accepted as the final hydrodynamic diameters whenever all the values fluctuated within reasonable experimental errors.

157 Experiment 7 was for investigating the morphology of lignosulfonate 3A at the concentrations 158 of CAC. The experiment was carried out by scanning electron microscopy (SEM-SU8010, 159 obtained from Hitachi) with an accelerating voltage of 5 kV and a working distance of 8 mm. The 160 analysis was done in a high vacuum, with Everhart-Thornley secondary electron (SE) detector. To 161 prepare samples for SEM investigation, lignosulfonate 3A at 2 g/l was dissolved in ultrapure water 162 and equilibrated for 24 h. Then the sample was added dropwise onto the surface of a polished 163 silicon substrate and naturally dried at room temperature overnight being protected from dust in 164 the air. The sample was thereafter coated with platinum (thickness = 5 nm) by a sputter coater 165 (EM ACE600, obtained from Leica Vienna, Austria) before capturing SEM images. Three parallel 166 experiments were carried out to exclude accidental errors.

Experiments 1 to 4 were carried out at Engineering Research Centre of Plant Growth Regulators, Ministry of Education in China Agricultural University in 2015, Beijing, China. Experiments 5 to 7 were carried out at Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences in 2017, Beijing, China. Experiments 1 to 3 were focused on the photodegradation and afterwards bioactivity of ABA plus lignosulfonates. 172 Experiments 4 to 7 were focused on the property of lignosulfonates.

173

1/4 2.2 incasulting	174	2.2 Measurements
-----------------------	-----	------------------

175	HPLC equipped	with Agilent	Eclipse Plus	C18 column	(4.6 mm×5	μm, 250 mm)	(Agilent 1200,
-----	---------------	--------------	--------------	------------	-----------	-------------	----------------

obtained from Agilent Technologies) was used to determine ABA concentrations. Methanol and
water (60/40, V/V) contained 0.2 % acetic acid inside were applied as mobile phase and operated
at the speed of 1 ml/min, in which temperature was set at 30 °C. UV detector wavelength was set
at 260 nm. The injection volume of samples was 20 µl. ABA concentrations in samples were

- 180 calculated by external standard method according to a series of ABA standard solutions.
- 181 Full wavelength scan ranging from 190 nm to 400 nm were carried out to determine absorptions
- 182 of accurate amount of lignosulfonates 3A, CASA, NA, UV absorber BP-4
- 183 (2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid) and ABA in aqueous solution separately by
- 184 UV/Vis spectrophotometer (UV-4802, obtained from Unico Instruments Co. Ltd). Absorptivity per

185 unit mass was calculated from absorbance according to Lambert-Beer's Law.

- 186 UV intensity of this research and natural sunshine were detected by UVA and UVB
- 187 radiationmeters (obtained from Photoelectric Instrument Factory of Beijing Normal University).

188

189 2.3 Data analysis

The bioactivity differences of ABA with ABA plus lignosulfonate 3A after being exposed to UV
radiation were analyzed by One-Way ANOVA using LSD test at significant level of 0.05.
Bioactivity differences of a series of lignosulfonate 3A concentrations compared to pure water
were analyzed by the same statistical method as well.

196	3.1 Photodegradation of ABA in the presence of lignosulfonates
197	Three types of lignosulfonates, CASA, NA and 3A significantly stabilized ABA under UV
198	radiation (Figure 3). After 8 mins' UV radiation, only 72 % ABA remained in ABA alone
199	treatment. However, all the treatments of ABA plus lignosulfonate kept at least 89 % ABA. 3A had
200	more significant effects on stabilizing ABA (degradation slope -0.005) than CASA (degradation
201	slope -0.055). Intermediate values of remained effective ABA were achieved in adding NA
202	(degradation slope -0.014).
203	
204	3.2 Degradation dynamics of ABA adding with different dosages of lignosulfonate 3A
205	With adding 3A at the dose of 2 g/l to 5 g/l, more than 92 percent effective ABA remained after
206	two hour's radiation, more than 80 percent after 4 hours, and more than 67 percent after 8 hours
207	(Figure 4). Meanwhile, there was only 23 percent ABA remained in ABA alone treatment after 8
208	hours radiation. Lower level but significant values of remained effective ABA were also achieved
209	in adding 3A with doses of 0.5 g/l and 1 g/l, in which the latter showed better stabilizing effects.
210	3A at 4 g/l and 5 g/l showed no significant difference on stabilizing ABA. Though 3A at 2 g/l
211	showed significant less effect on stabilizing ABA at longer duration of radiation than at 4 g/l and 5
212	g/l, it showed nearly the same stabilizing capability in the first 4 hours' radiation. Thus, 3A at $2g/l$
213	would be more convenient for further tests.
214	

215 3.3 Remaining bioactivity of ABA in the presence of lignosulfonate 3A after irradiation

216	Shoot and root length of wheat were significantly suppressed by the diluents of 280 mg/l ABA
217	alone or the diluents of 280 mg/l ABA plus 2000 mg/l 3A, compared to the control of pure water
218	(Figure 5a and 5b). Shoot and root length in ABA plus 3A treatment were 20.8 $\%$ and 19.3 $\%$
219	shorter than that of ABA alone respectively, and there was no significant difference with the
220	treatments of un-degraded ABA (Figure 5a and 5b). Root numbers in treatment of ABA plus 3A
221	were 9.3 % fewer than that in ABA alone. Root numbers in ABA alone showed no significant
222	difference with that of pure water treatment (Figure 5c). The bioactivity of un-degraded ABA with
223	or without 3A showed no significant difference.
224	
225	3.4 Impacts of lignosulfonate 3A on wheat seed germination
226	3A showed no significant bioactivity on wheat seed germination at the doses ranged from 1.3
227	mg/l to 2000 mg/l, compared to that of pure water treatment, while significant differences were
228	found among various lignosulfonate concentrations (Figure 6a, 6b and 6c). However, 3A at the
229	dose of 5000 mg/l suppressed 27 % shoot growth and 32 % root growth comparing to pure water
230	treatment (Figure 6a and 6b). The root numbers in all treatments showed no significant difference
231	with that of pure water control (Figure 6c).
232	
233	3.5 Critical aggregation concentration of lignosulfonate 3A
234	According to the relationship between γ value and concentration (Figure 7), surface tension of
235	lignosulfonate 3A decreased sharply when the concentration was lower than 2 g/l. However, as the
236	concentration continued to increase, surface tension reduced slowly. So we defined concentration
237	at 2 g/l as a critical aggregation concentration of lignosulfonate 3A in aqueous solution.

2393.6 Dynamic aggregation behavior of lignosulfonate 3A in aqueous solution				
240	From the intensity distribution of particle diameter for lignosulfonate 3A in aqueous solution			

- 241 (Figure 8), there was a single peak at 0.5 g/l and 1g/l respectively, however, bimodal peaks
- 242 presented at 2 g/l. The smallest particle at one peak top was about 250 nm and the largest at
- 243 another peak top was about 5.5 μ m. The intensity of particle size distribution of 3A in aqueous
- 244 solution decreased with increasing concentration of 3A, but the intensity and the size of 3A
- 245 aggregates increase. These results indicate that assemble of 3A is a gradually process.

246

247 3.7 Morphologic characterization of lignosulfonate 3A

248 From the SEM photograph (Figure 9a and 9b), aggregated structures of lignosulfonate 3A at the 249 concentration of 2 g/l were observed. The aggregated structures were within the diameters of 250 about 500 nm to about 5µm and the larger ones appeared to be hollow, as deep grey color in the 251 middle of the aggregated structures was observed (Figure 9b). Solid aggregated structures would 252 show the same pale white color with the exterior, but if the structures are hollow, the middle 253 would be collapsed under the strong voltage of SEM. This resulted in deep grey color in the center 254 of the aggregated structures.

255

256 **4 Discussions and conclusions**

257 By adding lignosulfonates, ABA degradation under UV light was significant reduced. 258 Lignosulfonate greatly kept the bioactivity of ABA after exposed to UV radiation. Lignosulfonate 259 itself had no significant bioactivity. Adding lignosulfonate kept 67 percent ABA remained after 8

hours exposing to UV irradiation, while only 23 percent ABA remained in ABA alone control. The
efficiency of ABA was increased nearly 3 times by adding lignosulfonate.

262	It is well known that UV bands of field sunshine mainly range from 290 nm to 400 nm (55). At
263	this range, ABA has some absorption in UVB (290 nm \sim 320 nm) but very little in UVA (320 nm \sim
264	400 nm) (56) (Figure 10). Thus, UVB takes a great role on ABA bioactivity reduction in the field.
265	Lignosulfonates absorb UV radiation at most of UV region due to many chromophores it
266	contained. And the complex structure of lignosulfonate, which is widely accepted as a kind of
267	three-dimensional cross-linked biopolymer (57), can effectively dissipate the energy associated
268	with the absorption of UV light internally thereby preventing transfer to other proximate actives.
269	Though absorption of lignosulfonate per unit mass is not greater than that of ABA (Figure 10),
270	especially, in UVB region, increased dosage of lignosulfonate could show great UVB absorption.
271	Our experiments proved that lignosulfonate at proper high mass dosage strongly competed UVB
272	absorption, compared to that of ABA. Besides, the UV radiation applied in this research mainly
273	ranged from UVB to UVA (S1). UVB intensity applied in this study (2730 $\mu\text{W/cm}^2)$ was much
274	higher than under natural sunshine (263 μ W/cm ²). Therefore, laboratory results in this study that
275	ABA photodegradation could be greatly reduced by competitive UV absorption of lignosulfonate
276	can be applicable in field situation.

277 Lignosulfonate with different molecular weight and sulfonation degree showed different 278 stabilizing effects on ABA degradation under UV radiation. Lignosulfonate with higher molecular 279 weight may have more aryl ring structural units (58), which strengthens and shifts the UV 280 absorption of lignosulfonate to longer wavelength and thereby absorbs more UV damage from 281 ABA around. Lignosulfonate with lower sulfonation degree may have more α -O-4 ether bonds not being replaced by sulfonic acid groups (*57*), which also enhances and induces red shift and finally
help improve UV protection effects. 3A with low degree of sulfonation and high molecular weight,
thus, showed most preferable photostabilizing effect on ABA degradation.
Absorptivity of lignosulfonate per unit mass is much lower than that of UV absorbers such as
2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) (Figure 10), therefore, theoretically,
much higher dosages of lignosulfonate should be applied to stabilize ABA comparing to that of
UV absorber. According to our measurements in this study and in the former researches (*37*), we

found 3A at 500 mg/l showed no significant difference with that of BP-4 at 200 mg/l on stabilizing

ABA under UV radiation (Figure 11). However, adding 2000 mg/l 3A had a much higher

stabilizing effect on ABA than adding BP-4. In consideration of potential impacts on human health

and the environment (38-43), caution is needed to increase the dosage of BP-4 applied on ABA in

293 order to improve its stabilizing effects. Lignosulfonate, however, is sulfonated natural lignin,

proved safety to human beings (49, 59) and degradable in the environment (60). Lignosulfonate in

aqueous solution is quite stable even under strong and short wavelength UV radiations (61-63).

Properly increasing dosages of lignosulfonate was proved little impacts on plant growth by our

297 experiments. Thus, lignosulfonate is more efficient and eco-friendly to stabilizing ABA under UV

radiation even applied at high dosage.

296

Lignosulfonate 3A at 2 g/l (CAC) showed similar photostabilizing effects with that of 3A at higher concentration (4 g/l or 5 g/l). There is no significantly increased effect on ABA photostabilizing by further increasing lignosulfonate 3A above CAC, which indicates there might be other factors that also protect ABA from UV damage except for competitive UV absorption. One factor might be the micelles that lignosulfonate formed. It is well known that micelles were

304	formed by surfactants above critical micelle concentration. A typical micelle is an aggregate with
305	the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic
306	single-tail regions in the micelle center. Though lignosulfonate has amphiphilic activity and could
307	form micelles, the lignosulfonate molecules cannot aggregate into hollow micelles by their
308	hydrophobic sites as conventional linear molecule surfactants, as the hydrophobic base and
309	hydrophilic groups in lignosulfonate molecules are not totally separated from one another and the
310	hydrophilic groups are scattered in the whole molecule (Figure 12) (64). According to our research
311	and other studies (46, 64), hollow aggregates are the main form of the lignosulfonate at the
312	dosages of above CAC in solution. Moreover, sulfonic groups and some phenolic hydroxyl groups
313	constructed the surface of lignosulfonate aggregates. And the core of the aggregates is formed by
314	hydrophobic chains, which is loose and contains many weakly ionized groups such as carboxyls
315	and phenolic hydroxyl groups (Figure 12) (46). ABA has hydroxyl, conjugated carboxyl and
316	ketene groups and is slightly dissolved in water (3 g/l) and strongly dissolves in methanol, acetone
317	and ethyl acetate (above 90 g/l) (65), thus it showed relative weak polarity which makes it tend to
318	presence in the core of lignosulfonate aggregates through hydrogen-bonding and intermolecular
319	van der Waals forces (Figure 12). This explains the similar stabilizing effects of lignosulfonate 3A
320	at dosages above CAC. Therefore, we concluded that the formation of hollow aggregates might be
321	the other important factor that helped lignosulfonate protect ABA from UV damage. CAC found
322	in this study can be applied as one of the reference indexes for adding lignosulfonate into ABA.
323	Absorbance of agrichemicals by plant stems and leaves mainly takes place in the first four
324	hours after their application. According to our former measurement in natural conditions of winter
325	time, the applied ABA (540 mg/l) lost more than 50 % within 4 hours and even worse during other

326	seasons due to much higher UV radiation. By adding lignosulfonate, the loss of ABA bioactivity
327	can be reduced to less than 20 % and even much lower. Although our previous studies (37) proved
328	UV absorber BP-4 had a good photostabilizing effect on ABA, however, the simple small
329	molecule of BP-4 might loss its stabilizing capability on ABA due to the rain. Lignosulfonate has
330	amphiphilic groups and plant leave surface is always hydrophobic or hydrophilic, which could
331	help ABA well adhere on the leaves and thereby increases its effects on ABA stabilization.
332	Therefore, the usage of surfactant could be thereafter reduced and the limitation of using BP-4 can
333	be relieved.
334	In the future studies, appropriate time and dosage of lignosulfonate added into ABA application
335	are still required, especially, by more experiments at field conditions. In the field, the bioactivity
336	of ABA plus lignosulfonate in the sunny day might be different from that of in the cloudy due to
337	different degrees of degradation, so the effect and suitable doses of lignosulfonate should be
338	testified at both situations in the future. The effects of ABA plus lignosulfonate on growth,
339	development and yields of plant in relation to optimal applying time and dosage should be
340	determined at field condition. Moreover, the effects of new ABA products with adding
341	lignosulfonate on prolonging florescence, promoting fruit coloring rate and improving resistance
342	to drought stress is necessary to be explored, especially under natural sunshine.
343	In conclusion, lignosulfonate greatly reduced ABA photodegradation. Lignosulfonate 3A
344	addition significantly prevented ABA from UV damage and thereafter greatly kept ABA
345	bioactivity after exposed to UV radiation. Besides, lignosulfonate showed no significant impacts
346	on plant growth at suitable dosage. Consequently, lignosulfonate could be a safe and high
347	efficiency agent to photostabilize ABA. The usage of surfactants could also be reduced due to the

348	surface activities of lignosulfonate. And waste liquor of sulfite pulp mills can be reduced and
349	reused. Pretty low cost would be made by applying lignosulfonate to prepare novel photostable
350	formulations of ABA or alternatively to be applied tank-mixed in the field, compare to the
351	application of UV absorbers. Thereafter, the ABA efficiency would be significantly promoted and
352	crop yield and quality would be improved. This research could be widely used in the application
353	of UV-sensitive and water-soluble agrichemicals and help to reduce environmental impact of
354	applying plant growth regulators.

355 Acknowledgment

- 356 We thank Professor Lizhen Zhang, College of Resources and Environmental Sciences, China
- 357 Agricultural University, for technical improvement of the manuscript.

358	References					
359	1. Li, Z. Z.; Chen, J. F.; Liu, F.; Liu, A. Q.; Wang, Q.; Sun, H. Y.; Wen, L. X., Study of UV-shielding					
360	properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Management Science					
361	2007, <i>63</i> , 241-6.					
362	2. Liu, S.; Li, Q. X., Photolysis of spinosyns in seawater, stream water and various aqueous solutions					
363	Chemosphere 2004, 56, 1121-7.					
364	3. Hurle, K.; Walker, A., Persistence and its prediction. In Interaction Between Herbicides and the					
365	Soil, Hance, R. J., Ed. Academic Press: London, 1980; pp 83-122.					
366	4. Ferrante, A.; Trivellini, A.; Scuderi, D.; Romano, D.; Vernieri, P., Post-production physiology and					
367	handling of ornamental potted plants. Postharvest Biology and Technology 2015, 100, 99-108.					
368	5. Shimizu-Yumoto, H.; Ichimura, K., Postharvest physiology and technology of cut eustoma					
369	flowers. Journal of the Japanese Society for Horticultural Science 2010, 79, 227-238.					
370	6. Ahmad, I.; Joyce, D. C., Abscisic acid treatment has inconsistent effects on the water relations and					
371	longevity of cut Acacia holosericea foliage. Journal of Horticultural Science & Biotechnology 2011,					
372	86, 107-112.					
373	7. Kim, J.; van Iersel, M. W., Abscisic acid drenches can reduce water use and extend shelf life of					
374	Salvia splendens. Scientia Horticulturae 2011, 127, 420-423.					
375	8. Frankowski, K.; Wilmowicz, E.; Kucko, A.; Kesy, J.; Swiezawska, B.; Kopcewicz, J., Ethylene					
376	auxin, and abscisic acid interactions in the control of photoperiodic flower induction in Pharbitis nil.					
377	Biologia Plantarum 2014, 58, 305-310.					
378	9. Su, W. R.; Huang, K. L.; Shen, R. S.; Chen, W. S., Abscisic acid affects floral initiation in					
379	Polianthes tuberosa. Journal of Plant Physiology 2002, 159, 557-559.					
380	10. Wang, W. Y.; Chen, W. S.; Chen, W. H.; Hung, L. S.; Chang, P. S., Influence of abscisic acid on					
381	flowering in Phalaenopsis hybrida. Plant Physiology and Biochemistry 2002, 40, 97-100.					
382	11. Mutui, T. M.; Mibus, H.; Serek, M., The influence of plant growth regulators and storage on root					
383	induction and growth in <i>Pelargonium zonale</i> cuttings. <i>Plant Growth Regulation</i> 2010, 61, 185-193.					
384	12. Moreno, D.; Berli, F. J.; Piccoli, P. N.; Bottini, R., Gibberellins and abscisic acid promote carbon					
385	allocation in roots and berries of grapevines. Journal of Plant Growth Regulation 2011, 30, 220-228.					
386	13. Basak, H.; Demir, K.; Doganlar, Z. B., The effect of abscisic acid application on root-shoot length					
387	and some antioxidant enzyme activities of two different tomato seedlings. Journal of Animal and Plant					
388	<i>Sciences</i> 2012 , <i>22</i> , 695-703.					
389	14. Singh, S. P.; Saini, M. K.; Singh, J.; Pongener, A.; Sidhu, G. S., Preharvest application of abscisic					
390	acid promotes anthocyanins accumulation in pericarp of litchi fruit without adversely affecting					
391	postharvest quality. Postharvest Biology and Technology 2014, 96, 14-22.					
392	15. Barickman, T. C.; Kopsell, D. A.; Sams, C. E., Exogenous foliar and root applications of abscisic					
393	acid increase the influx of calcium into tomato fruit tissue and decrease the incidence of blossom-end					
394	rot. Hortscience 2014, 49, 1397-1402.					
395	16. Barickman, T. C.; Kopsell, D. A.; Sams, C. E., Foliar applications of abscisic acid decrease the					
396	incidence of blossom-end rot in tomato fruit. Scientia Horticulturae 2014, 179, 356-362.					
397	17. Peppi, M. C.; Fidelibus, M.; Dokoozlian, N.; Walker, M. A., Abscisic acid applications improve					
398	the color of crimson seedless table grapes. American Journal of Enology and Viticulture 2006, 57,					
399	388a-388a.					
400	18. Peppi, M. C.; Fidelibus, M. W.; Dokoozlian, N., Abscisic acid application timing and					
401	concentration affect firmness, pigmentation, and color of 'flame seedless' grapes. Hortscience 2006, 41,					

- 403 19. Ferrara, G.; Mazzeo, A.; Matarrese, A. M. S.; Pacucci, C.; Pacifico, A.; Gambacorta, G.; Faccia,
- 404 M.; Trani, A.; Gallo, V.; Cafagna, I.; Mastrorilli, P., Application of abscisic acid (S-ABA) to 'Crimson
- 405 Seedless' grape berries in a mediterranean climate: Effects on color, chemical characteristics, metabolic
- 406 profile, and S-ABA concentration. *Journal of Plant Growth Regulation* **2013**, *32*, 491-505.
- 407 20. Waterland, N. L.; Campbell, C. A.; Finer, J. J.; Jones, M. L., Abscisic acid application enhances
- 408 drought stress tolerance in bedding plants. *Hortscience* **2010**, *45*, 409-413.
- 409 21. Agehara, S.; Leskovar, D. I., Optimizing foliar application of abscisic acid to improve drought
 410 tolerance of melon transplants. *Hortscience* 2010, 45, S50-S51.
- 22. Bakht, J.; Bano, A.; Shafi, M.; Dominy, P., Effect of abscisic acid applications on cold tolerance in
 chickpea (*Cicer arietinum L.*). *European Journal of Agronomy* 2013, 44, 10-21.
- 413 23. Li, X.; Cai, J.; Liu, F.; Dai, T.; Cao, W.; Jiang, D., Exogenous abscisic acid application during
- grain filling in winter wheat improves cold tolerance of offspring's seedlings. *Journal of Agronomy and Crop Science* 2014, 200, 467-478.
- 416 24. Fan, S. K.; Fang, X. Z.; Guan, M. Y.; Ye, Y. Q.; Lin, X. Y.; Du, S. T.; Jin, C. W., Exogenous
 417 abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated
 418 with the inhibition of IRT1-mediated cadmium uptake. *Frontiers in Plant Science* 2014, 5.
- 419 25. Shi, W. G.; Li, H.; Liu, T. X.; Polle, A.; Peng, C. H.; Luo, Z. B., Exogenous abscisic acid
 420 alleviates zinc uptake and accumulation in *Populus x canescens* exposed to excess zinc. *Plant Cell*
- 421 Environ 2015, 38, 207-23.
- 422 26. Li, H. H.; Hao, R. L.; Wu, S. S.; Guo, P. C.; Chen, C. J.; Pan, L. P.; Ni, H., Occurrence, function
 423 and potential medicinal applications of the phytohormone abscisic acid in animals and humans.
 424 *Biochemical pharmacology* 2011, *82*, 701-12.
- 425 27. Kharenko, O. A.; Polichuk, D.; Nelson, K. M.; Abrams, S. R.; Loewen, M. C., Identification and
- characterization of interactions between abscisic acid and human heat shock protein 70 family
 members. *Journal of Biochemistry* 2013, *154*, 383-391.
- 428 28. Bassaganya-Riera, J.; Skoneczka, J.; Kingston, D. G.; Krishnan, A.; Misyak, S. A.; Guri, A. J.;
- Pereira, A.; Carter, A. B.; Minorsky, P.; Tumarkin, R.; Hontecillas, R., Mechanisms of action and
 medicinal applications of abscisic Acid. *Current Medicinal Chemistry* 2010, *17*, 467-78.
- 431 29. Mousseron, C. M.; Mani, J. C.; Dalle, J. P.; Olive J. L., Photoxydation sensibilisee de quelques
 432 composes apparentés à la déhydro-β-ionone, synthése de lester methylique de la (±) abscisine. *Bulletin*
- 433 *de la Société Chimique de France* **1966**, 3874-3878.
- 434 30. Cornforth, J. W.; Milborrow, B. V.; Ryback, G., Synthesis of (±)-Abscisin II. *Nature* 1965, 206,
 435 715-715.
- 436 31. Milborrow, B. V., The effects of synthetic *dl*-dormin (Abscisin II) on the growth of the oat
 437 mesocotyl. *Planta* 1966, 70, 155-71.
- 438 32. Cao, M.; Liu, X.; Zhang, Y.; Xue, X.; Zhou, X. E.; Melcher, K.; Gao, P.; Wang, F.; Zeng, L.; Zhao,
- Y.; Zhao, Y.; Deng, P.; Zhong, D.; Zhu, J. K.; Xu, H. E.; Xu, Y., An ABA-mimicking ligand that
 reduces water loss and promotes drought resistance in plants. *Cell research* 2013, *23*, 1043-54.
- 441 33. Chen, S. C.; Mactaggart, J. M., Abscisic-acid analogs with a geometrically rigid conjugated acid
- 442 side-chain. Agricultural and Biological Chemistry 1986, 50, 1097-1100.
- 443 34. Kim, B. T.; Min, Y. K.; Asami, T.; Park, N. K.; Kwon, O. Y.; Cho, K. Y.; Yoshida, S., Synthesis of
- 444 2-fluoroabscisic acid: A potential photo-stable abscisic acid. *Tetrahedron Letters* **1997**, *38*, 1797-1800.
- 445 35. Wu, Q. The synthesis of (±)-abscisic acid and 2,3-methylene derivatives. China Agricultural

^{402 1440-1445.}

447	36. Liu, W. Synthesis, photostability and bioactivity of 2,3-cyclopropylized abscisic acid analogues.					
448	China Agricultural University, Beijing, P.R. China, 2008.					
449	37. Gao, F.; Hu, T.; Tan, W.; Yu, C.; Li, Z.; Zhang, L.; Duan, L., Photoprotectant improves					
450	photostability and bioactivity of abscisic acid under UV radiation. Journal of Photochemistry and					
451	Photobiology. B, Biology 2016, 158, 99-104.					
452	38. Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z., Acute toxicity of benzophenone-type UV					
453	filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship					
454	and integrated assessment. Chemosphere 2015, 135, 182-8.					
455	39. Suzuki, T.; Kitamura, S.; Khota, R.; Sugihara, K.; Fujimoto, N.; Ohta, S., Estrogenic and					
456	antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens.					
457	Toxicology and Applied Pharmacology 2005, 203, 9-17.					
458	40. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W., Salmonella					
459	Mutagenicity tests: III. Results from the testing of 255 chemicals. Environmental Mutagenesis 1987, 9,					
460	1-60.					
461	41. Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z., Hepatic oxidative stress biomarker					

- 462 responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters. Ecotoxicology 463 and Environmental Safety 2015, 119, 116-22.
- 464 42. Frikeche, J.; Couteau, C.; Roussakis, C.; Coiffard, L. J., Research on the immunosuppressive 465 activity of ingredients contained in sunscreens. Archives of Dermatological Research 2015, 307, 211-8.
- 466 43. French, J. E., NTP technical report on the toxicity studies of 2-Hydroxy-4-methoxybenzophenone
- 467 (CAS No. 131-57-7) Adminstered Topically and in Dosed Feed to F344/N Rats and B6C3F1 Mice.
- 468 Toxicity Report Series 1992, 1-E14.

University, Beijing, P.R. China, 2004.

- 469 44. Li, H.; Deng, Y.; Ye, H.; Xiao, L.; Qiu, X., Effect of temperature on polyelectrolyte expansion of 470 lignosulfonate. BioResources 2014, 10, 575-587.
- 471 45. Chakrabarty, K.; Krishna, K. V.; Saha, P.; Ghoshal, A. K., Extraction and recovery of 472 lignosulfonate from its aqueous solution using bulk liquid membrane. Journal of Membrane Science 473 2009, 330, 135-144.
- 474 46. Yan, M.; Yang, D.; Deng, Y.; Chen, P.; Zhou, H.; Qiu, X., Influence of pH on the behavior of 475 lignosulfonate macromolecules in aqueous solution. Colloids and Surfaces A: Physicochemical and 476 Engineering Aspects 2010, 371, 50-58.
- 477 47. Yong Qian, Y. D., Conghua Yi, Haifeng Yu, Xueqing Qiu, Solution behaviors and adsorption 478 characteristics of sodium lignosulfonate under different pH conditions. BioResources 2011, 6, 479 4686-4695.
- 480 48. Qian, Y.; Deng, Y.; Guo, Y.; Li, H.; Qiu, X., Light scattering characterization of lignosulfonate 481 structure in saline solutions. Holzforschung 2015, 69.
- 482 49. Harumi Suzuki, T. S. T. K. I., Sunao Yamazaki, Naoki Yamamoto, Shozo Toda, Lignosulfonate, a 483 water-solubilized lignin from the waste liquor of the pulping process, inhibits the infectivity and 484 cytopathic effects of human immunodeficiency virus in vitro. Agricultural and Biological Chemistry 485 **1989,** *53*, 3369-3372.
- 486 50. Ouyang, X.; Qiu, X.; Chen, P., Physicochemical characterization of calcium lignosulfonate—A
- 487 potentially useful water reducer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 488 2006, 282-283, 489-497.
- 489 51. Qian, Y.; Qiu, X.; Zhu, S., Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens.

- 490 *Green Chemistry* **2015**, *17*, 320-324.
- 491 52. Fernández-Pérez, M.; Flores-Céspedes, F.; Daza-Fernández, I.; Vidal-Peña, F.;
- 492 Villafranca-Sánchez, M., Lignin and lignosulfonate-based formulations to protect pyrethrins against
- 493 photodegradation and volatilization. *Industrial & Engineering Chemistry Research* 2014, 53,
 494 13557-13564.
- 495 53. Arthurs, S. P.; Lacey, L. A.; Behle, R. W., Evaluation of spray-dried lignin-based formulations and
- 496 adjuvants as solar protectants for the granulovirus of the codling moth, *Cydia pomonella (L)*. Journal of
- **497** *Invertebrate Pathology* **2006,** *93*, 88-95.
- 498 54. García, M. C.; Díez, J. A.; Vallejo, A.; García, L.; Cartagena, M. C., Use of kraft pine lignin in
 499 controlled-release fertilizer formulations. *Industrial & Engineering Chemistry Research* 1996, 35,
 500 245-249.
- 501 55. Yao, Q. X.; Du, M. L.; Sun, M., Improving anti-aging coatings by coupling of organic and inorganic ultraviolet absorbers. *Advanced Materials Research* **2013**, *652-654*, 1723-1727.
- 503 56. Milborrow, B. V., The chemistry and physiology of abscisic acid. *Annual Review of Plant*504 *Physiology* 1974, 25, 259-307.
- 505 57. Lauten, R. A.; Myrvold, B. O.; Gundersen, S. A., New developments in the commercial utilization
- of lignosulfonates. In *Surfactants from Renewable Resources*, Kjellin, M.; Johansson, I., Eds. John
 Wiley & Sons, Ltd: Chichester, UK, 2010; pp 269-283.
- 508 58. Li, B.; Ouyang, X. P., Structure and properties of lignosulfonate with different molecular weight 509 isolated by gel column chromatography. *Advanced Materials Research* **2012**, *554-556*, 2024-2030.
- 510 59. Tabil, L. G.; Sokhansanj, S.; Tyler, R. T., Performance of different binders during alfalfa pelleting.
 511 *Canadian Agricultural Engineering* 1997, *39*, 17-23.
- 512 60. Huang, J.; Zhang, L.; Chen, F., Effects of lignin as a filler on properties of soy protein plastics. I.
- 513 Lignosulfonate. *Journal of Applied Polymer Science* **2003**, *88*, 3284-3290.
- 514 61. Kadam, S. R.; Mate, V. R.; Panmand, R. P.; Nikam, L. K.; Kulkarni, M. V.; Sonawane, R. S.; Kale,
- 515 B. B., A green process for efficient lignin (biomass) degradation and hydrogen production via water
- splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Advances 2014, 4,
 60626-60635.
- 518 62. Wang, X.; Wang, L.; Huang, Y., Degradation of lignosulfonate under UV/H₂O₂ treatment.
 519 *Chemistry and Industry of Forest Products* 2007, *27*, 98-102.
- 520 63. Awungacha Lekelefac, C.; Hild, J.; Czermak, P.; Herrenbauer, M., Photocatalytic active coatings
- for lignin degradation in a continuous packed bed reactor. *International Journal of Photoenergy* 2014,
 2014, 1-10.
- 64. Qiu, X.; Kong, Q.; Zhou, M.; Yang, D., Aggregation behavior of sodium lignosulfonate in water
 solution. *The Journal of Physical Chemistry B* 2010, *114*, 15857-61.
- 525 65. European Food Safety Authority, Conclusion on the peer review of the pesticide risk assessment
- 526 of the active substance S-abscisic acid. *EFSA Journal* 2013, *11*, 3341.
- 527

528	Figure captions				
529	Figure 1 Structure and photoisomerization of ABA to <i>trans</i> -ABA.				
530	Figure 2 Sulfonation process of lignin in sulfite pulping. Lignin in the group sites of the structure				
531	represents for propagated lignin structure. This figure was modified from Lauten et al (57).				
532	Figure 3 Photodegradation dynamics of ABA in the presence of varieties of lignosulfonate. ABA				
533	was applied at 5 mg/l. Lignosulfonate 3A, CASA and NA were all applied at 500 mg/l. Error bars				
534	are s. e. (standard error) of three replicates.				
535	Figure 4 Dynamics of ABA (280 mg/l) photodegradation in aqueous solution affected by adding				
536	different doses of lignosulfonate 3A. ABA was applied at 280 mg/l. Lignosulfonate 3A was				
537	applied at 500 mg/l, 1000 mg/l, 2000 mg/l, 4000 mg/l and 5000 mg/l. lingo. is the abbreviation for				
538	lignosulfonate 3A. Error bars are s. e. of three replicates.				
539	Figure 5 Bioactivity of ABA in the presence of lignosulfonate 3A after irradiation on the growth				
540	of wheat (JIMAI 22). ABA (280 mg/l) with or without 3A (2000 mg/l) were exposed to UV				
541	radiation for 2 h and then diluted for 300 times to compare their bioactivity on wheat shoot and				
542	root growth. Error bars are s. e. of five replicates. Within each figure, treatments with same letter				
543	are not significantly different at a=0.05. un-deg. is the abbreviation for un-degraded; p-deg. is the				
544	abbreviation for partially-degraded.				
545	Figure 6 Impacts of lignosulfonate 3A on the growth of wheat (JIMAI 22). 3A is applied at 1.3				
546	mg/l, 6.7 mg/l, 33.3 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l and 5000 mg/l. Error bars are s. e. of				
547	five replicates. Within each figure, treatments with same letter are not significantly different at				
548	a=0.05.				
549	Figure 7 Surface tension of lignosulfonate 3A as a function of 3A concentration at 25 °C. CAC is				

550 the abbreviation for critical aggregation concentration. γ represents for surface tension.

551	Figure 8 Influence of concentration on the particles size distribution of lignosulfonate 3A at
552	25 °C.
553	Figure 9 SEM micrography of lignosulfonate 3A on polished silicon substrate. Lignosulfonate
554	was applied at the concentration of 2 g/l. a and b represent for micrograph captured at different
555	magnification.
556	Figure 10 Absorption spectra per unit mass of ABA, lignosulfonate 3A, CASA and NA, and UV
557	absorber BP-4 in aqueous solution. Gray and light gray shadows indicate UVB (290-320 nm) and
558	UVA (320-400 nm) region in natural UV radiation.
559	Figure 11 Comparison effects of lignosulfonate 3A and UV absorber BP-4 on stabilizing ABA
560	under UV radiation. ABA was applied at 280 mg/l. Error bars are s. e. of three replicates.
561	Figure 12 The formation of lignosulfonate aggregate and its interaction with ABA.
562	

563	Tables

Table 1 Physico-chemical properties of three commercialized lignosulfonates

Name	Molecular weight	Na (%)	Ca (%)	Sulfonation degree
3A	> 50000	8.5	0.02	0.48
NA	$20000 \sim 50000$	9	0.3	0.7
CASA	< 20000	< 0.1	5	0.7

571 Figure 2

574 Figure 3

587 Figure 9

595 Graphic for table of contents

596