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Abstract: Abscisic acid (ABA), as a commonly used plant growth regulator, is easy to be 19 

degraded and lose its bioactivity under sunshine. To select an eco-friendly and efficient 20 

photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to 21 

UV light, we tested the effects of three biodegradable natural derived high polymers — sodium 22 

lignosulfonates 3A (molecular weight (MW) > 50000, degree of sulfonation (DS) 0.48), NA 23 

(20000 < MW < 50000, DS 0.7) and calcium lignosulfonate CASA (MW < 20000, DS 0.7) on the 24 

photodegradation of ABA. Both 3A, NA and CASA showed significant photo-stabilizing 25 

capability on ABA. 3A showed preferable photostabilizing effects on ABA than CASA, while NA 26 

showed an intermediate effect. That indicated lignosulfonate with high molecular weight and low 27 

degree of sulfonation had a stronger UV absorption and the hollow aggregates micelles formatted 28 

by lignosulfonate protect ABA from UV damage. Approximately 50 % more ABA was kept when 29 

280 mg/l ABA aqueous solution was irradiated by UV light for 2 hours in the presence of 2000 30 

mg/l lignosulfonate 3A. The bioactivity on wheat (JIMAI 22) seed germination was greatly kept 31 

by 3A, comparing to that of ABA alone. The 300 times diluent of 280 mg/l ABA plus 2000 mg/l 32 

3A after 2 hours irradiation showed 20.8 %, 19.3 % and 9.3% more inhibition on shoot growth, 33 

root growth and root numbers of wheat seed, separately, comparing to ABA diluent alone. We 34 

conclude that lignosulfonate 3A was an eco-friendly and efficient agent to keep ABA activity 35 

under UV radiation. This research could be used in UV-sensitive and water soluble agrichemicals 36 

and to optimize the application times and dosages of ABA products. 37 

Keywords: abscisic acid (ABA); UV light; photodegradation; lignosulfonate; shoot and root 38 

growth39 
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1 Introduction 40 

Most of bio-agrichemicals are susceptible to UV damage in the field and their half-lives were 41 

very short, for example, 6 hours for avermectin (1) and 1 hour for spinosad (2). Therefore,  42 

bio-agrichemicals requires more applications and high amount to ensure their effectiveness (3). 43 

Abscisic acid (ABA) is an effective bio-plant-growth-regulator, which could prolong florescence 44 

(4-7), promote differentiation of flower bud (8-10), enhance the growth of root and shoot (11-13), 45 

raise fruit coloring rate and quality (14-19), and improve resistance to drought stress (20-25). ABA 46 

also had curative effects on inflammation, type Ⅱ diabetes and tumor of animals and humans 47 

(26-28). ABA is a potential product that would be widely applied both in agriculture and medical 48 

care. However, due to UV light of sunshine, ABA is readily losing its bioactivity by isomerizing to 49 

inactive trans-ABA (Figure 1) (29-31). The half-life of ABA is only 24 min (32). This increases 50 

economic cost for ABA field application. 51 

Many efforts have been made to keep the bioactivity of ABA and reduce its photosensitivity 52 

(33-36), such as replaced the double bond or hydrogen in ∆
2
 (the location of double bond) of ABA 53 

side chain to benzene ring and cyclopropyl or fluorine to relieve cis–trans isomerization. However, 54 

the bioactivities of these new compounds were much less than that of ABA. Our previous study 55 

found benzophenone-type UV absorbers (BPs) UV-531 (2-Hydroxy-4-n-octoxy-benzophenone) 56 

and BP-4 (2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid) greatly improved the stability and 57 

bioactivity of ABA under UV radiation (37). However, potential endocrine disrupting effects of 58 

these UV absorbers were reported (38-43). They have been revealed to act in a similar way to 59 

estrogen and/or antiandrogen (38, 39), exert mutagenic effects on Salmonella (40), generate 60 

oxidative stress in Carassius auratus (41), suppress immunity of the immune system (42) and 61 
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induce sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovarian cells 62 

(43). What’s worse, BPs contained in personal care products, industrial and agricultural products 63 

might pollute the aquatic environment and be bioaccumulated through food chains, as residues 64 

have been detected in water, sediments, human breast milk, urine and blood (38). Though the toxic 65 

of BP-4 is rather low (39), the potential impacts cannot be excluded. Potential environmental 66 

impacts of BPs have led to an increase concern over their usage in commercial products and their 67 

presence in the environment. Therefore, it is better to develop eco-friendly photoprotectants to 68 

alleviate the photosensitivity of ABA in application. 69 

Lignosulfonate is sulfonated, fragmented lignin from the waste liquor of sulfite pulp mills 70 

(44-48) (Figure 2). It is highly cross-linked polymer formed from different phenyl-propanoid units 71 

and keeps approximately the original chemical structure of native lignin except for the 72 

introduction of a great number of sulfonic acid groups on the α-carbons of lignin side chains (49). 73 

The sulfonic acid groups make it easy to be soluble in the water. Due to hydrophilic groups 74 

(sulphonic, phenylic hydroxyl, carboxylic and alcoholic hydroxyl) and hydrophobic groups 75 

(aromatic, aliphatic and carbon chains), lignosulfonate showed surface activities (44, 46, 47, 50). 76 

Due to the existence of phenolic hydroxyl group, carbonyl and other chromophores, some 77 

researchers used lignin and lignosulfonate as sun blockers added into the emulsions of cosmetics 78 

(51), or as wall material of microcapsule for protecting the agrichemicals and microbial pesticide 79 

from UV damage and controlling actives release (52-54). The physico-chemical properties of three 80 

commercialized lignosulfonates 3A, CASA and NA were shown in Table 1. 3A has low degree of 81 

sulfonation and high molecular weight which might make it has more α-O-4 ether bonds and 82 

conjugated systems separately. CASA has low sulfonation degree and molecular weight which 83 
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might make it have fewer α-O-4 ether bonds and conjugated systems. NA has high sulfonation 84 

degree and intermediate value of molecular weight which might make it have fewer α-O-4 ether 85 

bonds and intermediate levels of conjugated systems. 86 

We hypothesized that applying lignosulfonate could reduce photosensitivity of ABA. The 87 

objective of this study was therefore to test the hypothesis and to further select an efficient 88 

photoprotectant. The dynamics of ABA degradation at different doses of selected lignosulfonate 89 

and afterwards bioactivity of ABA plus lignosulfonate on plant growth were also analyzed. The 90 

bioactivity of lignosulfonate itself at different doses on plant growth was analyzed as well. 91 

 92 

2 Materials and methods 93 

2.1 Experimental design and managements 94 

Experiment 1 was designed for comparing the stabilizing effects of three lignosulfonates on 95 

ABA degradation under UV light. Three lignosulfonates were calcium lignosulfonate Borresperse 96 

CA-SA, abbreviated as CASA; sodium lignosulfonate Borresperse NA, abbreviated as NA; and 97 

modified and purified sodium lignosulfonate 3A, abbreviated as 3A. Solid contents all above were 98 

greater than 93 % and main properties were listed in Table 1. All lignosulfonates were purchased 99 

from Borregaard LignoTech. These lignosulfonates at the dose of 0 mg/l and 500 mg/l were added 100 

into 5 mg/l ABA (pure content above 98 %, purchased from J&K Scientific Ltd.) aqueous solution. 101 

Quartz test tubes (16 mm×13 mm×150 mm, obtained from Nanjing Xujiang Electromechanical 102 

Plant) with 10 ml corresponding ABA solution prepared above were exposed to UV light in 103 

photochemical reactor (XPA-7, obtained from Nanjing Xujiang Electromechanical Plant). Test 104 

tube of each treatment covered with aluminum foil was set as dark control. Mercury lamp (300 W) 105 
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equipped with 365 nm light filter (both obtained from Nanjing Xujiang Electromechanical Plant) 106 

was applied as UV radiation source (S1), around which the test tubes could orbit. The actual 107 

irradiance is the energy of mercury lamp multiplying the transmittance of UV filter. The actual 108 

irradiance of UVA was detected as 9974 µW/cm
2
, UVB as 2730 µW/cm

2
. And the actual 109 

irradiance ratio of UVA to UVB was 3.7. Solutions in the tubes were stirred in order to achieve 110 

uniform irradiation. At intervals of 1 min, 0.5 ml solution of each treatment under irradiation was 111 

sampled and directly injected into high performance liquid chromatography (HPLC) after high 112 

speed centrifugation. Dark control of each treatment was determined after irradiation ended. Total 113 

radiation time lasted for 8 min and the experiments were repeated three times. 114 

Experiment 2 was for further optimizing the dosage of lignosulfonates added into ABA 115 

application. The lignosulfonate 3A was added into ABA aqueous solution (280 mg/l). The dose of 116 

3A was 0 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l, 4000 mg/l and 5000 mg/l respectively. Referring 117 

to the method of experiment 1, the solutions were exposed to UV light for 8 h. At intervals of 1 118 

hour, 20 µl solution of each treatment under irradiation was sampled and injected into HPLC after 119 

diluted by 100 times and filtered by strainer (0.22 µm). Dark control of each treatment was 120 

determined after irradiation ended. The experiments were repeated three times. 121 

Experiment 3 was for testing the remaining bioactivity of ABA in the presence of selected 122 

lignosulfonate after irradiation. In order to compare the bioactivity of ABA with and without 3A 123 

after irradiation, ABA were diluted to lower concentrations, as pre-bioassay of ABA above 2 mg/l 124 

showed badly suppression on wheat (JIMAI 22) seed germination and growth, which resulted in a 125 

difficulty to compare the differences among treatments. Therefore, ABA (280 mg/l) with and 126 

without 3A (2000 mg/l) were exposed to UV light for two hours and then diluted 300 times to 127 
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prepare 25 ml solution each and added with 20 µl Tween-20 for bioactivity assay. Petri dish (Ф = 128 

90 mm) placed with two layers of filter paper was immersed by 4 ml each prepared solution and 129 

then seeded by twenty wheat seeds disinfected with 10 % hydrogen peroxide solution for 10 min. 130 

Five dishes were applied for each treatment as repeats. Artificial climate chest (PRX-450C, 131 

obtained from Ningbo Saifu Experimental Instrument Co., Ltd.) was used to incubate wheat seeds 132 

of all treatments in darkness at the temperature of 25 °C and humidity of 85 %. After three days’ 133 

incubation, 10 seeds were chosen randomly in each dish to measure the shoot length, root length 134 

and root numbers of each treatment. 135 

Experiment 4 was for examining the bioactivity of lignosulfonate 3A at different dosages on 136 

wheat seed germination. 25 ml lignosulfonate solution at the dose of 0 mg/l, 1.3 mg/l, 6.7 mg/l, 137 

33.3 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l and 5000 mg/l were prepared separately for bioactivity 138 

assay referring the methods of experiment 3. After three days’ incubation, 10 seeds were chosen 139 

randomly in each dish to measure the shoot length, root length and root numbers of each 140 

treatment. 141 

Experiment 5 was for determination of critical aggregation concentration (CAC). CAC was 142 

determined with Platinum ring (ϕ = 20.5 mm × 0.6 mm) on automatic interfacial tension meter 143 

(JK99BM, obtained from Shanghai Zhongchen Digital Technic Apparatus Co., Ltd) at 20 °C. 144 

Surface tensions of lignosulfonate 3A at a series of concentration were determined and the turning 145 

point on the curve of γ-c plot was CAC. Surface tension of water was 73.7 mN/m. 146 

Experiment 6 was for the measurements of particle size distribution of lignosulfonate 3A at a 147 

series of concentration by dynamic light scattering (DLS). The measurements were carried out by 148 

ZETASIZER Nano series (Nano - ZS90, obtained from Malvern Instruments) with a scattering 149 
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angle of 90° at 25 ± 0.01 °C. The light source is a standard laser with a power of 4 mW and a 150 

wavelength of 633 nm. The range of the particle size measurement was from 0.3 nm to 5000 nm. 151 

Accurate concentrations of lignosulfonate 3A were prepared in ultrapure water and then 152 

equilibrated for 24 h before data collection. 4 ml of each prepared solution was added into 153 

polystyrene disposable cuvette (12 mm × 12 mm × 45 mm). Each measurement was repeated three 154 

times, and the average result was accepted as the final hydrodynamic diameters whenever all the 155 

values fluctuated within reasonable experimental errors. 156 

Experiment 7 was for investigating the morphology of lignosulfonate 3A at the concentrations 157 

of CAC. The experiment was carried out by scanning electron microscopy (SEM-SU8010, 158 

obtained from Hitachi) with an accelerating voltage of 5 kV and a working distance of 8 mm. The 159 

analysis was done in a high vacuum, with Everhart–Thornley secondary electron (SE) detector. To 160 

prepare samples for SEM investigation, lignosulfonate 3A at 2 g/l was dissolved in ultrapure water 161 

and equilibrated for 24 h. Then the sample was added dropwise onto the surface of a polished 162 

silicon substrate and naturally dried at room temperature overnight being protected from dust in 163 

the air. The sample was thereafter coated with platinum (thickness = 5 nm) by a sputter coater 164 

(EM ACE600, obtained from Leica Vienna, Austria) before capturing SEM images. Three parallel 165 

experiments were carried out to exclude accidental errors. 166 

Experiments 1 to 4 were carried out at Engineering Research Centre of Plant Growth Regulators, 167 

Ministry of Education in China Agricultural University in 2015, Beijing, China. Experiments 5 to 168 

7 were carried out at Institute of Environment and Sustainable Development in Agriculture, 169 

Chinese Academy of Agricultural Sciences in 2017, Beijing, China. Experiments 1 to 3 were 170 

focused on the photodegradation and afterwards bioactivity of ABA plus lignosulfonates. 171 
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Experiments 4 to 7 were focused on the property of lignosulfonates. 172 

 173 

2.2 Measurements 174 

HPLC equipped with Agilent Eclipse Plus C18 column (4.6 mm×5 µm, 250 mm) (Agilent 1200, 175 

obtained from Agilent Technologies) was used to determine ABA concentrations. Methanol and 176 

water (60/40, V/V) contained 0.2 % acetic acid inside were applied as mobile phase and operated 177 

at the speed of 1 ml/min, in which temperature was set at 30 °C. UV detector wavelength was set 178 

at 260 nm. The injection volume of samples was 20 µl. ABA concentrations in samples were 179 

calculated by external standard method according to a series of ABA standard solutions. 180 

Full wavelength scan ranging from 190 nm to 400 nm were carried out to determine absorptions 181 

of accurate amount of lignosulfonates 3A, CASA, NA, UV absorber BP-4 182 

(2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid) and ABA in aqueous solution separately by 183 

UV/Vis spectrophotometer (UV-4802, obtained from Unico Instruments Co. Ltd). Absorptivity per 184 

unit mass was calculated from absorbance according to Lambert-Beer’s Law. 185 

UV intensity of this research and natural sunshine were detected by UVA and UVB 186 

radiationmeters (obtained from Photoelectric Instrument Factory of Beijing Normal University). 187 

 188 

2.3 Data analysis 189 

The bioactivity differences of ABA with ABA plus lignosulfonate 3A after being exposed to UV 190 

radiation were analyzed by One-Way ANOVA using LSD test at significant level of 0.05. 191 

Bioactivity differences of a series of lignosulfonate 3A concentrations compared to pure water 192 

were analyzed by the same statistical method as well. 193 
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 194 

3 Results 195 

3.1 Photodegradation of ABA in the presence of lignosulfonates 196 

Three types of lignosulfonates, CASA, NA and 3A significantly stabilized ABA under UV 197 

radiation (Figure 3). After 8 mins’ UV radiation, only 72 % ABA remained in ABA alone 198 

treatment. However, all the treatments of ABA plus lignosulfonate kept at least 89 % ABA. 3A had 199 

more significant effects on stabilizing ABA (degradation slope -0.005) than CASA (degradation 200 

slope -0.055). Intermediate values of remained effective ABA were achieved in adding NA 201 

(degradation slope -0.014).  202 

 203 

3.2 Degradation dynamics of ABA adding with different dosages of lignosulfonate 3A 204 

  With adding 3A at the dose of 2 g/l to 5 g/l, more than 92 percent effective ABA remained after 205 

two hour’s radiation, more than 80 percent after 4 hours, and more than 67 percent after 8 hours 206 

(Figure 4). Meanwhile, there was only 23 percent ABA remained in ABA alone treatment after 8 207 

hours radiation. Lower level but significant values of remained effective ABA were also achieved 208 

in adding 3A with doses of 0.5 g/l and 1 g/l, in which the latter showed better stabilizing effects. 209 

3A at 4 g/l and 5 g/l showed no significant difference on stabilizing ABA. Though 3A at 2 g/l 210 

showed significant less effect on stabilizing ABA at longer duration of radiation than at 4 g/l and 5 211 

g/l, it showed nearly the same stabilizing capability in the first 4 hours’ radiation. Thus, 3A at 2g/l 212 

would be more convenient for further tests. 213 

 214 

3.3 Remaining bioactivity of ABA in the presence of lignosulfonate 3A after irradiation 215 
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Shoot and root length of wheat were significantly suppressed by the diluents of 280 mg/l ABA 216 

alone or the diluents of 280 mg/l ABA plus 2000 mg/l 3A, compared to the control of pure water 217 

(Figure 5a and 5b). Shoot and root length in ABA plus 3A treatment were 20.8 % and 19.3 % 218 

shorter than that of ABA alone respectively, and there was no significant difference with the 219 

treatments of un-degraded ABA (Figure 5a and 5b). Root numbers in treatment of ABA plus 3A 220 

were 9.3 % fewer than that in ABA alone. Root numbers in ABA alone showed no significant 221 

difference with that of pure water treatment (Figure 5c). The bioactivity of un-degraded ABA with 222 

or without 3A showed no significant difference. 223 

 224 

3.4 Impacts of lignosulfonate 3A on wheat seed germination 225 

  3A showed no significant bioactivity on wheat seed germination at the doses ranged from 1.3 226 

mg/l to 2000 mg/l, compared to that of pure water treatment, while significant differences were 227 

found among various lignosulfonate concentrations (Figure 6a, 6b and 6c). However, 3A at the 228 

dose of 5000 mg/l suppressed 27 % shoot growth and 32 % root growth comparing to pure water 229 

treatment (Figure 6a and 6b). The root numbers in all treatments showed no significant difference 230 

with that of pure water control (Figure 6c).  231 

 232 

3.5 Critical aggregation concentration of lignosulfonate 3A 233 

According to the relationship between γ value and concentration (Figure 7), surface tension of 234 

lignosulfonate 3A decreased sharply when the concentration was lower than 2 g/l. However, as the 235 

concentration continued to increase, surface tension reduced slowly. So we defined concentration 236 

at 2 g/l as a critical aggregation concentration of lignosulfonate 3A in aqueous solution. 237 
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 238 

3.6 Dynamic aggregation behavior of lignosulfonate 3A in aqueous solution 239 

From the intensity distribution of particle diameter for lignosulfonate 3A in aqueous solution 240 

(Figure 8), there was a single peak at 0.5 g/l and 1g/l respectively, however, bimodal peaks 241 

presented at 2 g/l. The smallest particle at one peak top was about 250 nm and the largest at 242 

another peak top was about 5.5 µm. The intensity of particle size distribution of 3A in aqueous 243 

solution decreased with increasing concentration of 3A, but the intensity and the size of 3A 244 

aggregates increase. These results indicate that assemble of 3A is a gradually process. 245 

 246 

3.7 Morphologic characterization of lignosulfonate 3A 247 

From the SEM photograph (Figure 9a and 9b), aggregated structures of lignosulfonate 3A at the 248 

concentration of 2 g/l were observed. The aggregated structures were within the diameters of 249 

about 500 nm to about 5µm and the larger ones appeared to be hollow, as deep grey color in the 250 

middle of the aggregated structures was observed (Figure 9b). Solid aggregated structures would 251 

show the same pale white color with the exterior, but if the structures are hollow, the middle 252 

would be collapsed under the strong voltage of SEM. This resulted in deep grey color in the center 253 

of the aggregated structures.  254 

 255 

4 Discussions and conclusions 256 

By adding lignosulfonates, ABA degradation under UV light was significant reduced. 257 

Lignosulfonate greatly kept the bioactivity of ABA after exposed to UV radiation. Lignosulfonate 258 

itself had no significant bioactivity. Adding lignosulfonate kept 67 percent ABA remained after 8 259 
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hours exposing to UV irradiation, while only 23 percent ABA remained in ABA alone control. The 260 

efficiency of ABA was increased nearly 3 times by adding lignosulfonate.  261 

It is well known that UV bands of field sunshine mainly range from 290 nm to 400 nm (55). At 262 

this range, ABA has some absorption in UVB (290 nm ~ 320 nm) but very little in UVA (320 nm ~ 263 

400 nm) (56) (Figure 10). Thus, UVB takes a great role on ABA bioactivity reduction in the field. 264 

Lignosulfonates absorb UV radiation at most of UV region due to many chromophores it 265 

contained. And the complex structure of lignosulfonate, which is widely accepted as a kind of 266 

three-dimensional cross-linked biopolymer (57), can effectively dissipate the energy associated 267 

with the absorption of UV light internally thereby preventing transfer to other proximate actives. 268 

Though absorption of lignosulfonate per unit mass is not greater than that of ABA (Figure 10), 269 

especially, in UVB region, increased dosage of lignosulfonate could show great UVB absorption. 270 

Our experiments proved that lignosulfonate at proper high mass dosage strongly competed UVB 271 

absorption, compared to that of ABA. Besides, the UV radiation applied in this research mainly 272 

ranged from UVB to UVA (S1). UVB intensity applied in this study (2730 µW/cm
2
) was much 273 

higher than under natural sunshine (263 µW/cm
2
). Therefore, laboratory results in this study that 274 

ABA photodegradation could be greatly reduced by competitive UV absorption of lignosulfonate 275 

can be applicable in field situation. 276 

Lignosulfonate with different molecular weight and sulfonation degree showed different 277 

stabilizing effects on ABA degradation under UV radiation. Lignosulfonate with higher molecular 278 

weight may have more aryl ring structural units (58), which strengthens and shifts the UV 279 

absorption of lignosulfonate to longer wavelength and thereby absorbs more UV damage from 280 

ABA around. Lignosulfonate with lower sulfonation degree may have more α-O-4 ether bonds not 281 
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being replaced by sulfonic acid groups (57), which also enhances and induces red shift and finally 282 

help improve UV protection effects. 3A with low degree of sulfonation and high molecular weight, 283 

thus, showed most preferable photostabilizing effect on ABA degradation. 284 

Absorptivity of lignosulfonate per unit mass is much lower than that of UV absorbers such as 285 

2-Hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) (Figure 10), therefore, theoretically, 286 

much higher dosages of lignosulfonate should be applied to stabilize ABA comparing to that of 287 

UV absorber. According to our measurements in this study and in the former researches (37), we 288 

found 3A at 500 mg/l showed no significant difference with that of BP-4 at 200 mg/l on stabilizing 289 

ABA under UV radiation (Figure 11). However, adding 2000 mg/l 3A had a much higher 290 

stabilizing effect on ABA than adding BP-4. In consideration of potential impacts on human health 291 

and the environment (38-43), caution is needed to increase the dosage of BP-4 applied on ABA in 292 

order to improve its stabilizing effects. Lignosulfonate, however, is sulfonated natural lignin, 293 

proved safety to human beings (49, 59) and degradable in the environment (60). Lignosulfonate in 294 

aqueous solution is quite stable even under strong and short wavelength UV radiations (61-63). 295 

Properly increasing dosages of lignosulfonate was proved little impacts on plant growth by our 296 

experiments. Thus, lignosulfonate is more efficient and eco-friendly to stabilizing ABA under UV 297 

radiation even applied at high dosage. 298 

Lignosulfonate 3A at 2 g/l (CAC) showed similar photostabilizing effects with that of 3A at 299 

higher concentration (4 g/l or 5 g/l). There is no significantly increased effect on ABA 300 

photostabilizing by further increasing lignosulfonate 3A above CAC, which indicates there might 301 

be other factors that also protect ABA from UV damage except for competitive UV absorption.  302 

One factor might be the micelles that lignosulfonate formed. It is well known that micelles were 303 
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formed by surfactants above critical micelle concentration. A typical micelle is an aggregate with 304 

the hydrophilic “head” regions in contact with surrounding solvent, sequestering the hydrophobic 305 

single-tail regions in the micelle center. Though lignosulfonate has amphiphilic activity and could 306 

form micelles, the lignosulfonate molecules cannot aggregate into hollow micelles by their 307 

hydrophobic sites as conventional linear molecule surfactants, as the hydrophobic base and 308 

hydrophilic groups in lignosulfonate molecules are not totally separated from one another and the 309 

hydrophilic groups are scattered in the whole molecule (Figure 12) (64). According to our research 310 

and other studies (46, 64), hollow aggregates are the main form of the lignosulfonate at the 311 

dosages of above CAC in solution. Moreover, sulfonic groups and some phenolic hydroxyl groups 312 

constructed the surface of lignosulfonate aggregates. And the core of the aggregates is formed by 313 

hydrophobic chains, which is loose and contains many weakly ionized groups such as carboxyls 314 

and phenolic hydroxyl groups (Figure 12) (46). ABA has hydroxyl, conjugated carboxyl and 315 

ketene groups and is slightly dissolved in water (3 g/l) and strongly dissolves in methanol, acetone 316 

and ethyl acetate (above 90 g/l) (65), thus it showed relative weak polarity which makes it tend to 317 

presence in the core of lignosulfonate aggregates through hydrogen-bonding and intermolecular 318 

van der Waals forces (Figure 12). This explains the similar stabilizing effects of lignosulfonate 3A 319 

at dosages above CAC. Therefore, we concluded that the formation of hollow aggregates might be 320 

the other important factor that helped lignosulfonate protect ABA from UV damage. CAC found 321 

in this study can be applied as one of the reference indexes for adding lignosulfonate into ABA.  322 

Absorbance of agrichemicals by plant stems and leaves mainly takes place in the first four 323 

hours after their application. According to our former measurement in natural conditions of winter 324 

time, the applied ABA (540 mg/l) lost more than 50 % within 4 hours and even worse during other 325 
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seasons due to much higher UV radiation. By adding lignosulfonate, the loss of ABA bioactivity 326 

can be reduced to less than 20 % and even much lower. Although our previous studies (37) proved 327 

UV absorber BP-4 had a good photostabilizing effect on ABA, however, the simple small 328 

molecule of BP-4 might loss its stabilizing capability on ABA due to the rain. Lignosulfonate has 329 

amphiphilic groups and plant leave surface is always hydrophobic or hydrophilic, which could 330 

help ABA well adhere on the leaves and thereby increases its effects on ABA stabilization. 331 

Therefore, the usage of surfactant could be thereafter reduced and the limitation of using BP-4 can 332 

be relieved. 333 

In the future studies, appropriate time and dosage of lignosulfonate added into ABA application 334 

are still required, especially, by more experiments at field conditions. In the field, the bioactivity 335 

of ABA plus lignosulfonate in the sunny day might be different from that of in the cloudy due to 336 

different degrees of degradation, so the effect and suitable doses of lignosulfonate should be 337 

testified at both situations in the future. The effects of ABA plus lignosulfonate on growth, 338 

development and yields of plant in relation to optimal applying time and dosage should be 339 

determined at field condition. Moreover, the effects of new ABA products with adding 340 

lignosulfonate on prolonging florescence, promoting fruit coloring rate and improving resistance 341 

to drought stress is necessary to be explored, especially under natural sunshine. 342 

In conclusion, lignosulfonate greatly reduced ABA photodegradation. Lignosulfonate 3A 343 

addition significantly prevented ABA from UV damage and thereafter greatly kept ABA 344 

bioactivity after exposed to UV radiation. Besides, lignosulfonate showed no significant impacts 345 

on plant growth at suitable dosage. Consequently, lignosulfonate could be a safe and high 346 

efficiency agent to photostabilize ABA. The usage of surfactants could also be reduced due to the 347 
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surface activities of lignosulfonate. And waste liquor of sulfite pulp mills can be reduced and 348 

reused. Pretty low cost would be made by applying lignosulfonate to prepare novel photostable 349 

formulations of ABA or alternatively to be applied tank-mixed in the field, compare to the 350 

application of UV absorbers. Thereafter, the ABA efficiency would be significantly promoted and 351 

crop yield and quality would be improved. This research could be widely used in the application 352 

of UV-sensitive and water-soluble agrichemicals and help to reduce environmental impact of 353 

applying plant growth regulators.   354 
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Figure captions 528 

Figure 1 Structure and photoisomerization of ABA to trans-ABA. 529 

Figure 2 Sulfonation process of lignin in sulfite pulping. Lignin in the group sites of the structure 530 

represents for propagated lignin structure. This figure was modified from Lauten et al (57). 531 

Figure 3 Photodegradation dynamics of ABA in the presence of varieties of lignosulfonate. ABA 532 

was applied at 5 mg/l. Lignosulfonate 3A, CASA and NA were all applied at 500 mg/l. Error bars 533 

are s. e. (standard error) of three replicates. 534 

Figure 4 Dynamics of ABA (280 mg/l) photodegradation in aqueous solution affected by adding 535 

different doses of lignosulfonate 3A. ABA was applied at 280 mg/l. Lignosulfonate 3A was 536 

applied at 500 mg/l, 1000 mg/l, 2000 mg/l, 4000 mg/l and 5000 mg/l. lingo. is the abbreviation for 537 

lignosulfonate 3A. Error bars are s. e. of three replicates. 538 

Figure 5 Bioactivity of ABA in the presence of lignosulfonate 3A after irradiation on the growth 539 

of wheat (JIMAI 22). ABA (280 mg/l) with or without 3A (2000 mg/l) were exposed to UV 540 

radiation for 2 h and then diluted for 300 times to compare their bioactivity on wheat shoot and 541 

root growth. Error bars are s. e. of five replicates. Within each figure, treatments with same letter 542 

are not significantly different at a=0.05. un-deg. is the abbreviation for un-degraded; p-deg. is the 543 

abbreviation for partially-degraded. 544 

Figure 6 Impacts of lignosulfonate 3A on the growth of wheat (JIMAI 22). 3A is applied at 1.3 545 

mg/l, 6.7 mg/l, 33.3 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l and 5000 mg/l. Error bars are s. e. of 546 

five replicates. Within each figure, treatments with same letter are not significantly different at 547 

a=0.05. 548 

Figure 7 Surface tension of lignosulfonate 3A as a function of 3A concentration at 25 °C. CAC is 549 

the abbreviation for critical aggregation concentration. γ represents for surface tension. 550 
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Figure 8 Influence of concentration on the particles size distribution of lignosulfonate 3A at 551 

25 °C. 552 

Figure 9 SEM micrography of lignosulfonate 3A on polished silicon substrate. Lignosulfonate 553 

was applied at the concentration of 2 g/l. a and b represent for micrograph captured at different 554 

magnification. 555 

Figure 10 Absorption spectra per unit mass of ABA, lignosulfonate 3A, CASA and NA, and UV 556 

absorber BP-4 in aqueous solution. Gray and light gray shadows indicate UVB (290-320 nm) and 557 

UVA (320-400 nm) region in natural UV radiation. 558 

Figure 11 Comparison effects of lignosulfonate 3A and UV absorber BP-4 on stabilizing ABA 559 

under UV radiation. ABA was applied at 280 mg/l. Error bars are s. e. of three replicates. 560 

Figure 12 The formation of lignosulfonate aggregate and its interaction with ABA. 561 

562 

Page 24 of 38

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



Tables 563 

Table 1 Physico-chemical properties of three commercialized lignosulfonates 564 

Name Molecular weight Na (%) Ca (%) Sulfonation degree 

3A > 50000 8.5 0.02 0.48 

NA 20000 ~ 50000 9 0.3 0.7 

CASA < 20000 < 0.1 5 0.7 

565 
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Figure graphics 566 
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