Enamine Derivatives of Malonic Acid with Pharmacologic Activities

ARTHUR A. SANTILLI, WILLIAM F. BRUCE, AND T. S. OSDENE

Wyeth Laboratories, Inc., Philadelphia 1, Pennsylvania

Received August 23, 1963

A number of enamines corresponding to II have been prepared and characterized. Many of these compounds displayed muscle relaxant and sedative properties when tested in mice. Reduction of diethyl (4-hydroxy-4-phenylpiperidyl) methylenemalonate with lithium aluminum hydride gave 2-(4-hydroxy-4-phenylpiperidyl)-2-propen-1-ol. Catalytic hydrogenation of diethyl piperidyllenemalonate resulted in the reductive cleavage of the C-N bond. Reaction with methyl iodide also caused cleavage of the C-N bond with subsequent formation of the methyl quaternary ammonium iodide. Aminomethylenemalonates and cyanoacrylates of type II reacted with benzamidine with the expulsion of the amine molety to form pyrimidines. The formation of benzimidazole and 2-methylbenzimidazole occurred when o-phenylenediamine underwent reaction in boiling ethanol with ethoxymethylenemalonatirile and ethyl(2-cyano-3-ethoxy)crotonate, respectively.

The reaction of primary and secondary amines with ethoxymethylene compounds of type I resulted in the displacement of the ethoxy group by the amino function to give enamines of type II.

$$\begin{array}{cccc} X & Y \\ \downarrow & \downarrow \\ C_2H_5OC = C - Z & \xrightarrow{1^{\circ} \text{ or } 2^{\circ}} & >N - C = C - Z \\ I & & II \end{array}$$

 $X = H \text{ or } CH_3; Y = CO_2C_2H_5, CO_2CH_3, CN, \text{ or } COCH_3;$ $Z = CO_2C_2H_5, CN, \text{ or } COCH_3; > N = \text{ primary or secondary amine}$

Some of these type II compounds displayed interesting central nervous system activity and muscle relaxing properties.¹ In order to determine the effect of structure on activity in such compounds, the amino portion of the molecule, as well as substituents X, Y, and Z, were varied. In general, these reactions were carried out according to the method of Claisen.² The compounds prepared are recorded in Tables I–IV.

Pharmacological Results.—The compounds listed in Table I proved to be pharmacologically the most interesting. They showed muscle relaxation and sedative properties and had very low toxicity. Among the more active members of the series were compounds **25**, **30**, **33**, **36**, **39**, and **41**. All of these compounds have X = H and Y = dialkylamino or polymethylenimino. In other compounds where Y = monoalkylamino or arylamino, there was little or no observable activity. Substitution of an H with a methyl group in X in the more active compounds decreased the activity.

The compounds listed in Table II showed a high degree of toxicity with one member (83) causing death in mice when given orally at 50 mg./kg. Many of the compounds tested produced a depression of spontaneous motor activity. The types of activity observed for the most active compounds are CNS stimulation for compounds 77, 86, and 92; depression for 60, 66, 78, and 79; muscle relaxation for 60 and 85; and analgesia for 78.

The substituted malononitriles of Table III were for the most part very toxic, producing convulsions and death, and were therefore not studied extensively.

The two principal methods used in screening the compounds listed in Tables I–IV are described in the Pharmacolgical Methods section.

(2) L. Claisen, Ann., 297, 77 (1897).

Pharmacological Methods. Muscle Relaxant Activity Screen. —Compounds in Tables I–IV were administered either orally or intraperitoneally at a number of dose levels to groups of 12 male mice. At various times after the administration of the compounds, each animal was handled in the following manner: The mouse was placed in the palm of one hand, and each limb was gently pulled out to an extended position. Muscle relaxation was considered present if the limb remained in the extended position for 5 sec.

Spontaneous Motor Response as a Screen for Central Nervous System Activity .-- The effect of compounds in Tables I-IV on spontaneous motor activity in mice was used as a rapid objective measure of the presence or absence of pharmacologic activity. Both central nervous system stimulants and depressants have been detected by this method.^{3n-e} Groups of 5 male mice weighing 15-23 g. were placed in a photoelectric activity chamber immediately after administration of the compounds. A count of the number of crossings of a beam of light was taken at 15 and 30 min. at which time the experiment was terminated. Suitable controls were run with the media that had been used as suspending or solubilizing agents. An arbitrary dose of 200 mg./kg. was used initially and then doses were halved until the effectiveness was considerably reduced. At the same time that this test was carried out, other animals were injected, observed, and the subjective impressions of activity were recorded.

Chemistry.—Although the compounds were prepared principally for pharmacological evaluation, certain facts concerning their chemistry were uncovered and are worthy of mention here.

Diethyl [(4-hydroxy-4-phenylpiperidyl)methylene]malonate (42) was reduced with lithium aluminum hydride. The product of the reaction was identified by the n.m.r. spectrum and elemental analysis as 2-[(4-hydroxy-4-phenyl)piperidyl]-2-propen-1-ol. This is in accord with the recent finding of Gannon and Steck,⁴ who showed unequivocally that the reduction of diethyl 2-naphthylaminomethylenemalonate with lithium aluminum hydride afforded 2-(2-naphthylaminomethyl)-2-propen-1-ol. It was previously reported by Shivalkar and Sunthankar⁵ that the product of the latter reduction is 3-(2-naphthylamino)allyl alcohol, formed "as the result of partial hydrogenolysis." No partial hydrogenolysis was observed in the case studied by us.

Efforts to hydrogenate the double bond in diethyl piperidylmethylenemalonate (33) catalytically with

⁽¹⁾ A similar observation was reported by E. A. Steck [J. Org. Chem., 27, 306 (1962)] while the present work was in progress.

^{(3) (}a) W. J. Kinnard, Jr., and C. J. Carr, J. Pharmacol. Expil. Therap.,
121, 354 (1957); (b) P. Dews, Brit. J. Pharmacol., 8, 46 (1953); (c) L.
Garberg and F. Sandberg, Acta Pharmacol. Toxicol., 16, 367 (1960); (d)
J. Borsy, E. Csányi, and I. Lázár, Arch. Intern. Pharmacodyn., 124, 180 (1960); (e) B. B. Brown, *ibid.*, 128, 391 (1960).

⁽⁴⁾ W. F. Gannon and E. A. Steck, J. Org. Chem., 27, 4137 (1962).

⁽⁵⁾ R. L. Shivalkar and S. V. Sunthankar, J. Am. Chem. Soc., 82, 718 (1960).

TABLE I

DIETHYL AMINOMETHYLENE AND AMINOETHYLIDENE MALONATES

			M.p. or	Re-	~		~	a		0		
	-		b.p., °C.	crystn.	%	F 1	~~~~%	Caled.		~~~~~%	6 Found	1
No.	Rı	R_2	(mm.)	$solvent^a$	yield	Formula	с	Н	N	С	н	N
1	$n-C_3H_7NH$	H	134 - 135		80	$C_{11}H_{19}NO_4$	57.62	8.35	6.11	57.40	8.42	6.12
2	$OC_{5}H_{5}NH^{b}$	н	51 - 53	D	67	$C_{18}H_{17}NO_{\delta}$	58.42	6.41	5.24	58.51	6.37	5.11
3	$(C_2H_5)_2N(CH_2)_2NH$	н	94~96	F-G	86	$C_{18}H_{30}N_2O_8$	53.72	7.51	6.96	53.72	7.26	6.89
4	CH ₃ CONH(CH ₂) ₂ NH	Н	79-80	HJ	60	$C_{12}H_{20}N_2O_5$	52.93	7.40	10.29	52.76	7.42	10.29
5	C.H.(CH.).NH ^d	н	190-195		55	C14Hat NO.	65 95	7.27	4.81	65.94	7.39	4.64
0	06118(0112)21411		(1 2)		00	010112111.04	00100					+. o 1
0	C U CU(CU)NU	u	196 199		67	CuHaNO	66 86	7 50	4 59	66 59	7 28	4 60
0		11	(1 0)		01	01/11281104	00.00	1.00	4.00	00.00	1.20	1.03
_			(1.0)		a r	G II NO	00 10	0.43	4 09	60 A0	0 99	4 00
7	$C_6H_5C(CH_3)(n-C_3H_7)CH_2NH$	н	204-208		69	C20H29NO4	09.15	8.41	4.05	00.90	8.00	4.42
			(0.8)									a
8	$3,4-Cl_2C_6H_3C(CH_3)(n-C_3H_7)CH_2NH$	н	>195		98	$\mathrm{C}_{20}\mathrm{H}_{27}\mathrm{Cl}_2\mathrm{NO}_4$	57.69	6.54	3.37	57.66	6.37	3,47
			(0.8)									
9	eyclo-C5H9NH	н	154 - 155		75	$\mathrm{C}_{13}\mathrm{H}_{21}\mathrm{NO}_4$	61.15	8.29	5.49	61.03	8.16	5.44
			(0.4)									
10	$cyclo-C_6H_{11}NH$	\mathbf{H}	153 - 155		59	$C_{14}H_{23}NO_4$	62.43	8.61	5.20	62.42	8.65	5.11
			(0.25)									
11	$OC_4H_8N(CH_2)_2NH^b$	H	125		99	$C_{18}H_{28}N_2O_9^c$	51.91	6.78	6.73	51.74	6.68	6.69
12	$C_{\rm r}H_{\rm 10}N^b$	н	104	н	98	C19H30N2O8C	55.06	7.30	6.76	55.31	7.08	6.93
12	OC.H.N(CH.) NH ^b	ਸ	115	ਸ਼ਾ	72	CtoHtoN:00°	53 01	7 03	6 51	52 71	6 87	6 73
10		11	110	11-0	77	C - H. N. O. C	52.00	7 05	7 00	54 90	6 00	7 90
14	$C_4 \Pi_8 N (C \Pi_2) 2 N \Pi^2$	 	110			CISTI2SIN2OS	55.55	1.05	1.00	54.40	0.00	1.20
15	$2,5(CH_{3}O)_{2}C_{6}H_{3}NH$	н	80-81	F-K	75	C16H21NO6	59.43	0.00	4.00	09.40	0.00	4.40
16	$2-HOCOC_6H_4NH$	н	156 - 157	F.	69	$C_{15}H_{17}NO_{6}$	58.63	5.58	4.56	58.74	5.66	4.56
17	$2-CH_3OCOC_6H_4NH$	H	57	J	89	$C_{16}H_{19}NO_6$	59.80	5.96	4.36	59.84	6.09	4.32
18	$(C_2H_5O_2C)_2C = CHNH(CH_2)_2NH$	H	125	F	72	$C_{18}H_{28}N_{2}O_{8}$	53.99	7.05	7.00	54.29	6.91	6.84
10	2°C°HENHCEHENH	н	97-98	F	86	Con Hoo NoO4	67.78	6.26	7.91	67.54	6.39	8.02
20	(CHOC)C CHNHCH 2 NH	н	100	Ē	02	ConHenNeOn	58 92	6 20	6 25	59 12	6 07	6 11
20	$(O_2 H_0 O_2 O_2 O_2 O_2 O_1 N H O_0 H_4 - 3 - N H O_1 O_2 O_2 O_2 O_2 O_1 N H O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1$	71	109	F	10	C H N O	64 11	6 15	5.24	62 81	6 05	5 42
21	$(C_2H_5O_2C)_2C = CHNHC_6H_4-4(C_6H_4-4-NH)$	ri T	103-104	r T T	10	C28H32IN2O8	04.11	0.15	4.00	00.01	0.00	5.40
22	$C_6H_5CH_2NCH = C(CO_2C_2H_5)_2$	н	77-78	H-L	43	$C_{32}H_{40}N_2O_8$	66.19	0.94	4.82	00.27	0.88	5.00
	$(CH_2)_2NCH_2C_6H_5$											
23	$(CH_3)_2N$	H	108 - 110		58	$C_{10}H_{17}NO_{4}$	55.80	7.96	6.51	55.60	7.98	6.51
			(0.1)									
24	(n-CoHe) N	н	124 - 125		51	$C_{14}H_{25}NO_4$	61.96	9.29	5.16	61.60	9.25	5.11
	(1 00000)21		(0.15)									
95	$G(\mathbf{C},\mathbf{H}_{2}),\mathbf{N}$	ਸ	199		48	CuHaNO	61 96	9 29	5 16	61 73	9 00	5 08
20	(2-03117)21	11	(0.15)		-10	01411282404	01.00	0.40	0.10	01.10	0.00	0.00
			(0.10)	-	00	O U NO	71 01	0 00	9 01	79 05	0 71	4.05
26	$(C_6H_5CH_2)_2N$	н	65-66	L	00	C22 F125 INO4	11.91	0.80	0.01	12.00	0.71	4.05
27	$(cyclo-C_6H_{11})_2N$	н	195 - 196		66	$C_{20}H_{33}NO_{4}$	68.34	9.46	3.99	68.40	9.46	3.91
			(0.6)									
28	C ₆ H ₅ CH ₂ CH(CH ₃)NCH ₃	н	186 - 188		94	$C_{18}H_{25}NO_4$	67.69	7.89	4.39	67.78	7.87	4.55
-0	011100000000000000000000000000000000000		(0, 6)									
90	C.H.CH.C(CH.).NH	н	200-203		63	CuHuNO	67 69	7 89	4 39	68 10	8 07	4 26
49	0811601120(0113)21411	11	200 200		00	01811201104	01100		1.00	00110	0.0.	1.20
	o rr wh	77	(0.7)		=0	C H NO	#0 7 2	7 04	ت ب 1	50 44	7 00	5 70
30	$C_4H_8N^6$	н	140-141		98	C12H19NO4	09.10	7.94	9.81	59.44	1.98	0.78
	,		(0.1)									
31	$2,5-(CH_8)_2C_4H_6N^6$	H	155 - 160		45	$C_{14}H_{23}NO_4$	62.42	8.61	5.20	62.21	8.68	5.13
			(0.5)									
32	$C_{i}H_{*}N^{b}$	CH_3	105 - 106	D	70	$C_{13}H_{21}NO_4$	61.15	8.29	5.49	61.38	8.24	5.50
02	C H. N ^b ' ^e	ษ	30-40	ĩ	80	CuHaNO	61 15	8 20	5 49	61 37	8.07	5.63
20	OSTION .	CIL	64 65	л т То т	70	C. H. NO.	60 42	9 61	5 90	69 97	0.01	5 10
34	C ₅ H ₁₀ N ^o	Un3	04-03	D-3	10	C TL NO	04.40	0.01	5.20	04.07	0.00	5.19
35	$2-CH_3C_5H_9N^0$	н	144-148		42	$C_{14}H_{23}NO_4$	02.43	8.01	5.20	02.24	8.09	5.06
			(0.14)									
36	OC4H8N ^{b,e}	H	66-67.5	D	80	$C_{12}H_{19}NO_5$	56.02	7.44	5.44	56.08	7.43	5.58
37	$OC_4H_8N^b$	CH_3	93.5-95	D	62	$C_{13}H_{21}NO_5$	57.55	7.80	5.16	57.58	7.72	5.19
38	$SC_4H_8N^b$	н	43-44	J	63	$C_{12}H_{19}NO_4S$	52.73	6.79	5.13	52.75	6.79	5.07
			188 - 189									
			(1)									
	a ruciti a contrati	тт	150 104		40	C H NO.	50 0.0	0 10	4 01	E0 / E	P 00	1 00
39	$3,5-(CH_3)_2OC_4H_6N^6$	н	159-164		42	$O_{14}H_{23}NO_5$	58.93	8.13	4.91	08.40	8.29	4.80
			(0.14)									
40	$2,6-(CH_3)_2OC_4H_6N^b$	н	155 - 156		71	$\mathrm{C}_{14}\mathrm{H}_{23}\mathrm{NO}_{5}$	58.93	8.13	4.91	58.66	8.16	4.85
			(0.25)									
41	$C_6H_{12}N^b$	н	138 - 142		78	$C_{14}H_{23}NO_4$	62.43	8.61	5.20	62.19	8.66	5.24
			(0, 15)									
40	A OH A C.H.C.U.Nb	н	118-110	F	80	C10 Hor NOr	65 67	7 95	4 02	65 57	6 07	4 11
42		11	110-118	r T	00	C H. NO	ac ec	7 04	4.05	60 = 1	7 1 1	7.11
43	$4 - C_6 H_{5} - (\Delta^3 - C_6 H_7 N)^{\circ}$	ri T	08-69	H.	33	C19H23NU4	09.28	1.04	4.20	09.01	1.14	4.52
44	CH ₃ NC ₄ H ₈ N ^o ,	Н	61 - 62	J	49	$U_{13}H_{22}N_2O_4$	57.76	8.20	10.36	57.52	8.02	10.38
45	$C_2H_5NC_4H_8N^b$	н	52.5 - 53.5	J	62	$\mathrm{C}_{14}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{4}$	59.13	8.51	9.85	59.12	8.44	9.94
46	$(C_2H_5O_2C)_2C = CHNC_4H_8N^b$	н	115 - 122	H-J	47	$C_{20}H_{30}N_2O_8$	56.32	7.09	6.57	56.52	7.22	6.55
47	CH ₂ CONH ^g	н	52-53 5	D	10	C10H15NO5	52.39	6.60	6.11	52.64	6.77	5 93
10	C.H.OCONH [®]	н	36 5-37 5	.т	20	CuHu-NO.	50 06	6 61	5 40	51 25	6 50	5 20
48	$O_2 \Pi_5 O O O \Pi^{\circ}$	11	100.0-01.0	J	10	CoH-NO	E2 10	g 90	5.40	50 00	0.08 6 ===	5.50
49	3-0X0-UU4H6N°	n	180-184		10	C12 H17IN U6	05.13	0.32	0.10	J⊿.99	0.07	5.16
			(0.4)	-	6.2	OT NO	44.00	0 · · ·		40.00	• • • •	
50	H2NCONHNH	н	180	E,	92	C9H15N3O5	44.08	0.17	17,14	43.80	5.93	17.45
51	H2NCSNHNH	н	171 - 173	в	98	$C_9H_{15}N_3O_4S$	41.37	5.79	16.08	41.53	5.74	16.11
52	$2-H_2N-5-Cl-C_6H_2C(C_6H_5)=NNH$	H	143.5-144	D	72	$C_{21}H_{22}ClN_3O_4$	60.65	5.33	10.10	60.83	5.31	10.10
53	2-HOC6H4CH=NNH	н	115 - 116	\mathbf{F}	84	$\mathrm{C}_{15}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{5}$	58.81	5.92	9.15	58.95	5.72	9.28

			TABLE I	(Contina	(ued)							
			M.p. or	Re-								
			b.p.,	crystn.	- 26		S. marine C.	5 Caled		,	é Found	1
No.	R_1	\mathbb{R}^{5}	° C.	$solvent^a$	yield	Formula	C_{-}	н	N	С	н	N
54	$2 \cdot HOC_6H_4C(CH_3) = NNH$	11	102 - 103	F	87	$C_{16}H_{20}N_2O_5$	59.99	6.29	8.75	59.81	6.10	8.63
55	C ₆ H ₅ NHNC ₆ H ₅	11	$127 - 128^{d}$	F	61	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_{2}\mathrm{O}_{4}$	67.78	6.26	7.91	67.96	6.11	7.76
^{<i>a</i>} A =	= benzene, $B = 2$ -ethoxyethanol, $C =$	= ehloro;	form, D =	cyclohex	ane, 1	$\xi = 1, 4$ -dioxan	e, F =	ethan	ol, G	= ethe	r, H =	ethyl
acetate,	I = methanol, J = petroleum ether,	K = w	ater, and L	i = hexa	me. ⁱ	$OC_5H_5NH = 1$	furfurvl	amino	, ÓC₄ŀ	$I_8N =$	morph	iolino,
$\mathrm{C}_{5}\mathrm{H}_{10}\mathrm{N}$	= piperidino, C_4H_8N = pyrrolidiny	l, (CH₃	$)_2 C_4 \dot{H}_6 N =$	dimethy	lpyrre	olidinyl, CH ₃ C	5H9N =	= met	hylpip	eridino	$, SC_{4}H$	[5N =
thiamor	pholino, $(CH_3)_2OC_4H_6N = dimethylm$	orpholi	no, $C_6H_{12}N$	= hexal	ivdroa	zepinyl, C ₆ H ₅ C	$_{5}H_{8}N =$	= phe	nylpip	eridino	, (Δ³-C	$_{5}H_{7}N$)
= 1, 2, 5	,6-tetrahydro-1-pyridyl, $NC_4H_8N = pi$	peraziny	d, and oxo-	C_4H_6N	= 0xe	morpholino.	^c Analy	zed as	the m	aleate <i>s</i>	salt. '	¹ L. H
Groves	and G. A. Swan [J. Chem. Soc., 650 (1952)] r	eported b.p.	206 - 208	8° (1.2	2 mm.). * C. 1). Hurd	and L	. T. Sh	erwood	l, Jr. [.	I. Org.
Chem., 1	13, 471 (1948)] reported m.p. for 33 ca	. room t	emperature	and 64-6	36° for	• 36 . – / Steck r	eported	m.p. (33-64°	, see rei	f. 1 <i>. v</i>	Equi-
molar e	quivalents of reactants were heated to	gether w	ithout dilue	nt for 2.	5 hr. :	at 180°						

TABLE II

ETHYL AMINOMETHYLENE AND AMINOETHYLIDENE CYANOACETATES

		-mate 6 //				C. Calad				C7 Found			
No	в.	P.	Mr. of	erystn.	- 70 - viol 4	Vannula	0	ο Cale τr	1 NT	()	70 FUU 11	1(1	
56	$H_{a}N^{b}$	CH.	190,100	E E	pierci	CUNO	54 89		10 17		0 90	19 10	
57	HO(CHa) NH	113	75	Г С Т	00 07	$C_1H_{10}N_2O_2$	59 10	0.04	15.17	29.09	0.38	16.12	
59	CH2CO2(CH2)2NH ^c	11	104 105	(877 60	Call NO	52.10	0.07	10.21	52.08	0.20	10.15	
50	evelo-C-H-NH	CH	59 50	1-1	04 50	$C_{10}H_{11}N_{2}O_{4}$	05,09	0.24	12.00	00.00	0.20	19 40	
60	avelo C.H.NH	115	105 108 5	J	00	$C_{12} II_{18} N_2 O_2$	04.04	8.10	12.00	04.92	0.49	12.42	
61	evelo C-H-NH	CU.	74 5 75 5	1	99 77	$C_{12}\Pi_{18}\Pi_{2}O_{2}$	04.84	8.10	12.00	04.04	8.13	10.00	
01 &9	evelo Collision	C 113 IT	14.0-10.0	0 12 1.5	14	$C_{14}\Pi_{22}N_2O_2$	07.17	8.80	11.19	07.10	8.70	10.90	
62	2 CHOCHNH	11	150	F ~ 65.	40	$C_{141122}N_2O_2$	07.17	8.80	11,19	07.23	5.05	11.23	
05	2-CH3OC6H4NH 2 CH-OCN NH	CIL.	100 5 09	r r t	7.9	$C_{13}I_{14}N_2O_8$	03.40	0.73	11.38	03.17	0.93	11.32	
04	2-CH3OC6N4NH	C113 11	90.5-92	1	11	$C_{14}H_{16}N_2O_3$	64.60	6.20	10.76	04.47	0.49	10,55	
00	2-NO2C6HANH 2 HCO.C.H NU	11 11	171	r D T	29	$C_{12}\Pi_{11}N_{3}O_{4}$	50.17	4.24	10.09	54.99	4.01	10.97	
00	$2 - HCO_2C_{6}H4NH$ $2 = CCH_{10}C_{11}UNU$	71	207	DK	99	$C_{12}\Pi_{12}N_2O_4$	09.99 00.00	4.05	10.77	09.90	4.33	10.80	
07	$2, 3 - (CH_{3}O) + C(H_{3}O) + C(H_{3}O)$	OUT .	152	$\Gamma \rightarrow I \chi$	99	$C_{14}H_{16}N_2O_4$	60.86	0.84	10.14	00.08	0.70	10.11	
00	2,5-(CH3O)2C8H3NH 2, CH.OCOC.H.NH	C 113	1/0~1/4	1 IX	48 77	$C_{16}\Pi_{18}N_2O_4$	02.00	0.20	9.00	01.70	5.05	9.62	
70	5 CL 2 1/CH-ONC H-NH	11	170 170	E E	11	$C_{14}\Pi_{14}N_2O_4$	61.31	0.10 4 0 7	10.21	51.13	5.02	10.27	
70	2 (CHO) 5 (CHNHCO)CHNH	11	178~179	r The La	00	$C_{14}\Pi_{15}OIN_2O_4$	04.11	4.87	9.02	04.08	4.07	9.32	
71	$\Sigma C(C, H_0, C) C = CHNH(CH_0) NU$	rt tT	200-201	E.~- K 12	00 80	$C_{20}\Pi_{19}\Pi_{3}O_{4}$	00.74	5.24	11.00	55.74	0.18	11.30	
72	$(C, U_2) \cdot N(C, U_2) = O(N) \cdot (C + U_2) \cdot N H$	11	140	r D	00	$C_{11} H_{18} N_4 O_4$	04.89	0.92	18.29	01.07 CO 07	0.84	18.06	
7.0	$(C_{2}\Pi b)_{2} N (C\Pi_{2})_{2} N \Pi$	CIL.	00-01 59 5 55	17	99 07	$O_{12} I_{21} N_3 O_2$	60.22	8.80	17.00	00.07	8.72	10.01	
1-1	$(C_{2}\Pi_{5})_{2}\Pi(C\Pi_{2})_{2}\Pi\Pi$	113	116 117	12	95	$C_{13}\Pi_{23}\Pi_{3}O_{2}$	01.03 #0.04	9.10	10.09	01.02	9.31	10.01	
		11	110~117	I.	97	$C_{18}\Gamma_{17}N_3O_2$	10.34	5.58	13.07	10.19	5.03	13.76	
70	2-HENCEHAND		141-142		90	$C_{12}\Pi_{13}N_3O_2$	02.32	0.07	18.17	02,02	0.01	17.02	
70	$2 - \operatorname{H_2NC}_{6} \operatorname{H_4NA}_{1}$	11	122.0~120.0	F-J F	-11	$C_{13} \Pi_{15} \Lambda_3 O_2$	00.00	0.10	10.01	03.70	0.42	10.8/	
10	4-(UII3)2NO6H4NH 9- ((NC)(C)H O C)CCHNH)C H NH	11	100	r r	80	$C_{14}\Pi_{17}N_{3}O_{2}$	04.84	0.01	10.21	04.82	6.09 - 00	10.10	
00	$3-((XC)(C_2H_5O_2C)C=CHAH C_5H_4AH$	11	100	r r r	02	$C_{18}\Pi_{18}N_4O_4$	01.01 F0.00	0.12	10.81	50.89	5.09	10.70	
00	CHCHC(CH) NCH	11	97-96,0 70 80	r - J L' L'	0.1	$C_{10}\Pi_{16}\Pi_2O_4$	52.62	7.07	12.21	02.08	7.01	0.00	
01	(CH_CH_) N	11	79-80	F~K	0.4 194	$C_{17}D_{22}N_2O_2$	71.30	4.74	9.78	11,03	6.00	9.82	
04 99	(C6115C112)2.N C-1L-N ⁰	11	10-10	$\Gamma = K$ V = V	- 124 - 00	C: U. N.O	44.97	0.29	8.74	14,10	0.49	19 50	
00	OC H-N?	11	140 111	1 - IX	0.3	$C_1 \mathbf{H}_1 \mathbf{H}_1 \mathbf{N}_2 \mathbf{O}_2$	00.44 57 10	0 71	10,40	57 10	1.00	10.02	
01	OCHININ DE (CHIL) OC H N ^e	11	140-141	L.	17	$C_{10} M_{14} N_2 O_3$	01.10	0.71 7 Ci	10.00	07.12 60.4 7	0.80	10.47	
00	2,0-(C113)2OC41161N	CIL.	101 5 105 3	E T	- 114 	$C_{12}T_{18}N_2O_3$	00.48	7.01	11.70	00.47	6 10	12.12	
80 07	2,0-(0113)2004116.N	UT S	124.0-120.0	17	2-1 0-7	$C_{13}\Pi_{20}N_2O_3$	01.88	1.99	10 20	01.85	8.13	10.70	
81 00	C 6.1112.N	11	00 01	F ~ K	20	$C_{12}\Pi_{13}N_2O_2$	04.84 50.17	8.10	12.60	50.09	8.38	12.00	
00	Unitanuarian' Hoverta Nie II Na	11	00-0-E		1010 1710	$C_{1117}N_{3}O_{2}$	50.17	7.08	18.82	59.53	7.68	18.82	
-09 -00	$11 \cup (\cup 112) 2 \mathbb{N} \cup 4 \Pi 8 \mathbb{N}^{n}$	11	108.0	.A 1."	12	C 12 F1 19 N3O3	56.09	7.00	10.09	00.89 50.00	7.10	10.07	
90 04	C 113CO2(C 112)2.NC 4118.N	11	01.05	IX I	10	C. II. N.O.	- au : 93 - ee - an	7.17	14.25	00.84 20 04	1.10	14.20	
941	C 6F15C F12INC (118IN	1 L 1 T	00.01	11	19	C 17 121 N3O2	16 11	1.07	14.04	08.24	0.79	14.20	
92	112.N .N 11	11	90-91	t.	84	C (TL9:N3U)	40.44	0.89	27.08	40.73	0.74	27.30	

^a See footnote a of Table I. ^b F. S. Eberts, Jr., Biochem. Pharmacol., 8, 367 (1961). ^c Prepared by heating 57 in excess acetic anhydride. dride. F. B. Dains, O. O. Malleis, and J. T. Meyers [J. Am. Chem. Soc., 35, 970 (1913)] reported 134°. See footnote b of Table I. T. Cuvigny and H. Normant [Bull. Soc. Chim. France, 2423 (1961)] reported 62°. Prepared by heating 89 in excess acetic anhydride. h P. Schmidt and J. Druey [Helv. Chim. Acta, 39, 986 (1956)] reported 89-90°.

platinum black in glacial acetic acid resulted in a reductive cleavage of the molecule to give diethyl methylmalonate. A similar result was reported by Baker and Schlesinger.⁶

Attempts to form quaternary salts of some compounds listed in Tables I and II were unsuccessful. For example, treatment of diethyl piperidylmethylenemalonate in boiling isobutyl alcohol with methyl iodide resulted in C-N bond cleavage exclusively, with the subsequent formation of 1,1-dimethylpiperidinium diodide. Diethyl morpholinylmethylenemalonate (36) and diethyl 4-methylpiperazinylmethylenemalonate (44) underwent a similar C-N bond cleavage, with the formation of 4,4-dimethylmorpholinium iodide and 1,1,4,4-tetramethylpiperazinium diiodide, respectively.

An attempt to add ketene to diethyl [(4-hydroxy-4phenylpiperidyl)methylene]malonate by bubbling ketene into an acetone solution of the enamine resulted only in unchanged starting material. Opitz, et al.,⁷ have reported that addition of ketene to certain enamines gives cyclobutanones.

(6) R. H. Baker and A. H. Schlesinger, J. Am. Chem. Soc., 68, 2009 (1946).

(7) G. Opitz, M. Kleemann, and F. Zimmermann, Angew. Chem., 74, 32 (1962).

Chm

	TABLE III											
	Aminomethylene Malononitriles											
	R											
	$C = C(CN)_2$											
			н									
			Re-									
			erystn. ^a	%			% Caled.		0	% Found	l	
No.	R	M.p., °C.	solvent	yield	Formula	С	\mathbf{H}	N	С	н	N	
93	$\mathrm{C_5H_{10}N}^{b,c}$	92 - 93	\mathbf{F}	84	$C_9H_{11}N_3$	67.05	6.88	26.07	66.80	6.76	26.15	
94	$OC_4H_8N^{b,c}$	149 - 150	\mathbf{F}	69	$C_8H_9N_3O$	58.88	5.56	25.75	59.03	5.72	26.00	
95	$2,6-(CH_3)_2OC_4H_6N^c$	128 - 129	Κ	52	$\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{N}_{3}\mathrm{O}$	62.80	6.85	21.98	62.80	6.84	22.31	
96	$ m cyclo-C_6H_{11}NH$	177.5 - 178.5	F-K	78	$C_{10}H_{13}N_3$	68.54	7.48	23.98	68.44	7.41	24.11	
97	2-CH ₃ OC ₆ H ₄ NH	163 - 164	\mathbf{F}	91	$C_{11}H_9N_3O$	66.32	4.55	21.10	66.31	4.45	21.30	
98	$2,5-(CH_3O)_2C_6H_3NH$	196 - 197	\mathbf{H}	93	$C_{12}H_{11}N_{3}O_{2}$	62.87	4.84	18.33	62.40	4.80	18.31	
99	$3-ClC_6H_4NH^d$	200 - 201	Ι	95	$C_{10}H_6ClN_3$	58.95	2.97	20.63	58.44	3.05	20.88	
100	$4-(CH_3)_2NC_6H_4NH$	270-271.5	E-K	80	$C_{12}H_{12}N_4$	67.90	5.70	26.40	67.78	5.86	26.67	
101	$(NC)_2C = CHNH(CH_2)_2NH$	237 - 238	B-K	61	$C_{10}H_8N_6$	56.59	3.80	39.61	56.56	3.95	39.38	
a See t	footnote a of Table I b A T	Shulgin IU S. P.	atent 3.0	57 864 (Oct 0 1962)] r	enorted r	n n 00.	-02° for	93 and 1	48-150	° for Q4	

^a See footnote *a* of Table I. ^b A. T. Shulgin [U. S. Patent 3,057,864 (Oct. 9, 1962)] reported m.p. $90-92^{\circ}$ for **93** and 148-150° for **94**. ^c See footnote *b* of Table I. ^d C. C. Price and V. Boekelheide [J. Am. Chem. Soc., **68**, 1246 (1946)] reported 198-199°.

TABLE IV Miscellaneous Enamines

		%			9	% Caled.				
No.	Compound	B.p., °C. (mm.)	\mathbf{yield}	Formula	С	H	N	С	Н	Ν
102	$C_4H_8NCH = C(COCH_3)CO_2C_2H_5^a$	153(0.4)	52	$C_{11}H_{17}NO_2$	62.54	8.11	6.63	62.77	8.40	6.67
103	$OC_4H_8NCH = C(COCH_3)CO_2C_2H_5^a$	143 - 145(0.06)	53	$C_{11}H_{17}NO_4$	58.13	7.54	6.16	58.19	7.32	6.00
104	$C_5H_{10}NCH = C(COCH_3)CO_2CH_3^a$	145 - 146(0.25)	40	$\mathrm{C}_{11}\mathrm{H}_{17}\mathrm{NO}_8$	62.54	8.11	6.63	62.67	8.28	6.36
a										

^{*a*} See footnote b of Table I.

The reaction of both diethyl piperidylmethylenemalonate and diethyl morpholinylmethylenemalonate with benzamidine gave 5-carbethoxy-4-hydroxy-2phenylpyrimidine. Some hydrolysis occurred in the latter reaction, leading to the formation of 5-carboxy-4hydroxy-2-phenylpyrimidine. The reaction of diethyl ethoxymethylenemalonate with benzamidine has also been reported to give 5-carbethoxy-4-hydroxy-2-phenylpyrimidine.⁸

In a similar fashion, it was found that diethyl ethoxyethylidenecyanoacetate reacted with benzamidine under comparable conditions to give 5-cyano-4-hydroxy-6methyl-2-phenylpyrimidine. During the formation of the pyrimidine ring in the compounds mentioned, displacement of the amino function occurs with considerable facility as does displacement of the ethoxy group.

Heating a solution of *o*-phenylenediamine and ethoxymethylenemalononitrile in boiling ethanol resulted in the expulsion of the malononitrile moiety with a concomitant ring closure to form benzimidazole. Heating an ethanolic solution of o-phenylenediamine and ethyl 3-ethoxy-2-cyanocrotonate under reflux led to the formation of 2-methylbenzimidazole. In the former reaction, it is possible to isolate (2-aminoanilinomethylene)malononitrile if the reaction is carried out at room temperature. In the latter reaction, ethyl (2-aminoanilinomethylene)cyanoacetate (76) can be obtained if the reaction time is reduced. Formation of these two enamines must occur prior to the formation of benzimidazoles. In each case, attack of the primary amino nitrogen on the β -carbon of enamine III, accompanied by the elimination of the resonance-stabilized anion V, results in the ring closure. The tendency to form the aromatic benzimidazole system IV must act as a strong driving force which favors this reaction.

(8) P. C. Mitter and J. C. Bardhan, J. Chem. Soc., 2179 (1923).

Experimental⁹

Generally, the enamines listed in Tables I–IV were prepared by heating under reflux an ethanolic solution of the appropriate amine and ethoxymethylene compound. An example is given below. Any significant departures from this procedure are indicated in the footnotes of the tables.

Diethyl Pyrrolidylmethylenemalonate (30).—A solution of 14.2 g. of pyrrolidine and 43.2 g. of diethyl ethoxymethylenemalonate in 50 ml. of absolute ethanol was heated under reflux for 1 hr. The solvent was removed *in vacuo* on a rotary evaporator. The residual oil (47 g.) was distilled through a Claisen head. After an initial forerun of 11.1 g., b.p. $40-145^{\circ}$ (0.15 mm.), there was obtained 28.2 g. of product, b.p. $140-141^{\circ}$ (0.1 mm.).

Reduction of Diethyl [(4-Hydroxy-4-phenylpiperidyl)methylene]malonate (42) with Lithium Aluminum Hydride.—A mixture of 3.5 g. of diethyl[(4-hydroxy-4-phenylpiperidyl)methylene]malonate, 200 ml. of anhydrous ether, and 2 g. of lithium aluminum hydride was heated under reflux for 2 hr. and was left standing overnight at room temperature. The excess hydride was decomposed by the slow addition of 6 ml. of water. The resulting granular solid was washed twice with 200 ml. of ether. The combined ethereal solutions were concentrated to give 2.5 g. of colorless oil, which crystallized on standing. Recrystallization from ethanol afforded 1.5 g. of 2-(4-hydroxy-4-phenylpiperi-

⁽⁹⁾ Melting points were taken in capillary tubes (Thomas-Hoover capillary melting point apparatus) on a corrected basis.

dyl)-2-propen-1-ol, m.p. 74-75°. The n.m.r. spectrum was consistent with the proposed structure, with the expected hydrogen ratio of 2:2, peaks occurring at 3.06 (for =CH₂) and at 4.1 τ (for the methylene group of CH₂OH).

Anal. Caled. for $C_{15}H_{21}NO_2$: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.61; H, 8.29; N, 5.77.

The picrate, formed in methanol on addition of a methanol solution of picric acid, decomposed violently with a brilliant purple flash at 243°, with gradual darkening above 150°.

5-Cyano-6-hydroxy-4-methyl-2-phenylpyrimidine.-To a solution of 0.4 g. of sodium in 50 ml. of absolute ethanol was added 1.1 g. of benzamidine hydrochloride. After a few minutes, 1.3 g. of ethyl 3-ethoxy-2-cyanoacetate was added. The reaction mixture was heated under reflux for 2 hr. and then allowed to stand overnight at room temperature. After the addition of 25 ml. of water, the reaction mixture was neutralized with glacial acetic acid. A precipitate was deposited that amounted to 1 g. Dissolution of this material in concentrated ammonium hydroxide, followed by acidification with glacial acetic acid, afforded 0.8 g. of product, m.p. 290–291°. Anal. Calcd. for $C_{12}H_9N_3O$: C, 68.23; H, 4.30; N, 19.90.

Found: C, 68.59; H, 4.42; N, 20.03.

5-Carbethoxy-4-hydroxy-2-phenylpyrimidine.—To a solution of 1.38 g. of sodium in 100 ml. of absolute ethanol was added 6.25 g. of benzamidine hydrochloride, followed by 5.1 g. of diethyl piperidylmethylenemalonate. The reaction mixture was heated under reflux with stirring for 2 hr. After filtering the reaction mixture, the ethanol was removed from the filtrate in vacuo and the residue was acidified with glacial acetic acid. The precipitate that was deposited amounted to 1 g. Recrystallization from ethanol afforded 0.9 g. of product, m.p. 214-215°. A mixture melting point with an authentic sample gave no depression.

Diethyl morpholinylmethylenemalonate (5.1 g.) reacted with 3.0 g. of benzamidine hydrochloride under the same conditions to give 0.5 g. of 5-carbethoxy-4-hydroxy-2-phenylpyrimidine, m.p. 214-215°, and 1.2 g. of 5-carboxy-4-hydroxy-2-phenylpyrimidine, m.p. 270.5-271.5°.

Formation of Benzimidazole from o-Phenylenediamine and Ethoxymethylenemalononitrile.---A solution of 6.1 g, of ethoxymethylenemalononitrile and 5.2 g, of o-phenylenediamine in 75 ml. of absolute ethanol was heated under reflux for 1 hr. After removal of the solvent in vacuo on a rotary evaporator, the residual solid was washed with petroleum ether and amounted to 7 g., m.p. 171–173°. Comparison of the infrared spectra and a mixture melting point with benzimidazole showed the two materials to be identical.

Formation of 2-Methylbenzimidazole from o-Phenylenediamine and Ethyl 3-Ethoxy-2-cyanocrotonate.—A solution of 27.5 g. of ethyl 2-cyano-3-ethoxycrotonate and 16.2 g. of o-phenylenediamine in 50 ml. of absolute ethanol was heated under reflux for 7.5 hr. The solvent was removed in vacuo on a rotary evaporator. The residue amounted to 24 g., m.p. 150-160°. Several recrystallizations from ethyl acetate-petroleum ether afforded pure 2-methylbenzimidazole, m.p. 176-177° (lit.⁴⁰ m.p. 176°).

Acknowledgments.-The authors are indebted to Messrs. Lee E. McCardle and Ronald D. Stewart for their able technical assistance, to Dr. Gordon Ellis and staff for the microanalyses, and to Dr. M. Gluckman for the pharmacological evaluation.

(10) M. A. Phillips, J. Chem. Soc., 2393 (1928).

Cyclic Analogs and Congeners of Succinyl Dicholine^{1,2}

John F. McCarthy, Joseph G. Cannon,³

School of Pharmacy, University of Wisconsin, Madison, Wisconsin

JOSEPH P. BUCKLEY, AND WILLIAM J. KINNARD

University of Pittsburgh, Pittsburgh, Pennsylvania

Received June 30, 1963

Dicholine- and bis(N,N-dimethylhydraziniumethyl) esters of cis- and trans-cyclopropane- and cyclobutane-1,2-dicarboxylic acids have been prepared to study the effect of forcing the ester groups to assume a fixed conformation which would be similar to one of the conformations of succinyl dicholine. Biological test data are presented.

If the possible conformations of the succinic acid portion of succinvl dicholine are considered, it would be expected that in vitro a staggered conformation would be favored. The question then arises as to whether this conformation would also be favored for adsorption at an *in vivo* receptor surface. It was the purpose of the research reported herein to limit the degrees of rotational freedom about the two carbons alpha to the carboxyls of certain succinic acid congeners, thus forcing the ester groups to assume a fixed conformation which would be similar to one of the extreme conformations of succinyl dicholine. Inspection of Dreiding models of the dicholine esters of *cis*-cyclopropane- and of cis-cyclobutane-1,2-dicarboxylic acids indicates that they coincide (as regards the carbonyl groups) with the eclipsed form of the succinate ester. The trans isomers are nearly superimposable on the staggered conformation of the succinate ester. Since the cyclopropane and the cyclobutane rings are small, there should be a minimum of steric interference by the ring with the receptor surfaces involved, and it might be possible to evaluate the biological effects induced by the enforcement of specific conformations.

Tammelin⁴ has prepared analogs of dicholine esters of saturated alkyl dicarboxylic acids from oxalic through adipic, in which one nitrogen-methyl of each choline was replaced by a primary amino group, forming a hydrazinium structure. These hydrazine analogs of choline esters possessed neuromuscular blocking activity, but they were in general less potent than the corresponding dicholine esters.⁵ Nevertheless, it appeared that comparative studies of ammonium and hydrazinium

⁽¹⁾ Presented to the Division of Medicinal Chemistry of the American Chemical Society, Los Angeles, California, April 1-4, 1963. Abstracted in part from a thesis submitted by John F. McCarthy in partial fulfillment of the requirements of the degree of Doctor of Philosophy. University of Wisconsin, 1962.

⁽²⁾ The investigation at the University of Wisconsin was supported by Fellowship Grant MF-11,607, National Institutes of Health.

⁽³⁾ To whom correspondence should be addressed. Present address: College of Pharmacy, State University of Iowa, Iowa City, Iowa.

⁽⁴⁾ L. E. Tammelin, Acta Chem. Scand., 10, 1068 (1956).

⁽⁵⁾ T. Fredriksson, Acta Pharmacol. Toxicol., 13, 86 (1957).