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Abstract The Diels–Alder reaction was exploited for the preparation of
novel long-wavelength chlorin photodynamic therapy photosensitizers.
The styryl group and furan carboxamide substituents were used as di-
ene components in [4+2] cycloaddition functionalizations.
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Chlorins, which are porphyrin derivatives, are widely
used as sensitizers in photodynamic therapy (PDT).1,2 A
number of chlorin derivatives were prepared by functional
transformations of pheophorbide a and its various deriva-
tives in the search for efficient PDT photosensitizers. Sever-
al points around the porphyrin core were identified for
functionalization (Figure 1). One of the synthetic approach-
es to functionalized chlorins exploits Diels–Alder cycloaddi-
tions;3 here, the chlorin acts as a diene component (consist-
ing of π-bonds of vinyl substituent and ring A pyrrole). In a
continuation of our synthetic endeavors in cycloaddition4

and porphyrin chemistry,5 the application of porphyrins in
PDT,6 and with the aim of preparing novel long-wavelength
PDT sensitizers, we studied selected Diels–Alder transfor-
mations of pheophorphyrin a and pheophorbide a. These
results are the topic of this paper.

Dimethyl pheophorbide a (1) was isolated from Spiruli-
na Pacifica. Dimethyl pheophorphyrin a (2) was obtained
by oxidation of 1 with 2,3-dichloro-5,6-dicyano-1,4-benzo-
quinone (DDQ; 5) in 60% yield by following the procedure
described for chlorin e6.7 Whereas the vinylic group of 2 can
participate in Diels–Alder reactions, it seems to react opti-
mally only with very reactive/electron-poor dienophiles.
Hence, heating a mixture of pheophorphyrin 2 with tetra-
cyanoethylene (TCNE; 6) in dichloromethane solution

(sealed tube, 4 h, 80 °C) produced, after chromatographic
purification, Diels–Alder adduct 3 across the 2–32 positions
in 63% yield (Scheme 1) as a 1:1 mixture of 2-epimers.8 The
1H NMR spectrum confirmed the presence of the new exo-
cyclic π-bond in the adduct (a triplet at δ = 7.01 ppm and
new methylene multiplet at δ = 4.09 ppm), in conjunction
with loss of the vinylic protons, showing that the expected
Diels–Alder cycloaddition onto the vinylic double bond had
taken place. Another indication that reaction involves ring
A is the shift of the C2 methyl signal towards higher field,
from δ = 3.38 to 2.36 (2.39) ppm.

Analogous TCNE reaction with 1 (sealed tube, CH2Cl2, 16
h, 80 °C) produced a complex mixture of products in which
the proton signals of the vinylic and isocyclic E ring moi-
eties, as well as of the 5-meso position of 1 were absent in
the 1H NMR spectrum.

Furthermore, cycloadditions of 1 with maleic anhydride
7 employing various reaction conditions failed both in a
sealed tube (chloroform or toluene, 4 d, 120 °C) and under
ultra-high pressure (CH2Cl2, 6 kbar, 4 d, 70 °C); whereas
heating in a microwave reactor at 150 °C produced methyl
pyropheophorbide 4 in quantitative yield within two hours.

Figure 1  Functionalization points of pheophorbide a
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Scheme 1  Diels–Alder reactions of dimethyl pheophorphyrin a
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Scheme 2  Diels–Alder cycloadditions to furyl pheophorbide a
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Diels–Alder reactions of 1 with N-methyl maleimide 14
(sealed tube, toluene, 14 h, 120 °C), or DMAD (sealed tube,
toluene, 3 d, 120 °C), gave unchanged starting material. The
application of arynes as highly reactive dienophiles was
also unfruitful, because 1 was not stable to the reaction
conditions. Generation of benzyne from anthranilic acid
and isoamyl nitrite in situ by heating in dioxane,9 or prepa-
ration of 4,5-di(trimethylsilyl)benzyne from 1,2,4,5-tetra-
(trimethylsilyl)benzene at room temperature (PIDA, TFA,
TBAF, DIPEA)10 afforded intractable mixtures. These results
are in good accord with previous reports on the low cyc-
loaddition reactivity of 1.6

An increase in cycloaddition reactivity of 1 was
achieved by derivatization of ring E. Nucleophilic ring open-
ing with furfurylamine 12 (THF, reflux, 2 h) afforded chlorin
e6 furfuryl carboxamide 8 in 29% yield (Scheme 2). The fu-
ryl moiety showed much higher reactivity towards dieno-
philes such as dimethyl acetylenedicarboxylate (DMAD; 13)
and N-methyl maleimide (MI; 14).

Thermal Diels–Alder reactions of 8 with DMAD were
carried out by conventional heating in a sealed tube or in a
microwave reactor. The best yield was achieved under mi-
crowave reaction conditions (toluene, 1.5 h, 100 °C, 100 W,
38%), whereas MW heating for one hour gave a somewhat
lower conversion of 8 (>90%), and MW heating without sol-
vent produced a complex mixture of products. In contrast,
conventional heating of 8 and DMAD in a sealed glass tube
(toluene, 100 °C, 16 h), provided 7-oxanorbornadiene de-
rivative 9 cleanly in 38% yield. Introduction of the 7-oxanor-
bornadiene structure is of particular interest for the possi-
bility of increased tissue selectivity for peptides and
proteins containing free thiol groups.11 Structural determi-
nation of product 9 was carried out by combined 1D and 2D
COSY and NOESY correlations as well as by comparison
with NMR data for model furan and N-Boc-furfurylamine
cycloadducts with DMAD and MI.12 NMR analysis revealed

the formation of a 134 1:1 mixture of diastereoisomers 9,
with duplication of signals, for instance for the methyl es-
ters of 7-oxanorbornadiene moiety, as well as for the 152

methyl esters and oxa bridgehead protons. These data are
consistent with formation of a new oxanorbornadiene ring
system in 9. The regiochemistry of the oxygen bridge is de-
pendent on the facial orientation between the alkyne and
the furan ring of 8 (Scheme 3).

Thermal reversibility of furan DA adducts was preclud-
ed by carrying out reaction of 8 with maleimide under ul-
tra-high pressure at room temperature (6 kbar, 14 h, CH2-
Cl2).13 Chromatographic workup afforded the correspond-
ing 134 1:1 epimeric mixture of exo-adducts 10 in 34%
yield. Analogously, ultra-high pressure cycloaddition of 5
with maleic anhydride (6 kbar, 3 d, r.t., CH2Cl2) produced a
134 1:1 diastereomeric mixture of exo-adducts 11, as
shown by NMR analysis of the crude reaction mixture.

Introduction of bulky substituents at the 132 position in
products 9 and 7 are predicted to prevent their self-aggre-
gation on steric grounds.14

In conclusion, we have shown that pheophorbide a can
be effectively functionalized by cycloaddition reactions un-
der conventional and non-classical reaction conditions
(MW irradiation and ultra-high pressure).
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Scheme 3  Formation of 7-oxanorbornadiene analogues
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