

Available online at www.sciencedirect.com



INORGANIC CHEMISTRY COMMUNICATIONS

Inorganic Chemistry Communications 9 (2006) 1204-1206

www.elsevier.com/locate/inoche

# Synthesis and structure of the tetradeca-iron(III) oxide–alkoxide cluster [Bu<sub>4</sub>N]<sub>2</sub>[Fe<sub>14</sub>O<sub>8</sub>(OCH<sub>2</sub>CH<sub>3</sub>)<sub>20</sub>Cl<sub>8</sub>]

Craig A. Grapperhaus \*, Martin G. O'Toole, Mark S. Mashuta

Department of Chemistry, University of Louisville, 2320 So. Brook St., Louisville, KY 40292, United States

Received 26 June 2006; accepted 25 July 2006 Available online 2 August 2006

#### Abstract

The iron(III) oxide–alkoxide cluster, di-tetra-*n*-butylammonium octachloro-tetra( $\mu_3$ -oxo)-tetra( $\mu_4$ -oxo)- icosa( $\mu_2$ -ethoxo)-tetradecairon(III), has been isolated and its X-ray crystal structure determined. © 2006 Elsevier B.V. All rights reserved.

Keywords: Iron; Oxo compounds; Alkoxides; Cluster compounds; Sulfur; Oxidation; Oxygen

The oxidation of iron compounds to iron oxides is a well known, yet complex process. During our studies of the oxygen sensitivity of iron-thiolate complexes, we reproducibly generate an insoluble orange powder upon exposure of LFeCl (1) (L = 4,7-bis(2'-methyl-2'-mercaptopropyl)-1thia-4,7-diazacyclononane) to dioxygen in solution [1,2]. The oxidation product is insoluble in all common solvents preventing full spectroscopic characterization, but it displays a diagnostic IR spectrum. Similar products were reported by others studying iron-thiolate oxygen sensitivity, but the product was never fully characterized [3–6]. Herein we report the isolation and structure of the iron(III) oxide–alkoxide cluster,  $[Bu_4N]_2[Fe_{14}O_8(OCH_2CH_3)_{20}Cl_8]$ (2).

Complex 2 is the largest iron(III) oxide–alkoxide cluster known to date. Previously, clusters with 5–10 iron centers have been isolated and structurally characterized [7–15]. Typically, these clusters are derived from iron(III) chloride and the appropriate alkoxide. Chloride from the iron source may be present or absent in the product. These clusters have been studied for a variety of reasons including their magnetic properties [8,14,15] and application to homogenous catalysis [7,9–11]. Very recently, XAS data on whole blood cells from *Perophora annectens* reveal the presence of an iron alkoxide cluster,  $[Fe_4-\mu-(OR)_5(OR)_{9-10}]$  [16].

Previously, we reported the synthesis of 1 from  $H_2L$ , NEt<sub>3</sub>, and [NBu<sub>4</sub>][FeCl<sub>4</sub>] in ethanol [1]. Complex 1 precipitates as a blue solid, which is isolated by filtration leaving a dark brown filtrate. The filtrate was allowed to stand in air over a period of several days yielding 2 as orange block shaped crystals with an infrared spectrum identical to the oxidation product of 1. The structure of 2 was determined by X-ray crystallography [17–22].

Compound 2 crystallizes in the tetraganol space group  $P\bar{4}2_1c$  with a = 17.0996(10) Å and c = 21.027(3) Å.<sup>1</sup> Since crystals of 2 rapidly degrade upon removal from the mother liqueur, all manipulations were preformed in a cold room. Numerous crystals were selected and mounted in an attempt to obtain a more precise crystal structure, however a higher quality data set could not be obtained. The data

<sup>\*</sup> Corresponding author. Tel.: +1 502 852 5932; fax: +1 502 852 8149. *E-mail address:* grapperhaus@louisville.edu (C.A. Grapperhaus).

<sup>1387-7003/\$ -</sup> see front matter  $\odot$  2006 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2006.07.027

<sup>&</sup>lt;sup>1</sup> Crystal data for 1:  $[Bu_4N]_2[Fe_{14}O_8(OCH_2CH_3)_{20}Cl_8]$ ,  $FW = 2579.62 \text{ g mol}^{-1}$  tetragonal, space group  $P\bar{4}2_1c$ , a = 17.0996(10) Å, c = 21.027(3) Å, V = 6148.1(9) Å<sup>3</sup>, Z = 2,  $\mu = 1.827 \text{ mm}^{-1}$ ,  $\rho = 1.393 \text{ g cm}^{-3}$ . Data were collected on a Bruker Smart Apex CCD using Mo K $\alpha$  radiation. For all 5447 unique reflections (R(int) = 0.2003), the final anisotropic full-matrix least-squares refinement on  $F^2$  for 240 variables data converged at  $R_1 = 0.1018$  and  $wR_2 = 0.2276$  with a GOF of 1.075.

set was collected at low temperature, 100 K. A representation of the  ${\rm [Fe_{14}O_8(OCH_2CH_3)_{20}Cl_8]}^{2-}$  dianion is shown in Fig. 1.

Compound 2 contains four unique iron centers, labeled  $Fe1^{a}$ ,  $Fe2^{a}$ ,  $Fe3^{a}$ , and  $Fe4^{a}$  (Fig. 1). There are 10 additional symmetry generated iron centers. The seven unique oxygen atoms include five  $\mu_2$ -ethoxides (O1<sup>*a*</sup>-O5<sup>*a*</sup>), a  $\mu_3$ -oxo (O6<sup>*a*</sup>), and a  $\mu_4$ -oxo (O7<sup>*a*</sup>). For each O-donor, symmetry generates three additional sites. The Fe-OC<sub>2</sub>H<sub>5</sub> bond distances (Table 1) fall in the range of 1.946(11)-2.051(10) Å with an average of 2.00(1) Å that is identical within error to a previously reported Fe–OC<sub>2</sub>H<sub>5</sub> ( $\mu_2$ ) distance of 2.009(1) Å [14]. The Fe– $\lambda^3$ O distances fall within error of related structures, 1.911(1) Å, and range from 1.853(10) to 1.954(9) Å with an average of 1.91(1) Å [14]. The Fe– $\lambda^4$ O distances vary from 1.962(9) to 2.097(10) Å, with an average of 2.00(1) Å near the reported value of 2.011(7) Å [14]. The cluster also contains two unique terminal chlorides, Cl1<sup>a</sup> and  $Cl2^{a}$ , and six additional symmetry generated chlorides. The Fe1-Cl1 and Fe2-Cl2 distances of 2.341(4) and 2.241(5) Å are within the expected range. Overall, the dianion of 2 contains a cluster of 14 iron centers, 20  $\mu_2$ -ethoxides, four µ3-oxo bridges, four µ4-oxo bridges, and eight terminal chlorides. Based on charge balance, each iron exists in the ferric state.

The 14 iron centers of 2 are arranged in a pair of pointsharing Fe<sub>7</sub>-ditetrahedra (Fig. 2). An Fe<sub>4</sub>-tetrahedron can

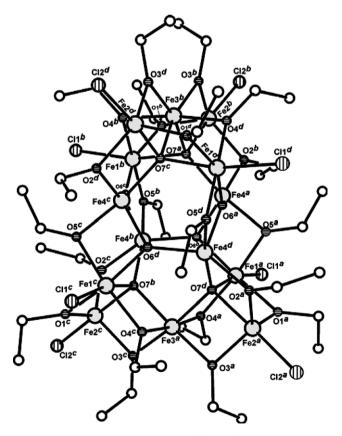



Fig. 1. A PLUTO representation of the dianion of **2**. The atoms from the asymmetric unit are labeled as *a*. Other positions are symmetry generated; b (y, 1 - x, -z), c (1 - x, 1 - y, z), d (1 - y, x, -z).

| Table 1  |      |           |         |   |
|----------|------|-----------|---------|---|
| Selected | bond | distances | (Å) for | 2 |

| Selected bond distances (A) for 2  |           |                                   |           |  |  |
|------------------------------------|-----------|-----------------------------------|-----------|--|--|
| Fe1 <sup>a</sup> -O1 <sup>a</sup>  | 2.093(9)  | Fe3 <sup>a</sup> –O3 <sup>a</sup> | 2.010(10) |  |  |
| $Fe1^{a}-O4^{a}$                   | 1.971(10) | $Fe3^{a}-O4^{a}$                  | 2.051(10) |  |  |
| Fel <sup>a</sup> –O5 <sup>a</sup>  | 1.952(10) | Fe3 <sup>a</sup> –O7 <sup>d</sup> | 1.973(9)  |  |  |
| Fe1 <sup>a</sup> –O6 <sup>b</sup>  | 1.954(9)  |                                   |           |  |  |
| $Fe1^{a}-O7^{d}$                   | 2.097(10) | $Fe4^{d}-O2^{a}$                  | 2.047(10) |  |  |
| Fe1 <sup>a</sup> -Cl1 <sup>a</sup> | 2.341(4)  | $Fe4^d$ – $O5^d$                  | 1.976(9)  |  |  |
| $Fe2^{a}-O1^{a}$                   | 1.956(11) | $Fe4^{d}-O6^{a}$                  | 1.853(10) |  |  |
| $Fe2^a - O2^a$                     | 1.946(11) | $Fe4^d$ – $O6^d$                  | 1.924(10) |  |  |
| $Fe2^a - O3^a$                     | 1.953(11) | $Fe4^d$ – $O7^d$                  | 1.962(9)  |  |  |
| $Fe2^{a}-O7^{d}$                   | 1.992(9)  |                                   |           |  |  |
| Fe2 <sup>a</sup> –Cl2 <sup>a</sup> | 2.241(5)  |                                   |           |  |  |

be formed with Fe1<sup>*a*</sup>, Fe2<sup>*a*</sup>, Fe3<sup>*a*</sup>, and Fe4<sup>*d*</sup>. Fe3<sup>*a*</sup> sits on the special position (0.5, 0.5, z) and serves as the joining point for the second tetrahedron, which also contains Fe1<sup>*c*</sup>, Fe2<sup>*c*</sup>, and Fe4<sup>*b*</sup>. The tetrahedra are also connected by O6 linkages between Fe1<sup>*c*</sup>/Fe4<sup>*d*</sup> and Fe1<sup>*a*</sup>/Fe4<sup>*b*</sup>. The O6 linkage also extends out to Fe4 positions in the second Fe<sub>7</sub>-ditetrahedra, which sits across the cluster and perpendicular to the first. The two Fe<sub>7</sub> cores are also linked together by four  $\mu_2$ -ethoxides, consisting of Fe1<sup>*a*</sup>, O5<sup>*a*</sup>, and Fe4<sup>*a*</sup> and their symmetry generated equivalents.

An isolated Fe<sub>4</sub>-tetrahedron is shown in Fig. 3. As shown, Fe2<sup>*a*</sup> sits atop of the tetrahedron in a triganol bipy-ramidal environment with  $\mu_2$ -ethoxides in all three equatorial positions. The ethoxides O1<sup>*a*</sup>, O2<sup>*a*</sup>, and O3<sup>*a*</sup> bridge the

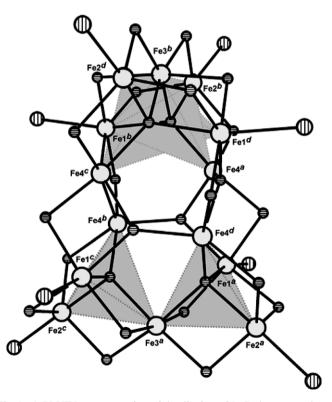



Fig. 2. A PLUTO representation of the dianion of **2**. Carbon atoms have been omitted. The Fe<sub>7</sub>-ditetrahedra are outlined in gray. The atoms from the asymmetric unit are labeled as *a*. Other positions are symmetry generated; *b* (y, 1 - x, -z), *c* (1 - x, 1 - y, z), *d* (1 - y, x, -z).

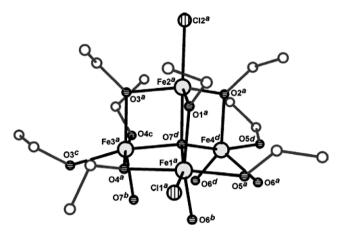



Fig. 3. A PLUTO representation of a Fe<sub>4</sub>-tetrahedron from **2**. The atoms from the asymmetric unit are labeled as *a*. Other positions are symmetry generated; b(y, 1 - x, -z), c(1 - x, 1 - y, z), d(1 - y, x, -z).

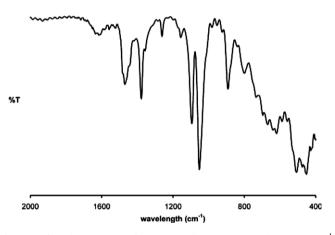



Fig. 4. Infrared spectrum of  ${\bf 2}$  prepared as a KBr pellet at  $4\ \text{cm}^{-1}$  resolution.

Fe2<sup>*a*</sup>-Fe1<sup>*a*</sup>, Fe2<sup>*a*</sup>-Fe3<sup>*a*</sup>, and Fe2<sup>*a*</sup>-Fe4<sup>*d*</sup> edges of the tetrahedron, respectively. A terminal chloride, Cl2<sup>*a*</sup>, and a  $\mu_4$ -oxo, O7<sup>*d*</sup>, sit in the axial positions of Fe2<sup>*a*</sup>. All four iron centers are coordinated to O7<sup>*d*</sup>, which is located on the interior of the Fe<sub>4</sub>-tetrahedron. A fourth  $\mu_2$ -ethoxide, O4<sup>*a*</sup>, sits along the Fe1<sup>*a*</sup>-Fe3<sup>*a*</sup> edge. The pseudo-octahedral environment about Fe3<sup>*a*</sup> is completed by the symmetry generated equivalents O3<sup>*c*</sup>, O4<sup>*c*</sup>, and O7<sup>*b*</sup> in the adjoining point-sharing Fe<sub>4</sub>-tetrahedron. The environment around Fe1<sup>*a*</sup> is completed by O6<sup>*b*</sup>, a  $\mu_3$ -oxo bridge, which joins a single Fe1 with two Fe4 sites. A  $\mu_2$ -ethoxy bridge, O5, between Fe1 and Fe4 completes a diamond core and the coordination environment of Fe1 and Fe4.

The infrared spectrum of **2** is shown in Fig. 4. The IR shows weak bands at 457 and 511 cm<sup>-1</sup>, which are similar to those in  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> [23]. The more intense bands at 806 and 893 cm<sup>-1</sup> are consistent with the presence of alkoxide in the sample. This is further confirmed by the array of bands at 1053, 1095, 1379, and 1471 cm<sup>-1</sup> [12]. Finally, C–H bending modes are observed at 2875, 2929, and 2960 cm<sup>-1</sup> (not shown).

In conclusion, the orange, insoluble product from the oxidation of iron-thiolate complexes in alcohol has been

identified as an iron(III) oxo-alkoxide cluster. The tetradecairon(III) cluster has an IR spectrum consistent with the thiolate oxidation product upon oxidation of the filtrate from the synthesis of **1**. This cluster, **2**, is the largest member of the growing family of iron(III) oxo-alkoxides.

## Acknowledgement

Acknowledgment is made to the National Science Foundation (CHE-0238137) for funding provided to C.A.G. CCD X-ray equipment was purchased through funds provided by the Kentucky Research Challenge Trust Fund.

## Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.inoche. 2006.07.027.

#### References

- C.A. Grapperhaus, M. Li, A.K. Patra, S. Poturovic, P.M. Kozlowski, M.Z. Zgierski, M.S. Mashuta, Inorg. Chem. 42 (2003) 4382–4388.
- [2] C.A. Grapperhaus, M.G. O'Toole, unpublished results.
- [3] T.C. Harrop, P.K. Mascharak, Acc. Chem. Res. 37 (2004) 253-260.
- [4] C.M. Lee, C.H. Hsieh, A. Dutta, G.H. Lee, W.F. Liaw, J. Am. Chem. Soc. 125 (2003) 11492–11493.
- [5] C.M. Lee, C.H. Chen, H.W. Chen, J.L. Hsu, G.H. Lee, W.F. Liaw, Inorg. Chem. 44 (2005) 6670–6679.
- [6] R.M. Theisen, J. Shearer, W. Kaminsky, J.A. Kovacs, Inorg. Chem. 43 (2004) 7682–7690.
- [7] S. Asirvatham, M.A. Khan, K.M. Nicholas, Inorg. Chem. 39 (2000) 2006–2007.
- [8] H.K. Chae, C. Hwang, Y. Dong, H. Yun, H.G. Jang, Chem. Lett. (2000) 992–993.
- [9] K. Hegetschweiler, H. Schmalle, H.M. Streit, W. Schneider, Inorg. Chem. 29 (1990) 3625–3627.
- [10] K. Hegetschweiler, H.W. Schmalle, H.M. Streit, V. Gramlich, H.U. Hund, I. Erni, Inorg. Chem. 31 (1992) 1299–1302.
- [11] B.J. O'Keefe, S.M. Monnier, M.A. Hillmyer, W.B. Tolman, J. Am. Chem. Soc. 123 (2001) 339–340.
- [12] G.A. Seisenbaeva, S. Gohil, E.V. Suslova, T.V. Rogova, N.Y. Turova, V.G. Kessler, Inorg. Chim. Acta 358 (2005) 3506–3512.
- [13] J. Spandl, M. Kusserow, I. Brudgam, Z. Anorg. Allg. Chem. 629 (2003) 968–974.
- [14] M. Veith, F. Gratz, V. Huch, Eur. J. Inorg. Chem. (2001) 367-368.
- [15] M. Veith, F. Gratz, V. Huch, P. Gutlich, A. Ensling, Z. Anorg. Allg. Chem. 630 (2004) 2329–2336.
- [16] P. Frank, A. DeTomaso, B. Hedman, K.O. Hodgson, Inorg. Chem. 45 (2006) 3290–3931.
- [17] SMART (v.5628), Bruker Advanced X-ray Solutions, Inc., Madison, WI, 2002.
- [18] SAINT (v6.36), Bruker Advanced X-ray Solutions, Inc., Madison, WI, 2002.
- [19] G.M. Sheldrick, SADABS (v2.02), University Gottingen, Gottingen, Germany, 2001.
- [20] G.M. Sheldrick, SHELXS-90, Acta Crystallogr. A46 (1990) 467.
- [21] G.M. Sheldrick, SHELXL-97, University Gottingen, Gottingen, Germany, 1997.
- [22] SHELXTL (v6.12). Bruker Advanced X-ray Solutions, Inc. Madison, WI (2001).
- [23] R. Balasubramaniam, A.V.R. Kumar, Corros. Sci. 45 (2003) 2451– 2465.