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Abstract

Non-racemic terminal long-chain alkyl epoxides are prepared from racemic epoxides and 1 Rig)%aad
(S,9-salen(Co)lll catalysts following a modified procedure for kinetic resolution. The ee’s for all epoxides (C-10,
C-12, C-14, C-16, C-18, C-20) exceed 95% and the chemical yields range from 85% to 95%. © 1998 Elsevier
Science Ltd. All rights reserved.

Our interest in designing mimetics of molecules that comprise biomembranes has led us to prepare
non-racemic long-chain 2-alkyloxiranes. Many pioneering methods focus on converting long-chain
alkene$™ and long-chain alkyl chirots!? into non-racemic epoxides; other methods use enzymatic
resolutiort! to isolate non-racemic epoxides and precursors to epoxides. In our hands, such fiethods
have limitations with long-chain (>C-10) compounds. To date, large-scale syntheses of non-racemic
long-chain 2-alkyloxiranes have required multiple steps. The recent, hydrolytic kinetic resolution of 2-
hexyloxirane with a chiral salen(Co)lll cataly3has prompted us to evaluate this procedure for resolving
long-chain 2-alkyloxiranes.

Non-racemic long-chain 2-alkyloxiranes are used in syntheses for natural produgtgR)-141°
and ©-4-dodecanolidé® (R)- and ©)-5-dodecanolidé/~1° (R)-2° and §)-8-hydroxydecanoic aciéf,

(2R,2S)-1-0-(2 -hydroxyhexadecyl)glyceraf and 6-alkyls-lactones’?® and non-natural products,g,

chiral stationary phas#, liquid crystals?® chirons?627 and chiral dopant& Because of this usage, we
report herein the success of Jacobsens’s chiral salen(Co)lll catalysts in resolving six even-numbered
homologues. With 2-octyl-, 2-decyl-, 2-dodecyl-, 2-tetradecyl-, 2-hexadecyl-, and 2-octadecyldRirane,
we find >95% ee for both enantiomers and excellent chemical yields (Table 1). We have not fully
optimized these resolutions, but we present these results to inform the chemical community of a
convenient resolution of these compounds (Scheme 1).
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Table 1

Comparison of chiroptical properties

0 Yield Enantiomer Enatiomeric [a],cg/dL  Solvent: [a], c g/dL
ZN,,/ excess. CHCI, Obsv.

n=7 86% R >95% +8.29 , 1.35 Et,0: +15.0 ,0.98;* +14.2 ,1.02;"
+14.6 *CHCl;: +7.4 ,1.0;2+9

n=7 88% S >95% -8.12,1.54 Et,0:-14.7 ,1.44;°-13.9 , 1.2;°-
12.9,1.07;* -14.1 , 1.11;" -14.5 ,
0.47.® CHCl,: -8.1 , 1.0;2-9.2 >

n= 90% R >95% +6.92 , 1.04 No data found.

n=9 95% S >95% -6.55 ,1.10 No data found.

n=11 94% R >95% +4.31,1.42  No data found.

n=11 91% S >95% -4.47,1.34  No data found.

n=13 85% R >95% +4.84 ,2.8 Hexanes: +10.2 , 1.76;*" +9.64,3.71.?

n=13 87% S >95% -4.71 ,2.7 CHCl,: -4.49 ,2.2

n=15 88% R >95% +4.28 , 1.09 No data found.

n=15 89% S >95% -4.31 ,2.57 No data found.

n=17 90% R >95% +2.99, 1.87 No data found.

n=17 88% S >95% -2.89,1.91  No data found.

S,S-Salen R, R-Salen
o (Co)lll(OACc) 0] (Co)llI(OAC) (o)
A\e/ (1 mole %) Aﬁ/ (1 mole %) L\e/
n n n
(S)-1 (Eot.zso r’nglze(:)), n=7,9, 11, Fot.zso r’ngfg, (R
rt,3d 13,15, 17 rt,3d
Scheme 1.

To decrease reaction times, we slightly modified the repéttecedure by increasing the amount of
catalyst® from 0.2 to 1.0 mol% and using ethyl etReas a solvent. With 2.0 mol% catalyst, we detected
the formation of alkene, which likely resulted from (Co)ll-catalyzed deoxygenation of the epBride.
recovered the non-racemic epoxide and isolated the non-racemic diol in certaif®c@bkissprocedure
gave modest % ee’s, however, in an attempted resolution of 2-eicosyloxirane (C-22 epoxide).

We determined the % ee of the Mosher’s esteR,0fvhich formed in the reaction oRj- and §)-
1 with N-benzylmethylamine (Scheme 2). We used this amine because it: (a) favors attack on terminal
epoxy carbon, (b) imparts UV activity in the products, and (c) produces a norbenzalkonium speffhicidal
analogue. In all cases, signalstid and®F NMR spectra for the opposite enantiomer were abent.
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In summary, the kinetic resolution of long-chain 2-alkyloxiranes proceeds smoothly with Jacobsen’s
salen(Co)lll catalysts to give excellent chemical yields and high % ee’s. Many groups will find these
chirons valuable in the synthesis of natural products, biomimetic molecules, chiral lipids, and surfactants.
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