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Abstract

Non-racemic terminal long-chain alkyl epoxides are prepared from racemic epoxides and 1 mol% (R,R)- and
(S,S)-salen(Co)III catalysts following a modified procedure for kinetic resolution. The ee’s for all epoxides (C-10,
C-12, C-14, C-16, C-18, C-20) exceed 95% and the chemical yields range from 85% to 95%. © 1998 Elsevier
Science Ltd. All rights reserved.

Our interest1 in designing mimetics of molecules that comprise biomembranes has led us to prepare
non-racemic long-chain 2-alkyloxiranes. Many pioneering methods focus on converting long-chain
alkenes2–4 and long-chain alkyl chirons5–10 into non-racemic epoxides; other methods use enzymatic
resolution11 to isolate non-racemic epoxides and precursors to epoxides. In our hands, such methods12

have limitations with long-chain (>C-10) compounds. To date, large-scale syntheses of non-racemic
long-chain 2-alkyloxiranes have required multiple steps. The recent, hydrolytic kinetic resolution of 2-
hexyloxirane with a chiral salen(Co)III catalyst13 has prompted us to evaluate this procedure for resolving
long-chain 2-alkyloxiranes.

Non-racemic long-chain 2-alkyloxiranes are used in syntheses for natural products,e.g., (R)-14,15

and (S)-4-dodecanolide,16 (R)- and (S)-5-dodecanolide,17–19 (R)-20 and (S)-8-hydroxydecanoic acid,21

(2R,2S′)-1-O-(2′-hydroxyhexadecyl)glycerol,22 and 6-alkyl-δ-lactones,23 and non-natural products,e.g.,
chiral stationary phase,24 liquid crystals,25 chirons,26,27 and chiral dopants.28 Because of this usage, we
report herein the success of Jacobsens’s chiral salen(Co)III catalysts in resolving six even-numbered
homologues. With 2-octyl-, 2-decyl-, 2-dodecyl-, 2-tetradecyl-, 2-hexadecyl-, and 2-octadecyloxirane,29

we find >95% ee for both enantiomers and excellent chemical yields (Table 1). We have not fully
optimized these resolutions, but we present these results to inform the chemical community of a
convenient resolution of these compounds (Scheme 1).
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Table 1
Comparison of chiroptical properties

Scheme 1.

To decrease reaction times, we slightly modified the reported13 procedure by increasing the amount of
catalyst30 from 0.2 to 1.0 mol% and using ethyl ether31 as a solvent. With 2.0 mol% catalyst, we detected
the formation of alkene, which likely resulted from (Co)II-catalyzed deoxygenation of the epoxide.32 We
recovered the non-racemic epoxide and isolated the non-racemic diol in certain cases.33 This procedure
gave modest % ee’s, however, in an attempted resolution of 2-eicosyloxirane (C-22 epoxide).

We determined the % ee of the Mosher’s ester of2, which formed in the reaction of (R)- and (S)-
1 with N-benzylmethylamine (Scheme 2). We used this amine because it: (a) favors attack on terminal
epoxy carbon, (b) imparts UV activity in the products, and (c) produces a norbenzalkonium spermicidal34

analogue. In all cases, signals in1H and19F NMR spectra for the opposite enantiomer were absent.35

Scheme 2.
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In summary, the kinetic resolution of long-chain 2-alkyloxiranes proceeds smoothly with Jacobsen’s
salen(Co)III catalysts to give excellent chemical yields and high % ee’s. Many groups will find these
chirons valuable in the synthesis of natural products, biomimetic molecules, chiral lipids, and surfactants.
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