

CARBOHYDRATE RESEARCH

Carbohydrate Research 280 (1996) 339-343

Note

Chlorodeoxy derivatives from D-galactochloralose

Ömür Makinabakan, Yeşim Gül Salman, Levent Yüceer *

Ege University, Faculty of Science, Chemistry Department, Bornova, İzmir, Turkey

Received 23 September 1994; accepted 23 August 1995

Keywords: Chlorodeoxy sugars; Chloralose; Cyclic acetals; Tosylation

Polychlorinated compounds often have valuable biological properties, for example as pesticides. Biodegradability of these compounds is normally required for environmental reasons. Since carbohydrate-based compounds usually have high biodegradability, their chloro derivatives are of potential interest in this regard. Several methods for the replacement of a hydroxyl group by chloride ion in carbohydrate chemistry have been described [1–5]. In view of our continuing interest in D-galactochloralose [(S)-1,2-O-trichloroethylidene- α -D-galactofuranose] [6], we have attempted the OH to Cl conversion in this compound, aiming to obtain a polychlorinated sugar molecule.

Forcing conditions and excess of the Vilsmeier reagent [7] (chloromethylene-N,N-dimethyliminium chloride) were used. Refluxing of D-galactochloralose (1) with this reagent in N,N-dimethylformamide produced a mixture of chlorinated derivatives, namely, 6-chloro-6-deoxy-1,2-O-trichloroethylidene- α -D-galactofuranose (2), 5,6-dichloro-5,6-dideoxy-1,2-O-trichloroethylidene- β -L-altrofuranose (3), and 5,6-dichloro-5,6-dideoxy-3-O-formyl-1,2-O-trichloroethylidene- β -L-altrofuranose (5). Rechlorination of the crude product did not increase the yield of 3 and 5 appreciably. A 3-chloro-3-deoxy derivative was not isolated and probably did not form in a significant amount due to the difficulty for chloride ion to approach C-3. Instead, the 3-O-formyl derivative 5 was obtained.

^{*} Corresponding author.

The formyl group of compound 5 was clearly indicated by the characteristic chemical shift (7.85 ppm) of the formyl proton and the carbonyl absorptions at 1728 and 1745 cm⁻¹ in its IR spectrum. The formyl group of 5 was removed with sodium methoxide in methanol to give compound 3. Compounds 2 and 3 were characterised as their acetate derivatives 4 and 6, which were identified by their ¹H-NMR, mass, and IR spectra (carbonyl absorptions at 1747 cm⁻¹ for 4 and at 1732 cm⁻¹ for 6).

In order to confirm the L-altro configuration in 3 and 5, replacement reactions of 3,5,6-tri-O-tosyl-1,2-O-trichloroethylidene- α -D-galactofuranose (7) with lithium chloride in N,N-dimethylformamide were also attempted. Thus, 6-chloro-6-deoxy-3,5-di-O-tosyl-1,2-O-trichloroethylidene- α -D-galactofuranose (8) and 5,6- dichloro-5,6-dideoxy-3-O-tosyl-1,2-O-trichloroethylidene- β -L-altrofuranose (9) were obtained as main products, depending on the reaction time. Prolonged reaction using excess of lithium chloride indicated (TLC) slow formation of a faster moving product, probably the trichloro-tride-oxy derivative, but this reaction was not further investigated. Compound 9 was also made directly from 3 by tosylation. The tosylated compound was shown to be identical with 9 by their 1 H-NMR spectra, mp, and mixture mp. The coupling constants of the furanose ring protons agreed with previous results, indicating that there was not a significant change in the ring geometry [6].

1. Experimental

TLC was performed on precoated Kieselgel plates (Merck 5554), and column chromatography on Kieselgel (Merck, 7734), with 9:1 toluene–MeOH. Melting points are uncorrected. NMR spectra were recorded with Varian-T 60 (60 MHz) and Bruker AC-200L (200 MHz) instruments, in CDCl₃ unless otherwise stated. Mass spectra were recorded with a Finnigan MAT 95 instrument. Optical rotations were determined on a Schmidt and Haensch Polartronic E polarimeter. The IR spectra were recorded on a Bruker IFS-48 spectrometer. Petroleum ether refers to the fraction having bp 60–80 °C.

Reaction of 1 with the Vilsmeier reagent.—To an ice-cold solution of D-galacto-chloralose (1) [6] (10 g, 0.032 mol) in N,N-dimethylformamide (60 mL) was added dropwise a solution of chloromethylene-N,N-dimethyliminium chloride (17 g, 0.133 mol) in the same solvent (40 mL), and the mixture was stirred at room temperature for 3 h, then refluxed for another 3 h. The reaction mixture was poured into water and

extracted with CH₂Cl₂ which was evaporated to give a syrupy mixture (11.4 g). This mixture (8 g) was applied to a Kieselgel column, in two parts, eluting with 9:1 toluene–MeOH to give compounds 5, 3, and 2 according to their order of elution from the column.

5,6-Dichloro-5,6-dideoxy-3-O-formyl-1,2-O-trichloroethylidene-β-L-altrofuranose (5).—Yield: 1.30 g; mp 79–80 °C (from petroleum ether); $[\alpha]_D^{18}$ +4.88° (c 0.9, pyridine); NMR data: δ 7.85 (s, 1 H, OCHO), 6.17 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.48 (s, 1 H, CHCCl₃), 4.87 (d, 1 H, $J_{2,3}$ ~ 0 Hz, H-2), 5.52 (bs, 1 H, $J_{3,4}$ ~ 0 Hz, H-3), 4.27 (bd, 1 H, $J_{4,5}$ 10 Hz, H-4), 4.00 (m, 1 H, H-5), 3.85 (m, 2 H, H-6a,6b); MS: m/z 275 [M⁺ – (CHCl–CH₂Cl), 94.8%], 255 (M⁺ – CCl₃, 32.5%), 209 (255 – HCOOH, 45.0%), 181 {[(M⁺ + 1) – CCl₃CHO] – HCOOH, 100%}, 129 (275 – CCl₃CHO, 17.6%). Molecular weight: 372 (FABMS). Anal. Calcd for $C_9H_9Cl_5O_5$: C, 28.87; H, 2.42; Cl, 47.34. Found: C, 28.97, H, 2.32; Cl, 47.28.

5,6-Dichloro-5,6-dideoxy-1,2-O-trichloroethylidene-β-L-altrofuranose (3).—Yield: 0.86 g; mp 115–116 °C (from CHCl₃); $[\alpha]_D^{18}$ – 3.35° (c 0.67, pyridine); NMR data: δ 6.43 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.68 (s, 1 H, CHCCl₃), 5.10 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 4.90 (bs, 1 H, $J_{3,4}$ ~ 0 Hz, H-3), 3.80–4.40 (m, 4 H, H-4,5,6a,6b), 2.83 (bs, OH); in C₆D₆: δ 6.03 (d, 1 H, $J_{2,3}$ 4 Hz, H-1), 5.33 (s, 1 H, CHCCl₃), 4.57 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 4.32 (s, 1 H, $J_{3,4}$ 0 Hz, H-3), 4.15 (d, 1 H, $J_{4,5}$ 9.0 Hz, H-4), 3.88 (m, 1 H, H-5), 3.67 (m, 2 H, H-6a,6b), 1.83 (bs, 1 H, OH); MS: m/z 247 [M⁺ – (CHCl–CH₂Cl), 64.6%], 229 (247 – H₂O, 39.3%), 227 (M⁺ – CCl₃, 57%), 209 (227 – H₂O, 16.0%), 181 {[(M⁺ + 1) – CCl₃CHO] – H₂O, 100%}. Molecular weight: 344 (FABMS). Anal. Calcd for C₈H₉Cl₅O₄: C, 27.74; H, 2.62; Cl, 51.17. Found: C, 27.89; H, 2.51; Cl, 51.03.

6-Chloro-6-deoxy-1,2-O-trichloroethylidene-α-D-galactofuranose (2).—Yield: 2.70 g; mp 179–180 °C (from MeOH); $[\alpha]_D^{18}$ –11.2° (c 0.60, pyridine); MS: m/z 277 (M⁺ – CH₂Cl, 6.5%), 247 (277 – CHOH, 47.8%), 229 (247 – H₂O, 5.4%), 101 (247 – CCl₃CHO, 30.1%), 36 (HCl, 100%). Molecular weight: 326 (FABMS). Anal. Calcd for C₈H₁₀Cl₄O₅: C, 29.30; H, 3.07; Cl, 43.24. Found: C, 29.26; H, 2.93, Cl, 42.80.

3-O-Acetyl-5,6-dichloro-5,6-dideoxy-1,2-O-trichloroethylidene-β-L-altrofuranose (6). —Acetylation of 3 (0.5 g) with Ac₂O in pyridine gave the monoacetate 6 (95%), mp 127–128 °C (from petroleum ether; $[\alpha]_D^{18}$ +6.33° (c 0.7, CHCl₃); NMR data: δ 6.36 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.66 (s, 1 H, CHCCl₃), 5.02 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 5.56 (bs, 1 H, $J_{3,4}$ 0 Hz, H-3), 4.40 (bd, 1 H, $J_{4,5}$ 10 Hz, H-4), 3.98–4.15 (m, 3 H, H-5,6a,6b), 2.13 (s, 3 H, Ac); MS: m/z 289 [M⁺ – (CHCl–CH₂Cl), 19.2%], 269 (M⁺ – CCl₃, 7.3%), 143 (289 – CCl₃CHO, 8.4%), 209 (269 – AcOH, 14.9%), 43 (Ac, 100%). Anal. Calcd for C₁₀H₁₁Cl₅O₅: C, 30.92; H, 2.85; Cl, 45.63. Found: C, 30.98; H, 2.71; Cl, 45.45.

3,5-Di-O-acetyl-6-chloro-6-deoxy-1,2-O-trichloroethylidene- α -D-galactofuranose (4). —Acetylation of **2** gave **4** (90%) as a syrup; [α]_D³⁰ + 17.97° (c 1.0, CHCl₃); NMR data: δ 6.52 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 6.05 (s, 1 H, CHCCl₃), 5.22 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 5.35 (bs, 1 H, $J_{3,4}$ < 1 Hz, H-3), 4.55 (bd, 1 H, $J_{4,5}$ 6 Hz, H-4), 5.57 (dd, 1 H, $J_{5,6a}$ = $J_{5,6b}$ = 6 Hz, H-5), 3.93, 3.95 (2 d, 2 H, H-6a,6b), 2.18, 2.25 (2 s, 2 × Ac). Anal. Calcd for C₁₂H₁₄Cl₄O₇: C, 34.98; H, 3.42; Cl, 34.42. Found: C, 34.90; H, 3.35; Cl, 34.28.

Deformylation of 5.—Deformylation of 5 (0.5 g) with methanolic NaOMe was completed in 2 h at room temperature. The product, 5,6-dichloro-5,6-dideoxy-1,2-O-tri-chloroethylidene- β -L-altrofuranose (3) was obtained in 97% yield; mp and mixture mp 115–116 °C.

3,5,6-Tri-O-tosyl-1,2-O-trichloroethylidene-α-D-galactofuranose (7).—To a cold solution of 1 (7.0 g) in pyridine (70 mL) was added p-toluenesulfonyl chloride (13.0 g, 3.015 mol. equiv). The mixture was left at room temperature overnight. TLC indicated the formation of a mixture of four products. The mixture was poured on to crushed ice, the oily product which separated was extracted with CH_2Cl_2 , the extracts were dried and evaporated to a syrup, and the product was retosylated and worked-up as above to give syrupy 7. This product was crystallised (8.0 g, 45.8%) from CCl_4 containing a little MeOH and petroleum ether; mp 132–134 °C; $[\alpha]_D^{24} + 22.8^\circ$ (c 1.4, $CHCl_3$); NMR data (200 MHz): δ 6.14 (d, 1 H, $J_{1,2}$ 4.2 Hz, H-1), 5.57 (s, 1 H, $CHCCl_3$), 4.95 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 4.83 (bs, 1 H, $J_{3,4} \sim 0$ Hz, H-3), 4.33 (bs, 1 H, H-4), 4.6 (td, 1 H, $J_{4,5}$ 2.5 Hz, H-5), 4.06 (d, 2 H, $J_{5,6a} = J_{5,6b} = 6.6$ Hz, H-6a and H-6b), 2.50 (s, 2 × Me), 2.47 (s, Me), 7.85, 7.76, 7.71, 7.43 (4 H), 7.36 (6 doublets for phenyl protons, each J 8.0 Hz); MS: m/z 770 (M⁺, 28%), 734 (M⁺ – HCl, 12%), 653 (M⁺ – CCl_3 , 28%), 600 (M⁺ – TsOH), 45%). Anal. Calcd for $C_{29}H_{29}Cl_3O_{12}S_3$: C, 45.11; H, 3.78; S, 12.46; Cl, 13.77. Found: C, 44.98; H, 3.69; S, 12.30; Cl, 13.50.

6-Chloro-6-deoxy-3,5-di-O-tosyl-1,2-O-trichloroethylidene-α-D-galactofuranose (8). —Tritosyl derivative 7 (2 g) in N,N-dimethylformamide (50 mL) was stirred with LiCl (0.8 g) at 90 °C for 2.5 h. After evaporation of about half of the solvent, the mixture was poured on to crushed ice to give a white precipitate (1.2 g, 72.8%). This product was contaminated (TLC) with a trace of dichloro derivative 9. Several crystallisations (from CHCl₃ with petroleum ether added until cloudiness) gave pure 8 (0.9 g); mp 95–97 °C; $[\alpha]_D^{24} + 13.3^\circ$ (c 1.5, CHCl₃); NMR data (200 MHz): δ 6.21 (d, 1 H, $J_{1,2}$ 4.1 Hz, H-1), 5.52 (s, 1 H, CHCCl₃), 4.96 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 4.84 (bs, 1 H, $J_{3,4} \sim$ 0 Hz, H-3), 4.59 (bs, H-4), 4.56 (m, $J_{5,6b}$ 4.5 Hz, H-5), 3.73 (t, 1 H, $J_{5,6a}$ 10.5 Hz, H-6a), 3.55 (dd, 1 H, $J_{6a,6b}$ 10.5 Hz, H-6b), 2.50 (s, 6 H, 2 × Me), 7.89, 7.81, 7.45, 7.41 (4 doublets for phenyl protons, each J 8.0 Hz); MS: m/z 634 (M⁺, 25%), 598 (M⁺ – HCl, 90%), 517 (M⁺ – CCl₃, 60%), 401 [(M⁺ – CHOTs – CH₂Cl), 60%]. Anal. Calcd for C₂₂H₂₂Cl₄O₉S₂: C, 41.52; H, 3.48; S, 10.07; Cl, 22.28. Found: C, 41.40; H, 3.50; S, 10.22; Cl, 22.00.

5,6-Dichloro-5,6-dideoxy-3-O-tosyl-1,2-O-trichloroethylidene-β-L-altrofuranose (9). —Tritosyl derivative 7 (2 g) in N,N-dimethylformamide (50 mL) was stirred with LiCl (0.8 g) at 90 °C for 20 h. The concentrated mixture was poured on to crushed ice; the precipitate thus formed contained the title compound slightly contaminated with 8 (TLC and NMR). This product was purified by several crystallisations from CHCl₃ with added petroleum ether until cloudiness to give 9 (0.9 g, 57.2%); mp 82–84 °C; $[\alpha]_0^{24}$ – 48.1° (c 1.5, CHCl₃); NMR data (200 MHz): δ 6.33 (d, 1 H, $J_{1,2}$ 3.8 Hz, H-1), 5.56 (s, 1 H, CHCCl₃), 5.16 (d, 1 H, $J_{2,3}$ 0 Hz, H-2), 5.15 (s, 1 H, $J_{3,4}$ ~ 0 Hz, H-3), 4.29 (bd, 1 H, $J_{4,5}$ 9.6 Hz, H-4), 3.92 (m, 1 H, H-5), 3.88 (bs, 2 H, H-6a,6b), 7.85 (d, 2 H, J 8.0 Hz, Ph-H), 7.40 (d, 2 H, J 8.0 Hz, Ph-H), 2.47 (s, 3 H, Ph-Me); MS: m/z 401 [M⁺ – (CHCl–CH₂Cl), 100%], 427 [(M⁺ – Cl – HCl), 7%], 381 (M⁺ – CCl₃, 5%), 255 (401 – CCl₃CHO, 75%). Anal. Calcd for C₁₅H₁₅Cl₅O₆S: C, 35.99; H, 3.02; S, 6.40; Cl, 35.41. Found: C, 35.82; H, 3.15; S, 6.20; Cl, 35.06.

Tosylation of compound 3 (0.5 g) was carried out with p-toluenesulfonyl chloride (0.2 g) in pyridine (10 mL) for 1 h at 60 °C. On completion of the reaction (TLC), the product was isolated and crystallised (0.3 g) as above; mp and mixture mp 80-83 °C; the NMR spectrum of this compound was identical with the NMR spectrum of 9.

Acknowledgements

The authors thank The Graduate School of Natural and Applied Sciences, Ege University for partial support, and Professor S. İçli and the Max-Planck-Institut für Strahlen Chemie, Germany for recording the mass spectra.

References

- [1] R.L. Whistler and J.N. BeMiller, Methods Carbohydr. Chem., 6 (1972) 183-200.
- [2] M.E. Evans, L. Long, Jr., and F.W. Parrish, J. Org. Chem., 33 (1968) 1074-1076.
- [3] A.A. Akhrem, G.V. Zaitseva, and I.A. Mikhailopulo, Carbohydr. Res., 50 (1976) 143-147.
- [4] H. Parolis, Carbohydr. Res., 114 (1983) 21-33.
- [5] C.K. Lee, Carbohydr. Res., 162 (1987) 53-63.
- [6] H. Anıl, L. Yüceer, and T. Yüceer, Carbohydr. Res., 123 (1983) 153-156.
- [7] L.F. Fieser and M. Fieser, Reagents for Organic Synthesis, Vol. 1, Wiley, New York, 1967, pp 286-287.