ChemComm

COMMUNICATION

View Article Online

Cite this: DOI: 10.1039/c6cc03449g

Received 25th April 2016, Accepted 15th June 2016

DOI: 10.1039/c6cc03449g

www.rsc.org/chemcomm

Putting chromium on the map for N₂ reduction: production of hydrazine and ammonia. A study of $cis-M(N_2)_2$ (M = Cr, Mo, W) bis(diphosphine) complexes[†]

Jonathan D. Egbert,^a Molly O'Hagan,^a Eric S. Wiedner,^a R. Morris Bullock,^a Nicholas A. Piro,^b W. Scott Kassel^b and Michael T. Mock^{*a}

The first complete structurally and spectroscopically characterized series of isostructural Group 6 N₂ complexes is reported. Protonolysis experiments on *cis*- $[M(N_2)_2(P^{Et}N^RP^{Et})_2]$ (M = Cr, Mo, W; R = 2,6-difluorobenzyl) reveal that only Cr affords N₂H₅⁺ and NH₄⁺ from the reduction of the N₂ ligands.

Transition metal dinitrogen complexes have been studied for several decades, and have revealed a myriad of information relevant to the mechanism of ammonia formation in biological and heterogeneous N₂ reduction processes.¹ Large-scale ammonia synthesis from N₂ and H₂ by the Haber–Bosch process is critical for making fertilizers to maintain worldwide food production.² However, concerns over CO₂ emissions from this century-old process are motivating the development of alternative approaches.³ For example, an electrocatalytic system for N₂ reduction *via* addition of protons and electrons, (akin to the mild reaction conditions employed by nitrogenase⁴) would provide a carbonneutral approach to NH₃ production.

Seminal studies on zero-valent group 6 complexes have primarily focused on N₂ reactivity at Mo and W.⁵ Moreover, reports deciphering N₂ reactivity on the basis of the identity of the metal and phosphine ligands examined only Mo and W,⁶ as very few related Cr(N₂) complexes were known due to limited stability toward binding N₂.⁷ Recently, in efforts to develop electrocatalysts for N₂ reduction, our group has made advances in understanding N₂ bonding and reactivity of Cr by studying mono- and bis(dinitrogen) complexes with cyclic 8-,⁸ 12-,⁹ and 16-membered¹⁰ phosphine ligands containing pendant amines. While these unique Cr–N₂ complexes provided a qualitative assessment of spectroscopic and acid reactivity patterns between N₂ complexes of Cr, Mo, and W, the absence of an isolable series of complexes for all the group 6 metals with identical ligands has prevented an unambiguous comparison based only on metal identity.^{7*a*,11} Herein we report the first spectroscopic, electrochemical, and protonolysis study of a structurally identical series of group 6 bis(dinitrogen) complexes, *cis*-[M(N₂)₂(P^{Et}N^RP^{Et})₂] (M = Cr (1), Mo (2), W (3); R = 2,6-difluorobenzyl). The results of this metal-based comparison show the ability of zero-valent Cr to serve as an active metal for the reduction of N₂. Notably, of the group 6 metal complexes examined in this study, the Cr analogue exhibits the most activated N₂ ligands and is the only complex to produce N₂-derived hydrazine and ammonia upon the addition of excess acid.

Complexes 1–3 were prepared by Mg reduction of M^{III/IV} precursors in the presence of two equiv. of the PNP diphosphine ligand in THF, Scheme 1. Importantly, the reaction time and temperature were critical parameters in the synthesis of 1 and 2. Complex 1 was prepared at -5 °C, as the reduction carried out at room temperature resulted in nearly no formation of 1. Stirring for 60 h afforded a (~9:1) mixture of 1 and *trans*-[Cr(N₂)₂(P^{Et}N^{2,6-F2-Bn}P^{Et})₂], *trans*-1 (Fig. S1 and S2, ESI†). The isomers were separated by precipitating 1 from a THF solution by adding cold pentane. In solution, only the Cr isomers show reversible interconversion,¹² suggesting they are similar in energy.

Scheme 1 Synthesis of cis-[M(N₂)₂(P^{Et}N^{2,6-F2-BnPEt})₂]; (M = Cr, Mo, W), X = Cl, Br. Conditions (temperature, reaction time): **1**, -5 °C, 72 h; **2**, -5 °C, 8 h; **3**, 25 °C, 24 h.

^a Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, WA 99352, USA. E-mail: michael.mock@pnnl.gov

^b Department of Chemistry, Villanova University, Villanova, PA, USA

[†] Electronic supplementary information (ESI) available: Experimental procedures, crystallographic details, and additional spectroscopic and electrochemical data. CCDC 1445490 (1), 1445489 (*trans*-1), 1445488 (2), 1445491 (3). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6cc03449g

Fig. 1 Molecular structures of complexes 1 (left), 2 (middle), and 3 (right). Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity. Crystals of 2 and 3 contain two molecules per asymmetric unit with similar metric parameters; only one molecule is shown. Selected bond distances (Å): (1) Cr-N1 = 1.864(2); Cr-N3 = 1.871(2); N1-N2 = 1.132(2); N3-N4 = 1.130(2); (2) MO-N1 = 2.027(7); MO-N3 = 2.020(6); N1-N2 = 1.112(8); N3-N4 = 1.117(8); (3) W-N1 = 2.004(3); W-N3 = 1.991(3); N1-N2 = 1.125(4); N3-N4 = 1.134(4).

In THF at room temperature, a 3:1 mixture of trans-1 to 1 isomerized to >90% 1, by IR and ³¹P NMR spectroscopy (Fig. S3 and S4 ESI[†]). Heating the same sample to 40 °C for 3 days results in partial conversion (ca. 20%) back to trans-1 with a small amount of free PNP ligand present (Fig. S5, ESI[†]). In the case of Mo, the reduction performed at -5 °C was vital to isolate 2, the kinetic product, after 8 h of stirring. In a previous study, we reported the formation of *trans*- $[Mo(N_2)_2(P^{Et}N^{2,6-F2-Bn}P^{Et})_2]$ by an analogous procedure after stirring for 20 h under a N2 atmosphere at 25 °C.13 In the present case, reaction times exceeding 8 h, even at -5 °C, result in partial isomerization to the thermodynamically favored trans isomer. In contrast to 1 and 2, the synthesis of 3 was performed at 25 $^\circ$ C, and after 24 h of stirring, only the cis isomer was observed. Isolated yields of the $cis-M(N_2)_2$ products increase going down the group, ca. 4% for 1, 41% for 2, and 62% for 3. The higher yields for Mo and W may reflect a greater affinity to bind N₂ at higher metal oxidation states during the reduction process.

Complexes 1–3 were characterized by X-ray crystallography, allowing for the first structural comparison of a full series of group 6 bis(dinitrogen) complexes with identical ligands. In each case, single crystals were obtained by evaporation of a concentrated Et₂O solution. The molecular structures, shown in Fig. 1, are essentially isostructural, exhibiting a 6-coordinate octahedral geometry at the metal, and dinitrogen ligands in the *cis* conformation. The P–M–P angle is ~86° consistently across the metal series. Metal–ligand bond lengths are similar for complexes 2 and 3; the M–P and M–N bonds are *ca.* 2.45 Å and 2.01 Å, respectively. However, those for 1 are shorter at *ca.* 2.35 Å and 1.87 Å.

The N–N bond lengths for the entire series fall within the range 1.11–1.13 Å, consistent with an N \equiv N triple bond of the end-on bound N₂ ligands. This observed elongation of N₂, compared to free N₂ at 1.0975 Å, is analogous to other group 6 phosphine complexes with *cis* N₂ ligands.^{8,14} The variance in N–N bond lengths is quite small (*ca.* 0.02 Å). Distances for the N–N bonds in 1 and 3 are *ca.* 1.13 Å, and, the N–N distances in 2 are *ca.* 1.11 Å.

The N₂ stretching frequencies in the infrared spectra provide a more quantitative measure of the activation of the N₂ ligands. The IR spectra collected in THF contain two $\nu_{\rm NN}$ bands for 1–3, as shown in Fig. 2. Although the energy of the $\nu_{\rm NN}$ bands are

Fig. 2 Infrared spectra showing the ν_{NN} bands of *cis*-[M(N₂)₂(P^{Et}N^{2.6-F2-Bn}P^{Et})₂] recorded in THF at 25 °C: M = Cr (**1**), black, 1990, 1911; Mo (**2**), blue, 2012, 1950; W (**3**), red, 1987, 1925 cm⁻¹.

expected to decrease going down the group on the basis of more electron-releasing $d\pi$ donation of the metal,^{6,15} complex 2 has the highest $\nu_{\rm NN}$ bands at 2012, 1950 cm⁻¹. The $\nu_{\rm NN}$ bands for 3 are 1987 and 1925 cm⁻¹, and notably, 1 exhibits $\nu_{\rm NN}$ bands at 1990 and 1911 cm⁻¹ and the lowest N–N force constant of the series (Table S1, ESI†).¹⁶ 1 also displays slight asymmetry in the band intensities in THF, indicative of dissimilarity in the N–M–N bond angle compared to 2 and 3. Thus, enhanced N₂ activation for 1 could be due to better $d\pi$ overlap with N₂ antibonding orbitals,¹⁷ or based on our earlier bonding assessment of Cr–N₂ complexes, a stronger polarization of the N₂ ligand in 1 decreases the N–N vibrational frequency.⁸

Characterization of complexes **1–3** by ³¹P and ¹⁵N NMR spectroscopy afforded additional trends based on metal identity. The ³¹P and ¹⁵N NMR spectra for complexes **1–3** are shown in Fig. 3a and b, respectively. In the ³¹P{¹H} NMR spectra, each complex displays two multiplets of an AA'BB' pattern, as expected for two distinct phosphorus environments. Descending the group, the ³¹P NMR resonances appear at higher field. Resonances for **1** appear at δ 37.9, 32.2, while *trans*-**1** shows a singlet at δ 37.1. The resonances for **3** have ¹⁸³W satellites, $J_{PW} = 297$ and 303 Hz.

The ¹⁵N₂-labelled isotopologues 1^{15N} , 2^{15N} , and 3^{15N} were prepared for ¹⁵N NMR spectral studies by exposing a degassed THF- d_8 solution of the complex to a headspace of ¹⁵N₂ gas. N₂ ligand exchange was rapid in all cases, resulting in ¹⁵N₂ incorporation into the product within minutes. The ¹⁵N{¹H} NMR spectrum for each complex displays two signals for the

Fig. 3 (a) ${}^{31}P{}^{1}H{}$ NMR spectra (202.4 MHz) of complexes **1–3** recorded at 25 °C in THF- d_8 . (b) ${}^{15}N{}^{1}H{}$ NMR spectra (50.7 MHz) of complexes **1**¹⁵N, **2**¹⁵N and **3**¹⁵N recorded at 25 °C in THF- d_8 . The selected ${}^{31}P{}$ and ${}^{15}N{}$ NMR spectra of **1** contain *trans*-**1** and *trans*-**1**¹⁵N, respectively, for a comparison of data for the *cis* and trans stereoisomers.

end-on bound ¹⁵N₂ ligands, a broad resonance (due to ³¹P coupling) for the proximal nitrogen atoms (Np), and a doublet $(J_{15N-15N}$ ca. 6–7 Hz) for the distal nitrogen atoms (N_d) . As in the ³¹P NMR spectra, the ¹⁵N resonances appear upfield upon descending the group. For 1^{15N}, the ¹⁵N signals appear close together at δ –7.3, –11.5, for N_d and N_p, respectively. For comparison between isomers, the ¹⁵N signals for N_d and N_p of *trans*- $\mathbf{1}^{15N}$ appear at higher field in opposite positions, at δ -28.0, -22.6, respectively. For 2^{15N} and 3^{15N} the N_d resonances are nearly identical, however the position of the signals differ for N_p at δ –39.1 for 2^{15N} and δ –60.4 for 3^{15N}. Thus, it is clear that the magnetic environment of the ¹⁵N₂ ligands display a periodic trend of increased magnetic shielding upon descending the group.¹⁸ However, the trend in ¹⁵N chemical shifts does not correlate to metal center basicity to release electron density^{15b} to the N₂ ligands based on the values of the ν_{NN} bands.

Cyclic voltammetry (CV) experiments probed the metal oxidation potentials for this series of complexes to assess the trend of the electron density at the metal center with an identical ligand set. This trend could be correlated to the $\nu_{\rm NN}$ stretching frequencies and acid reactivity at N₂. The CV of the M^{1/0} couple for complexes 1–3 were recorded in THF at a scan-rate of 0.1 V s⁻¹ (Fig. S6, ESI†). Complexes 2 and 3 exhibit quasi-reversible waves corresponding to the Mo^{1/0} and W^{1/0} redox couple with a half-wave potential, $E_{1/2} = -1.04$ V and -1.03 V, respectively (*vs.* Cp₂Fe^{+/0}). The M^{1/0} waves of 2 and 3 are similar despite 3 having $\nu_{\rm NN}$ bands that appear 25 cm⁻¹ lower in energy. The quasi-reversible nature of the M^{1/0} wave at low scan-rates, *ca.* 0.1 V s⁻¹, is likely due to N₂ ligand loss upon metal oxidation. The waves do not become reversible at faster scan rates, *ca.* $\nu = 1$ V s⁻¹.

In contrast to 2 and 3, complex 1 exhibits an irreversible, anodic wave corresponding to the $Cr^{1/0}$ oxidation, $E_{pa} = -1.36$ V. This wave is irreversible at all attempted scan rates (up to 20 V s⁻¹), even when the CV was performed at -30 °C. The irreversibility of the $Cr^{1/0}$ wave is analogous to the CV of *cis*- $[Cr(N_2)_2(P^{Ph}_2N^{Bn}_2)_2]^8$, but differs from the quasi-reversible $Cr^{1/0}$ wave of *trans*- $[Cr(N_2)_2(P^{Ph}_4N^{Bn}_4)]$.¹⁰ Irreversibility of this wave suggests that $[Cr^{I}(N_2)_2(PNP)_2]^+$ is unstable, and that N₂ ligand loss is rapid upon metal oxidation. Remarkably, the anodic peak potential, $E_{\rm pa}$, for **1** is *ca.* 300 mV more negative than the $E_{1/2}$ of **2** and **3**. The position of the Cr^{I/0} wave is likely due in part to a negative kinetic potential shift resulting from rapid N₂ loss upon Cr oxidation. Kinetic analysis suggests that the formal reduction potential $(E^{\circ \prime})$ of **1** is also more negative than the $E_{1/2}$ values observed for **2** and **3**. For example, $E^{\circ \prime}$ for **1** would be -1.12 V if the first-order rate constant for N₂ loss were 1×10^9 s⁻¹ (Table S2, ESI[†]). Accordingly, these data are consistent with **1** being easier to oxidize than **2** and **3**.

Protonolysis experiments revealed the outcome of metaldependence on the reduction of N_2 to ammonium (NH_4^+) and hydrazinium ($N_2H_5^+$) products. In a typical reaction, a THF- d_8 solution of complex 1, 2, or 3 was treated with 100 equiv. of triflic acid (CF_3SO_3H) at -40 °C, according to Scheme 2. Results from five runs revealed complex 1 formed $N_2H_5^+$ (avg. 0.22) equiv. $N_2H_5^+$ per Cr atom), and NH_4^+ (avg. 0.08 equiv. NH_4^+ per Cr atom) from the protonation and reduction of the N₂ ligands (electrons originate from Cr), (Table S3, ESI⁺).¹⁹ The yields of NH_4^+ and $N_2H_5^+$ were quantified by ¹H NMR spectroscopy using 1,3,5-trimethoxy-benzene as an internal integration standard (for additional details see ESI⁺). Acid addition to 1^{15N} confirmed the products are derived from the dinitrogen ligands.²⁰ To obtain reduced N₂ products, low temperatures are required, as $N_2H_5^+$ and NH_4^+ were not formed in HOTf addition to 1 at 25 °C. In contrast, treatment of 2 and 3 with excess triflic acid at

 $\label{eq:scheme 2} \begin{array}{ll} \mbox{Reaction of cis-[M(N_2)_2(P^{Et}N^{2,6-F2-Bn}P^{Et})_2]$ with excess HOTf.} \end{array}$

 $-40~^\circ\text{C}$ did not produce any detectible amount of NH_4^{+} or N_2H_5^{+} by ^1H NMR spectroscopy. 21 Furthermore, treatment of a THF solution of complexes 1, 2, or 3 with 100 equiv. H₂SO₄ at 25 $^\circ\text{C}$ did not form detectible amounts of NH_4^{+} or $\text{N}_2\text{H}_5^{+,22}$

In conclusion, we prepared N₂ complexes of Cr, Mo, and W with identical ligands and examined their spectroscopic and electrochemical properties to more clearly understand the metal-dependent N₂ activation and reactivity. The Cr–N₂ complex contains the most activated N₂ ligands and the most negative oxidation potential of the series. Greater N₂ activation for **1** may reflect better d π overlap with N₂ anti-bonding orbitals. Cr was the only complex to form NH₄⁺ and N₂H₅⁺ from reduction of the N₂ ligands upon addition of acid. Future studies aim to identify Cr–N_xH_y intermediates in the N₂ reduction pathway, and to utilize Cr to develop an electrocatalytic system for N₂ reduction to N₂H₄ and NH₃.

This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U. S. DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U. S. DOE.

Notes and references

- (a) D. V. Yandulov and R. R. Schrock, Science, 2003, 301, 76-78;
 (b) B. A. MacKay and M. D. Fryzuk, Chem. Rev., 2004, 104, 385-401;
 (c) R. R. Schrock, Angew. Chem., Int. Ed., 2008, 47, 5512-5522;
 (d) K. Arashiba, Y. Miyake and Y. Nishibayashi, Nat. Chem., 2011, 3, 120-125; (e) J. S. Anderson, J. Rittle and J. C. Peters, Nature, 2013, 501, 84-87; (f) K. Grubel, W. W. Brennessel, B. Q. Mercado and P. L. Holland, J. Am. Chem. Soc., 2014, 136, 16807-16816; (g) I. Coric, B. Q. Mercado, E. Bill, D. J. Vinyard and P. L. Holland, Nature, 2015, 526, 96-99; (h) J. Rittle and J. C. Peters, J. Am. Chem. Soc., 2016, 138, 4243-4248; (i) T. J. Del Castillo, N. B. Thompson and J. C. Peters, J. Am. Chem. Soc., 2016, 138, 5341-5350.
- 2 V. Smil, Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, MIT Press, Cambridge, MA, 2001.
- 3 (a) S. Licht, B. Cui, B. Wang, F. F. Li, J. Lau and S. Liu, Science, 2014, 345, 637–640; (b) C. J. van der Ham, M. T. Koper and D. G. Hetterscheid, Chem. Soc. Rev., 2014, 43, 5183–5191.
- 4 B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean and L. C. Seefeldt, *Chem. Rev.*, 2014, **114**, 4041–4062.
- 5 J. Chatt, J. R. Dilworth and R. L. Richards, *Chem. Rev.*, 1978, 78, 589-625.

- 6 W. Hussain, G. J. Leigh, H. M. Ali, C. J. Pickett and D. A. Rankin, J. Chem. Soc., Dalton Trans., 1984, 1703–1708.
- 7 (a) H. H. Karsch, Angew. Chem., Int. Ed., 1977, 16, 56–57;
 (b) G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett and M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 5954–5956.
- 8 M. T. Mock, S. Chen, R. Rousseau, M. J. O'Hagan, W. G. Dougherty, W. S. Kassel, D. L. DuBois and R. M. Bullock, *Chem. Commun.*, 2011, 47, 12212–12214.
- 9 M. T. Mock, A. W. Pierpont, J. D. Egbert, M. O'Hagan, S. Chen, R. M. Bullock, W. G. Dougherty, W. S. Kassel and R. Rousseau, *Inorg. Chem.*, 2015, 54, 4827–4839.
- 10 M. T. Mock, S. Chen, M. O'Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel and R. M. Bullock, *J. Am. Chem. Soc.*, 2013, 135, 11493–11496.
- 11 The group 6 complexes *cis*-[M(N₂)₂(PMe₃)₄] (M = Cr, Mo, W) have been reported. The Cr analogue is unstable under ambient conditions (ref. 7*a*); (*a*) E. Carmona, A. Galindo, M. L. Poveda and R. D. Rodgers, *Inorg. Chem.*, 1985, 24, 4033-4039; (*b*) E. Carmona, J. M. Marin, M. L. Poveda, J. L. Atwood and R. D. Rogers, *J. Am. Chem. Soc.*, 1983, 105, 3014–3022.
- 12 H. Gailus, C. Woitha and D. Rehder, J. Chem. Soc., Dalton Trans., 1994, 3471–3477.
- 13 L. A. Labios, C. J. Weiss, J. D. Egbert, S. Lense, R. M. Bullock, W. G. Dougherty, W. S. Kassel and M. T. Mock, Z. Anorg. Allg. Chem., 2015, 641, 105–117.
- (a) M. Yuki, Y. Miyake, Y. Nishibayashi, I. Wakiji and M. Hidai, Organometallics, 2008, 27, 3947–3953; (b) C. J. Weiss, A. N. Groves, M. T. Mock, W. G. Dougherty, W. S. Kassel, M. L. Helm, D. L. DuBois and R. M. Bullock, Dalton Trans., 2012, 41, 4517–4529.
- (a) F. Tuczek, K. H. Horn and N. Lehnert, *Coord. Chem. Rev.*, 2003, 245, 107–120;
 (b) D. F. Shriver, *Acc. Chem. Res.*, 1970, 3, 231–238;
 (c) G. J. Leigh, *Acc. Chem. Res.*, 1992, 25, 177–181.
- 16 F. A. Cotton and C. S. Kraihanzel, J. Am. Chem. Soc., 1962, 84, 4432-4438.
- 17 (a) D. Sellmann, Angew. Chem., Int. Ed., 1974, 13, 639–649;
- (b) R. Hoffmann and D. L. DuBois, *Nouv. J. Chem.*, 1977, 1, 479–492.
 18 S. Donavon-Mtunzi, R. L. Richards and J. Mason, *J. Chem. Soc., Dalton Trans.*, 1984, 469–474.
- 19 The peak area of $N_2H_5^+$ (broad singlet, 10.8 ppm) and NH_4^+ (1:1:1 triplet, 7.0 ppm, $J_{\rm HN}$ = 51 Hz) were determined by manual integration and by line-fitting analysis using the CRAFT NMR software program.
- Protonolysis of 1^{15N} afforded ¹⁵N₂H₅⁺ and ¹⁵NH₄⁺ by ¹⁵N NMR spectroscopy at -326 ppm and -363 ppm, respectively. In addition, [HP^{Et}N^{2,6-F2-Bn}P^{ET}][OTf] was observed by ¹H and ³¹P NMR spectroscopy.
- 21 The formation of M–H products for 2 and 3 was apparent based upon multiplet resonances (due to ³¹P coupling) in the high-field region of the ¹H NMR spectra.
- (a) Y. Tanabe, S. Kuriyama, K. Arashiba, Y. Miyake, K. Nakajima and Y. Nishibayashi, *Chem. Commun.*, 2013, 49, 9290–9292; (b) K. Arashiba, S. Kuriyama, K. Nakajima and Y. Nishibayashi, *Chem. Commun.*, 2013, 49, 11215–11217.