Dalton Transactions

COMMUNICATION

View Article Online

Cite this: DOI: 10.1039/c5dt04245c

Received 29th October 2015, Accepted 3rd December 2015 DOI: 10.1039/c5dt04245c

www.rsc.org/dalton

Insertion of phosphinidene complexes into the P–H bond of secondary phosphine oxides: a new version of the phospha-Wittig synthesis of P=C double bonds[†]

Yanwei Hao,^a Di Wu,^a Rongqiang Tian,*^a Zheng Duan*^a and François Mathey*^{a,b}

Terminal phosphinidene complexes [RP-W(CO)₅], as generated at 60 °C in the presence of copper chloride from the appropriate 7-phosphanorbornadiene complexes, react with secondary phosphine oxides $Ar_2P(O)H$ to give the insertion products into the P–H bonds. After metalation with NaH, these products react with aldehydes to give the corresponding phosphaalkenes which are trapped by dimethylbutadiene.

For a long time, the development of the carbene-like chemistry of electrophilic terminal phosphinidene complexes [RP-M] (M = Cr, Mo, W(CO)₅, Fe(CO)₄ and cationic complexes) was centered on cycloaddition reactions.¹ The systematic development of insertion reactions into A–H σ bonds is more recent.² Noteworthy are the insertions into Si–H³ and B–H⁴ bonds. In both cases, the reaction is favored by the interaction of the electrophilic phosphinidene phosphorus with the hydridic hydrogen. The case of the P–H bond is more delicate. A secondary phosphine tends to displace the phosphinidene from its complex, thus leading to the failure of the insertion reaction. When replacing the secondary phosphine by its P-W(CO)₅ complex, no reaction is observed. Reactions using secondary phosphine oxides were more productive. These experiments are the subject of this report.

The copper chloride-catalyzed decomposition of 7-phosphanorbornadiene P-W(CO)₅ complexes **1** was used as a source of phosphinidene complexes.⁵ The reaction was carried out at 60 °C in toluene or THF. Successful insertions of the phosphinidenes into the P–H bond were observed with secondary diphenyl and di-2-thienylphosphine oxides (Scheme 1).

N(CO ₅ R	
Me CO ₂ Me + Ar ₂ P(O)H	$\frac{\text{CuCl, toluene}}{\text{Ar}-P-P-W(CO)_5} (1)$
Me CO ₂ Me	60 °C, 1.5 h Ár H
1 a R = Ph	2 a R = Ph, Ar = Ph (77%)
b R = Me	b R = Me, Ar = Ph (76%)
$c R = CH_2CH_2CO_2Et$	$c R = CH_2CH_2CO_2Et$, Ar = Ph (51%)
$d R = CH_2CH_2CI$	$d R = CH_2CH_2CI, Ar = Ph (52\%)$
e R = 2-Th	e R = 2-Th, Ar = Ph (45%)
	f R = Ph, Ar = 2-Th (71%)
	g R = Me, Ar = 2-Th (40%)

Scheme 1 Insertion of $[RP-W(CO)_5]$ into the P–H bond of secondary phosphine oxides.

The insertion products 2 were characterized by NMR and HRMS. The ³¹P NMR data are collected in Table 1.

These data are very similar to those of the phosphonate analogues, the so-called phospha-Wittig reagents.⁶ Compound **2a** was further characterized by X-ray crystal structure analysis (Fig. 1).

It is known that an easy tautomerism takes place between secondary phosphine oxides and phosphinous acids. The process is bimolecular and involves 6-membered transition states with activation barriers in the range 5–15 kcal mol^{-1,7} The key question concerning the mechanism of the insertion of phosphinidene complexes into the P–H bonds of secondary phosphine oxides is whether [RP-W(CO)₅] reacts with Ar₂P(O)H or Ar₂P-OH. We have studied the interaction of [MeP-W(CO)₅] with Ph₂P(O)H and Ph₂P-OH by DFT at the B3LYP/6-31G(d)-

2	2
	2

Product	$\delta^{31} \mathrm{P}$	${}^{1}\!J_{\rm PP}$ (Hz)	${}^{1}\!J_{\rm PW}$ (Hz)	${}^{1}\!J_{\rm PH}$ (Hz)
2a	34.033.2	72.0	226.4	327.8
2b	34.2, -68.3	62.7	223.6	320.4
2c	34.7, -53.7	65.8	223.9	330.1
2d	34.1, -61.5	64.3	226.7	323.2
2e	34.4, -53.7	66.1	231.6	336.3
2f	21.0, -19.9	46.9	228.3	330.6
2g	20.7, -54.2	38.2	226.0	322.9

^aCollege of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional

Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China

^bDivision of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 † Electronic supplementary information (ESI) available: Synthesis and characterization of compounds 2–9. X-ray data for 2a. CCDC 1045537. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt04245c

Fig. 1 X-ray crystal structure analysis of compound 2a. Main bond lengths (Å) and angles (°): P1–P2 2.2081(18), P1–C6 1.824(5), P1–W1 2.5058(13), P2–O6 1.489(4), P2–C12 1.797(5), P2–C18 1.814(5); P2–P1–W1 113.54(6), C6–P1–W1 121.45(18), C6–P1–P2 100.97(16), C12–P2–C18 107.3(2), O6–P2–P1 109.97(17), O6–P2–C12 113.1(2), O6–P2–C18 113.8(3), C12–P2–P1 107.98(16), C18–P2–P1 104.14(18).

Lanl2dz (W) level.⁸ We have not detected any interaction with the secondary phosphine oxide but a well defined P…O adduct is formed with the phosphinous acid (Fig. 2).

This adduct which corresponds to a local minimum (no negative frequency) is formed by the interaction of the phosphinidene LUMO with the in-plane lone pair of the hydroxyl oxygen. On this basis, we propose the mechanism depicted in Scheme 2 for the insertion of phosphinidenes into the P–H bonds.

The first two steps are very similar to those proposed for the insertion of phosphinidene complexes into water.² When the diaryl is replaced by a dialkylphosphine oxide, the phosphinous acid tautomer becomes such a strong ligand that it becomes able to displace tungsten from the phosphinidene complex or from its precursor and the insertion fails. For example, with secondary di-*n*-butylphosphine oxide, the main product is $({}^{n}Bu_{2}POH)W(CO)_{5}$ (3) isolated in 41% yield.

It is possible to alkylate the PH bonds of the insertion products **2** as shown in Scheme 3.

But the most interesting aspect of the chemistry of these insertion products is their use as phospha-Wittig reagents⁹ for the conversion of carbonyl derivatives into P=C double bonds (Scheme 4).

The phosphaalkene intermediates were trapped as [2 + 4] cycloadducts with dimethylbutadiene. Adducts **6** and **9** were obtained as single diastereomers but their stereochemistry was not determined.

Finally, a few words on the thermal stability of compounds 2 are appropriate. The experiments were performed with 2a.

Fig. 2 Computed structure of the adduct $[MeP-W(CO)_5]$ -HOPPh₂. Main bond lengths (Å) and angles (°): P5–O40 2.042, P17–O40 1.770, P5–C1 1.870, O40–H41 0.977; P5–O40–P17 136.06, P5–O40–H41 111.06, P17–O40–H41 109.89, C1–P5–O40–H41 66.96.

Scheme 2 Insertion mechanism of $[RP-W(CO)_5]$ into the P–H bond of $Ar_2P(O)H$.

2b
$$\xrightarrow{1) \text{ NaH, THF, -30 °C}}_{2) \text{ Mel}}$$
 $\xrightarrow{O \text{ Me}}_{Ph-P-P-W(CO)_5}_{Ph \text{ Me}}$
2d $\xrightarrow{K_2CO_3, H_2O/THF}_{Ph-P-P-P}$ $\xrightarrow{O \text{ Me}}_{Ph-P-P-W(CO)_5}_{Ph \text{ Me}}$
2d $\xrightarrow{K_2CO_3, H_2O/THF}_{Ph-P-P-P-P}$ $\xrightarrow{O \text{ Me}}_{Ph \text{ Me}}$
2d $\xrightarrow{K_2CO_3, H_2O/THF}_{Ph-P-P-P-P}$ $\xrightarrow{O \text{ Me}}_{Ph \text{ Me}}$ $\xrightarrow{O \text{ Me}}_{Ph \text{ Me}}_{Ph \text{ Me}}$ $\xrightarrow{O \text{ Me}}_{Ph \text{ Me}}$ $\xrightarrow{O \text{ Me}}_{Ph$

Scheme 3 Alkylation of insertion products 2.

Scheme 4 Compound 2 as phospha-Wittig reagents.

Scheme 5 Thermal decomposition of 2a.

Compound **2a** decomposes in boiling toluene to give a plethora of products (Scheme 5).

The initial step of the decomposition seems to be the deinsertion of the phosphinidene from the P–H bond giving back the secondary phosphine oxide **10** in high yield. The suspected phosphinidene complex gives a variety of products **11**, **12** and **14**. **11** and **14** apparently come from the reaction of the phosphinidene with hydrogen¹⁰ whose source is unknown. **12** and **13** probably arise from a H to OH exchange between the tautomers of **10** and **11**. Alternatively, the decomposition of **2a** could also occur *via* a bimolecular mechanism.

Acknowledgements

This work was supported by the National Natural Science Foundation (21302174, 21272218), Specialized Research Fund for the Doctoral Program of Higher Education (20134101110004), Henan Science and Technology Department (no. 144300510011) and Zhengzhou Science and Technology Department (131PYSGZ204) of China.

References

Reviews: J. C. Slootweg and K. Lammertsma, *Sci. Synth.*, 2009, 42, 19; R. Waterman, *Dalton Trans.*, 2009, 18;
 F. Mathey, *Dalton Trans.*, 2007, 1861; K. Lammertsma, *Top. Curr. Chem.*, 2003, 229, 95; K. Lammertsma and M. J. M. Vlaar, *Eur. J. Org. Chem.*, 2002, 1127; F. Mathey, N. H. Tran Huy and A. Marinetti, *Helv. Chim. Acta*, 2001, 84, 2938.

- 2 F. Mathey and Z. Duan, *Dalton Trans.*, DOI: 10.1039/ c5d02532j.
- 3 K. Vaheesar, T. M. Bolton, A. L. L. East and B. T. Sterenberg, *Organometallics*, 2010, **29**, 484.
- 4 R. Tian and F. Mathey, *Chem. Eur. J.*, 2012, **18**, 11210.
- 5 A. Marinetti and F. Mathey, Organometallics, 1984, 3, 456.
- 6 A. Marinetti and F. Mathey, Tetrahedron, 1989, 45, 3061.
- 7 Y. A. Ustynyuk and Y. V. Babin, *Russ. J. Gen. Chem.*, 2008, 78, 822.
- 8 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, Yazyev, A. J. Austin, R. Cammi, C. Pomelli, О. J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, Salvador, J. J. Dannenberg, V. G. Zakrzewski, P. S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, K. Malick, A. D. Rabuck, K. Raghavachari, D. J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburgh PA, 2003.
- 9 Selected references: A. Marinetti and F. Mathey, Angew. Chem., Int. Ed. Engl., 1988, 27, 1382; P. Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc., 1990, 112, 2407; A. Marinetti, S. Bauer, L. Ricard and F. Mathey, Organometallics, 1990, 9, 793; S. Shah and J. D. Protasiewicz, Chem. Commun., 1998, 1585; S. Shah and J. D. Protasiewicz, Coord. Chem. Rev., 2000, 210, 181; R. C. Smith, X. F. Chen and J. D. Protasiewiz, Inorg. Chem., 2003, 42, 5468; A. I. Arkhypchuk, M.-P. Santoni and S. Ott, Organometallics, 2012, 31, 1118; A. I. Arkhypchuk, Y. V. Svyaschenko, A. Orthaber and S. Ott, Angew. Chem., Int. Ed., 2013, 52, 6484.
- 10 M. P. Duffy, L. Y. Ting, L. Nicholls, Y. Li, R. Ganguly and F. Mathey, *Organometallics*, 2012, **31**, 2936.