The cyanocarbonyl group: synthesis and crystal structure of an imidazole carbonyl cyanide, $C_{12}N_5OH_{17}$

D. W. Jones,⁽¹⁾* M. Motevalli,⁽²⁾ G. Shaw,⁽¹⁾ and J. D. Shaw⁽¹⁾

Received June 22, 1996

1-t-Butyl-5-N-(dimethylaminomethylene)aminoimidazole-4-carbonyl cyanide (BUNDAMIC) is the first acyl cyanide to be synthesized from an imidazole-4-carboxylic acid, diethylphosphorocyanidate, and triethylamine and its structure determined by x-ray crystallography. It crystallizes with four molecules in the monoclinic space group C2/m with a = 17.824(2), b = 6.784(2), c = 11.039(2) Å, and $\beta = 96.17(1)^\circ$; $\underline{R} = 0.036$ over 1086 unique x-ray reflections. The cyanocarbonyl group is nearly linear, $C-C \equiv N$ angle $174.4(3)^\circ$, with dimensions $C \equiv N$, 1.137(3); C-C, 1.493(3); and C = O, 1.224(3) Å. The imidazole ring, in the mirror plane, has a lengthened C4 = C5 bond of 1.421(3) Å, and there is a short ring-closing approach, $H \cdots O6 = 2.07$ Å, between the methyleneamino hydrogen and the carbonyl oxygen.

KEY WORDS: Acylcyanide; cyanocarbonyl; imidazole; carbonyl cyanide.

Introduction

X-ray crystallographic determinations of the structures of compounds containing the cyanocarbonyl (or acylcyanide) group are uncommon and few purely organic carbonyl cyanides have been prepared.¹⁻⁴ A crystalline imidazole-4-carbonyl cyanide is of particular interest as a model in a route for the synthesis of Coformycin-like antibiotics and as an intermediate in the preparation of potential enzymatic inhibitors of carcinogenic pathways. 1-t-Butyl-5-N-(dimethylaminomethylene) amino imidazole-4-carbonyl cyanide (BUNDAMIC), as briefly reported earlier,² also has a surprisingly strong yellow color. Accordingly, its preparation and the analytical data for intermediates are given in some detail. A single-crystal x-ray analysis has been carried out to confirm the presence of the acylcyanide moeity and to observe any effect on the dimensions of the imidazole ring.

Experimental

Preparations

The ester benzyl 5-amino-1-t-butylimidazole-4carboxylate (1), prepared from benzyl-2-amino-2-cyanoacetate, triethyl orthoformate, and t-butylamine, crystallized from ethylacetate as needles, m.p. 161°C, with the following analytical and spectroscopic data: Found: C, 65.5; H, 7.05; N, 15.15%; M⁺ 243. C₁₅H₁₉N₃O₂ requires C, 65.95; H, 7.0; N, 15.35%; M, 243. $\delta_{\rm H}$ (CDCl₃), 1.65 $(9H,s,CMe_3),$ 5.15 (2H,brs,NH₂), 5.45 (2H,s,OCH₂), 7.25 (s,1H,2-H), 7.45 (5H,m,Ar). A 0.1 M solution of 1 in toluene was refluxed with 0.11 M dimethylformamide dimethylacetal and the filtered solution evaporated to yield a solid, m.p. 87°C, benzyl 1-t-butyl-5-N-(dimethylaminomethylene) imidazole (2): (Found: C, 66.0; H, 7.55; N, 16.85%; M⁺ 328. $C_{18}H_{24}N_4O_2$ requires C, 65.85; H, 7.35; N, 17.05%, M, 328); δ_{H} (d₆ dmso) 1.56 $(9H,s,CMe_3),$ 2.86-2.92 (6H,2s,NMe₂), 5.15 (2H,s,OCH₂), 7.39 (5H,s,Ar), 7.42 (1H,s,H-2), 7.81 (1H,s,CH:N). 31g (94.5 mM) of 2 in dry ethyl acetate (180 ml) solution was shaken with 10% Pd-C (2.4 g) in a hydrogen atmosphere for 16 h, filtered and

⁽¹⁾ Chemistry & Chemical Technology, University of Bradford, Richmond Road, West Yorks, BD7 1DP, United Kingdom.

⁽²⁾ Department of Chemistry, Queen Mary College, London, E1 4NS, United Kingdom.

^{*} To whom correspondence should be addressed.

evaporated to dryness at 30°C to give the carboxylic acid (3) as a gum (22.5 g, 100% yield) (Found: C, 55.6; H, 7.8; N, 23.2%; M⁺ 238. C₁₁H₁₈N₄O₂ requires C, 55.45, H, 7.6; N, 23.5%; M, 238); $\delta_{\rm H}$ (d₆ dmso) 1.6 (9H,s,CMe₃), 2.9–3.0 (6H,d,NMe₂), 7.4 (1H,s, H-2).

To a stirred solution of 3 (2.38 g, 10 mM) in ethyl acetate (25 ml) was added 1.8 g (11 mM) of diethyl phosphorocyanidate (DEPC) and triethylamine (1.5 ml, 15 mM). The mixture, set aside at 0°C for 2 h, then at room temperature for 40 h, turned bright yellow. After chromatography the acylcyanide (BUNDAMIC) (1.53 g, 62%) crystallized from ethyl acetate-light petroleum: m.p. 149°C. Found: C, 58.3; H, 7.0; N, 28.2%; M⁺ 247. C₁₂H₁₇N₅O requires C, 58.3; H, 6.95; Ν, 28.35%; Μ⁺ 247; λ max 248 (ε 18450), 392 (ε 5970) nM in methanol. $\delta_{\rm H}$ (CDCl₃) 1.7 (9H,s,CMe₃), 3.1 - 3.3 $(6H,d,NMe_2)$ 7.4 (1H,s,2-H), 8.65. (1H,s,N:CH), δ_C (CDCl₃) 160 (CO), 158 (N:CH), 154 (C-4), 134 (C-2), 127 (C-5), 115.5 (CN), 58 (C:), 41,35 (NMe₂), 29 (Me₃). ¹H NMR spectra were recorded at 360 MHz and ¹³C spectra at 90.56 MHz on a Brüker Spectrospin instrument.

X-ray measurements and structure solution

Systematic absences derived from rotation and Weissenberg photographs indicated one of the three monoclinic space groups, C2, C2/m, or Cm. A total of 1415 reflections (excluding standards, checked hourly), collected diffractometrically, reduced to 1086 unique reflections with $|Fo| > 3\sigma$ |Fo|; crystal data are in Table 1.

Structure solution for the nonhydrogen atoms was achieved by direct methods (MULTAN 80⁵ and SHELX 97)⁷. Although refinement in C2 went down to R = 0.046, it became evident that the centrosymmetric space group C2/m was more appropriate.⁶ H atoms were inserted (riding model) and anisotropic refinement,⁷ in C2/m, ultimately reached R = 0.036. Table 2 gives the refined positional parameters together with their U_{eq} values. Figure 1 shows the crystallographic atom numbering and thermal motion ellipsoids.

Results and discussion

The molecule is essentially planar in the (x z) plane (020 is an intense reflection). An intramolecular hydrogen bond links the N=CH-NMe₂ hydrogen with the carbonyl oxygen (C7-H7 \cdots O12 = 157°; C7 \cdots

O12 = 2.95 Å) so as to close the O=C-C4=C5-N=C ring. The imidazole ring in BUNDAMIC is even more planar than in imidazole itself.⁸ By contrast with the ring in a nucleoside such as 5-amino-1-(2,3-*O*-isopropylidene- β -D-ribofurano-syl) imidazole-4-carboxylate(BARIC),¹ substituents C, C=O and N at positions 1,4, and 5 also all lie in the plane.

Table 3 lists the bond lengths and apparent esd's for nonhydrogen atoms in BUNDAMIC, together with the corresponding bond angles (apparent esd's $\leq 0.2^{\circ}$). Bond lengths for the imidazole nucleus closely mirror those in imidazole and imidazole nucleosides except for the C4 = C5 which, at 1.421(3) Å, is 0.04 Å longer than in either benzyl $(BARIC)^{1}$ or ethyl (EARIC) 5amino-1,2,3-O-isopropylidene-B-D-ribosylimidazole 4-carboxylate,⁹ presumably as a consequence of conjugation with the carbonyl cyanide group. Also, the proximity (2.07 Å) of the carbonyl oxygen O6 to the aminomethylene hydrogen is associated with angles $C4 - \delta C5 - N6 = 137.1 (2)^{\circ}$ and C5 - C4 - C11 =132.2(2)° in BUNDAMIC that are each several degrees larger than in BARIC and even than in EARIC (in which, unusually, the chelate hydrogen bond from a 5-amino hydrogen goes to the ethoxy oxygen, rather than (as in BARIC and ADIMIC¹⁰) the carbonyl). Angle C4-C11-O12 in BUNDAMIC is opened to $130.0(2)^{\circ}$, much the largest angle at this cyanocarbonyl carbon. As in most imidazole compounds, the largest interior bond angle is N3-C2-N1 (113.4 (2)°); the next is C5-C4-N3 = 109.6 (2)° and the others are close to 106°. Thus, with the enhanced stability of the almost closed ring, conjugation evidently results in lengthening of the formal double bond C4=C5 and slight shortening of the formal single bond C4-C11 by comparison with the corresponding dimensions in BARIC and EARIC and other 5-aminoimidazole compounds. This may, in turn, be associated with the intense yellow color of crystals and solution.

Most dimensions of the CO·C \equiv N group in BUN-DAMIC, C11-O12 = 1.224(3), C11-C13 = 1.493(3), C13 \equiv N14 = 1.137(3) Å, angle C11-C13 \equiv N14 = 174.4(3)°, are closely similar to the corresponding dimensions in the few purely organic compounds containing the group that have been determined: Cyanoformamide,¹¹ Z-3-(benzoxanol-2-ylidine)-3-phenyl-2-oxo-1-propanenitrile³ (WEVZIG), and 1-cyanocarbonyl-4-(4-diethylaminophenylamino) naphthalene⁴ (ZIZNAX). BUNDAMIC's C \equiv N bond of 1.137(3) Å is slightly shorter than the 1.15 Å typical of a simple organic cyanide, while its carbonyl bond

Compound	C ₁₂ N ₅ OH ₁₇	Max.crystal dimmm	$0.7 \times 0.5 \times 0.2$
Color, Shape	Bright yellow prisms	Scan width	$0.9 \pm 0.14 \tan \theta$
Formula weight	247.3	Standard reflections	806;406;514
Space group	C2/m	Decay of standards	<5%
Temp., °C	25	20 range, deg	$2 \le 2\theta \le 70$
Cell constants ^a		Range of h, k, l	$\pm 21, +8, +13$
<i>a</i> , Å	17.824(2)	Unique reflections obs. ^b	1086
<i>b</i> , Å	6.784(2)	Cell Volume, Å ³	1327.1(5)
<i>c</i> , Å	11.039(2)	Structure solution	SHELXL-97
β, deg	96.17(1)	Structure refinement	SHELXL-97
Formula units	4	D_x , g cm ⁻³	1.23
$D_{\rm o}$, g cm ⁻³	1.23 (KI flotation)		
μ_{calc} cm ⁻¹	10.5	Scan	ω/2θ
Diffractometer	Enraf Nonius CAD4F	$R[F > 2\sigma(F)]$	0.036
		R (all data)	0.048
Radiation, graphite monochromator	$CuK\alpha(\lambda = 1.54184 \text{ Å})$	$wR(F^2)$	0.108
F(0,0,0)	528	Largest feature on final difference map	0.16 Å ³

Table 1. Crystal data and summary of intensity data collection and structure refinement

^{*a*} Least-squares refinement of $(\sin\theta/\lambda)^2$ values for 15 reflections $25 > 2\theta > 35^\circ$.

^b Corrections: Lorenz-polarization; extinction 0.0026(4).

of 1.224(3) Å is shorter than in WEVZIG and ZIZNAX and nearly as short as in cyanoformamide. When the CO·CN group is coordinated, as in the copper complex $[Cu(en(bu)_2(C_2N_2)_2)]^{12}$, where $en(bu)_2$ is a Schiff base, the cyanoimino substituent $C1 - C6 \equiv N2$ of the organometallic ring has lengths 1.47(1) and 1.13(1) Å for the moeity, while the corresponding lengths are 1.461(5) and 1.142(6) Å in bis (3-cyanoiminomethyl)-2,4-pentanedionato)Ni(II) or [Ni(acac $C_2N_2)_2$].¹³

Table 2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³)^a

	х	у	Z	U_{eq}
N(6)	2765(1)	0	6935(1)	55(1)
N(3)	1051(1)	0	4815(2)	64(1)
N(1)	1443(1)	0	6802(1)	53(1)
C(7)	3395(1)	0	6457(2)	57(1)
N(8)	4056(1)	0	7134(2)	61(1)
O(12)	2903(1)	0	3817(1)	71(1)
C(4)	1834(1)	0	4970(2)	53(1)
C(11)	2225(1)	0	3909(2)	56(1)
C(15)	1388(1)	0	8154(2)	56(1)
C(13)	1713(1)	0	2747(2)	62(1)
C(5)	2091(1)	0	6234(2)	50(1)
C(2)	848(1)	0	5910(2)	64(1)
C(9)	4111(2)	0	8454(2)	72(1)
C(17)	564(2)	0	8376(2)	80(1)
C(10)	4744(2)	0	6546(2)	85(1)
N(14)	1374(2)	0	1812(2)	80(1)
C(16)	1759(2)	1864(3)	8698(1)	79(1)

^{*a*} U_{eq} is defined as one-third of the trace of the orthogonalized U_{u} tensor.

In these, the carbonyl oxygen is coordinated to the metal atom (C=O 1.33(1) and 1.283(4) Å, respectively, both longer than the more usual 1.224(3) Å in BUNDAMIC) and in the planar cyanoformamide¹¹, which has the cyano C-C = 1.477(8) Å. In the adduct titanium tetrachloride-ethylcyanoformate,¹⁴ on the other hand, with cyano nitrogen coordinated to the metal at one end of an NCC=OOC₂H₅ chain, the C-C=N bond lengths are 1.505 (3) and 1.112(3) Å, very close to the 1.493(3) and 1.137(3) Å in BUN-DAMIC; the short C=N bond in the adduct has been

Fig. 1. Thermal motion ellipsoids, showing crystallograhic atom numbering.

Table 3. Bond Lengths [Å] and Angles [°]

N(6) - C(7)	1 292(3)
N(6) = C(5)	1.357(3)
N(3) - C(2)	1.299(3)
N(3) = C(4)	1 387(3)
N(1) = C(2)	1.367(3)
N(1) = C(2) N(1) = C(5)	1.307(3)
N(1) = C(15)	1.572(3)
N(1) = C(13) C(7) = N(8)	1.307(2)
C(7) = N(6)	1.323(3)
N(8) = C(10)	1.448(3)
N(8) = C(9)	1.449(3)
O(12) = O(11)	1.224(3)
C(4) = C(5)	1.421(3)
C(4) = C(11)	1.425(3)
C(11) - C(13)	1.493(3)
C(15) - C(17)	1.514(3)
C(15) - C(16)	1.521(2)
C(15) - C(16) # 1	1.521(2)
C(13) - N(14)	1.137(3)
C(7) = N(6) = C(5)	121.50 (17)
C(2) = N(3) = C(4)	121.30(17) 105.21(18)
C(2) = N(3) = C(4)	105.21 (16) 107.22 (16)
C(2) = N(1) - C(15)	107.32 (10)
C(2) = N(1) = C(15)	123.01 (10)
V(3) = N(1) = U(13)	120.87 (17)
N(0) = C(7) = N(0)	121.92 (19)
C(7) = N(8) = C(10)	119,42 (19)
C(1) = N(8) = C(9)	121.82 (19)
U(10) = N(8) = U(9)	118.77 (19)
N(3) - C(4) - C(5)	109.59 (18)
N(3) = C(4) = C(11)	118.19 (18)
C(5) = C(4) = C(11)	132.2 (2)
O(12) - C(11) - C(4)	130.0 (2)
O(12) - C(11) - C(13)	116.49 (18)
C(4) = C(11) = C(13)	113.5 (2)
N(1) - C(15) - C(17)	109.14 (17)
N(1) - C(15) - C(16)	108.64 (11)
C(17) - C(15) - C(16)	108.91 (12)
N(1) - C(15) - C(16) #1	108.64 (11)
C(17) - C(15) - C(16) #1	108.91 (12)
C(16) - C(15) - C(16) #1	112.6 (2)
N(14) - C(13) - C(11)	174.4 (3)
N(6) = C(5) = N(1)	118.48 (16)
N(6) - C(5) - C(4)	137.1 (2)
N(1) = C(5) = C(4)	104.44 (18)
N(3) = C(2) = N(1)	113.4 (2)

^{*a*} Symmetry transformations used to generate equivalent atoms: # $1 x_1 = y_1 z_2$.

attributed to diminished π -electron-lone-pair repulsion.

Acknowledgments

We thank Professor M.B. Hursthouse and colleagues for x-ray data, the Yorkshire Cancer Research Campaign for financial support, and a referee for helpful comments.

Supplementary material. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1003/5384. Copies of available material can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

References

- Briant, C.E.; Jones, D.W.; Shaw, J.D. In Correlations, Transformations, and Interactions in Organic Crystal Chemistry; Jones, D.W.; Katrusiak, A., Eds.; I U Cr/OUP Oxford, 1994; pp 245-254.
- Nagra, B.S.; Shaw, G.; Robinson, D.H. J. Chem. Soc. Chem. Commun. 1985, 459.
- Leban, I.; LeMarechal, A.M.; Roberts, A. Croat. Chem. Acta 1993, 66, 393.
- Chetkina, L.A.; Bel'sky, V.K.; Zavodnik, V.E.; Bespalov, B.P. Kristallografiya 1995, 40, 848.
- Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.; Germain, G.; Declercq, J.-P.; Woolfson, M.M. MULTAN 80 A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data; Universities of York, England, and Louvain, Belgium, 1980.
- 6. Marsh, R.E. Acta. Crystallogr. B 1997, 53, 317.
- Sheldrick, G.M. SHEL X-97 Program(s) for the Solution, Refinement and Material for Publication of Crystal Structures; Univ. of Göttingen, Germany.
- 8. McMullan, R.K.; Epstein, J.; Ruble, J.R.; Craven, B.M. Acta Crystallogr. 1979, 35, 688.
- 9. Briant, C.E.; Jones, D.W. Acta Crystallogr. C 1990, 46, 2205.
- Briant, C.E.; Jones, D.W.; Shaw, G. Nucleosides Nucleotides 1995 14, 1251.
- 11. Druck, U.; Becker, W.; Becker, G. Z. Kryst. 1984, 167, 131.
- 12. Corain, B.; Basato, M.; Del Zotto, A.; Zanotti, G. Inorg. Chem. 1983, 22, 2744.
- 13. Corain, B.; Del Pra, A.; Filira, F.; Zanotti, G. Inorg. Chem. 1979, 18, 3523.
- 14. Constant, G.; Cubaynes, J.-J.; Daran, J.-C.; Jeannin, Y. J. Coord. Chem. 1974, 4, 71.