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Direct vinylation of natural alcohols and derivatives with calcium 
carbide 

Siew Ping Teong, Ariel Yi Hui Chua, Shiyun Deng, Xiukai Li and Yugen Zhang
*
 

Vinyl ethers are essential synthetic building blocks for organic synthesis, especially for polymer synthesis and highly 

vinylated polyol substrates. Herein, a transition metal-free, mild and safe protocol for the direct vinylation of natural 

alcohols with calcium carbide has been developed. Various sugar alcohols, phenol and its derivatives were tested and 

proved to work using this green methodology. Selectivity of full vinylated products of the reaction decreases with 

increasing hydroxyl groups due to side reactions occurring under the basic medium. Electron-donating substituted phenols 

works more efficiently as compared to electron-withdrawing substituted phenols in general. This methodology may 

provide new insights on selective vinylation of electron-rich biomass-derived materials. 

Vinyl ethers are no doubt essential synthetic building blocks for 

general organic synthesis,
1
 particularly used as precursors in 

polymeric formulations.
2
 Highly vinylated products obtained from 

the polyol substrates are specifically attractive as they may provide 

opportunities for developing new biodegradable polymeric 

materials due to the additional possibilities for modification with 

the multiple reactive vinyloxy groups. Over the years, various 

methods have been developed to prepare vinyl ethers
3
 such as the 

metal-catalyzed coupling reactions
4
 and elimination reactions

5
. The 

most simple and convenient method is the direct vinylation of 

alcohols with acetylene gas, namely, Favorskii–Reppe reaction, 

which has been used as the industrial process for vinyl ethers since 

1960s.
6
 Methods for the direct vinylation of various alcohols using 

acetylene gas have been reported
7
, while, in general, harsh 

conditions were employed with dedicated laboratory set-up for the 

gaseous reagent and high pressure conditions. Polyols and phenol 

are derivatives from sustainable nature carbohydrates, such as 

cellulose, hemicellulose and lignin.
8
 The direct full vinylation of 

polyols and phenol is still a great challenge (Scheme 1).
7,

 
9, 10

 In 

recent years, calcium carbide has been used increasingly by our 

group
11

 and others
12

 as a sustainable, easy-to-handle, and low-cost 

feedstock in organic synthesis. Particularly, vinylation reactions of 

benzylic alcohols
13

, thiols
14

 and indoles
10

 with calcium carbide as 

acetylene source have been reported very recently. During the 

preparation of this manuscript, vinylation of substituted electron-

rich phenol substrates (4 examples) was also reported
10

. The direct 

vinylation of glycerol and phenol with calcium carbide was 

investigated, however, it was reported that no reaction was 

observed
11-13

. Herein, we developed a transition metal-free, mild 

and simple methodology for the direct vinylation of natural alcohols 

(polyols and phenols) with calcium carbide (Scheme 1).  

 

 
Scheme 1. Methodologies of direct vinylation of polyols and 
phenols. 

 

We first begin our study using a simple diol, 1,5-pentanediol 

which is commonly synthesized by hydrogenation of glutaric acid, 

furfural and their derivatives.
15

 Various bases and solvents were 

screened with the reaction conditions optimized (Table 1). DMSO 

was the best solvent for this reaction as it forms superbase system 

with even catalytic amount of Cs2CO3. In contrast, no desired 

product was observed for the polar aprotic DMF. The reaction 

proceeded efficiently in DMSO/H2O with calcium carbide (3 mmol) 

in the presence of Cs2CO3 (0.3 mmol) at 120 °C for 8h, yielding 99% 

of the desired product (Table S1, Entry 8). High yield and selectivity 

of 98% was also obtained for the shorter chain diol, ethylene 

glycol,
16

 at shorter reaction time of 3h (Scheme 2). 

 

 

 

 

 

Scheme 2. Vinylated products: 1,5-bis(vinyloxy)pentane 3b and 1,2-

bis(vinyloxy)ethane 4 
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Table 1 Base and Solvent Screening
 a

 

 

 
 

 

Entry Base Solvent         Yield
b
 (%) 3a:3b 

1 - DMSO + 4 vol% H
2
O NR 

2 CsOH DMSO + 4 vol% H
2
O 11 : 88 

3
 Cs

2
CO

3
 DMSO + 4 vol% H

2
O 12 : 87 

4 K
2
CO

3
 DMSO + 4 vol% H

2
O 13 : 0 

5
 Na

2
CO

3
 DMSO + 4 vol% H

2
O NR 

6
 NaHCO

3
 DMSO + 4 vol% H

2
O NR 

7
 

DBU DMSO + 4 vol% H
2
O NR 

8 TEA  DMSO + 4 vol% H
2
O NR 

9 Cs
2
CO

3
 Anhydrous DMSO trace : 0 

10 Cs
2
CO

3
 DMF + 4 vol% H

2
O NR 

11 Cs
2
CO

3
 CH

3
CN + 4 vol% H

2
O NR 

12 Cs
2
CO

3
 THF + 4 vol% H

2
O NR 

13
 Cs

2
CO

3
 Dioxane + 4 vol% H

2
O NR 

a 
Reaction conditions: Diol (1 mmol), CaC2 (4 mmol), solvent (5 mL), 

base (0.3 mmol), 120 °C, 3 h. 
b
 NMR yield. 

  

     

Delighted with the results, we expanded the methodology on 

other polyols (Scheme 3 - 5). The increase in hydroxyl groups 

resulted in more calcium carbide to be added and hence, the 

amount of water has to be adjusted. An optimized yield of 69% was 

obtained for the vinylation of glycerol
17

 with the starting material 

fully converted (Scheme 3). Heating the reaction at 120 °C for 

glycerol resulted in lower yield (Table S2, Entries 9 - 11), with 

possible acetal formation while a longer reaction time (16 h) was 

required for the reaction to reach the optimum yield (68%) at 80 °C 

(Table S2, Entry 13). Additives like TBAB, KBr and 18-crown-6 were 

added and proved to have no enhanced effect on the yield. 

 

 

 

 

 

Scheme 3. Vinylation of glycerol with calcium carbide: Glycerol (1 

mmol), CaC2 (6 mmol), Cs2CO3 (1.2 mmol), DMSO + 7 vol% H2O, 

100 °C, 3 h. 

 

       This simple methodology also works for polyols like 

erythritol
18

 and xylitol,
18, 19

 albeit lower selectivity due to side 

reactions that occurred in this basic medium. 43% yield was 

obtained for erythritol (Scheme 4) whereas only trace amount (<5%) 

was detected for xylitol (Scheme 5). Side products isolated for both 

reactions were attributed to the well-known side process of base-

catalyzed vinylation resulting in the formation of cyclic acetals
7c

. 

Interestingly, as the reaction time was prolonged to 18 h for 

erythritol reaction, we observed elimination of the terminal vinyl 

ethers, resulting in the formation of product 8b in 49% yield and 

other uncharacterized volatile products. Herein, 8b is generated by 

elimination of vinyl alcohol from 8a.
20

  

 

Scheme 4. Vinylation of erythritol with calcium carbide: Erythritol (1 

mmol), CaC2 (9 mmol), Cs2CO3 (1.2 mmol), DMSO + 9 vol% H2O, 

100 °C. 

 

 

 

 

 

 

Scheme 5. Vinylation of xylitol with calcium carbide: Xylitol (1 

mmol), CaC2 (10 mmol), Cs2CO3 (1.2 mmol), DMSO + 12 vol% H2O, 

100 °C, 3 h. 

 

In contrast with the literatures that no vinylation product was 

observed
10-12

, phenol works in our methodology. The amount of 

water plays an important role in this reaction with the yield 

improved from 78% to 93% by addition of water from 4 vol% to 7 

vol% (Table 2, Entries 2 - 5). 

 

Table 2 Optimization of Reaction Conditions for Phenol
a
 

 

 
 

Entry CaC2 (mmol) vol% H2O Yield
b
 (%) 

1 2 4 33 

2
c 

4 4 78 

3
c 

4 6 84 

4
c 

4 7 93 

5
c 

4 8 76 
a 

Reaction conditions: Phenol (1 mmol), DMSO + vol% H2O (5 mL), 
Cs2CO3 (0.5 mmol), 140 °C, 16 h. 

b
 NMR yield. 

c
 Average of 2 runs. 

 

     

    Other substrates were tested and in general, the electron-rich 

phenols (12b, 12d-j, Scheme 6) worked exceptionally well while the 

halide substituted and weak electron-withdrawing group 

substituted phenols gave low to moderate yield (12k-n, 12o-q). No 

products were observed for strong electron-withdrawing group 

substituted phenols (12r-t). It is noted that while 12b resulted in 

high yield, catechol 12c gave only trace amount of product, leaving 

a hardened gel after reaction. This could possibly due to some 

polymerization side reaction that may have taken place. O- and m- 

substituted bromophenols proceeded slower compared to p- 
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bromophenol, with over 50% yield obtained only after reacting for 3 

days. Electron donating groups 12d to 12j proceeded smoothly with 

excellent yields obtained. 2-naphthol 11p proceeded more 

efficiently with 56% yield than 1-naphthol 11o with 30% yield after 

reaction for 3 days.  

 

 

 

 

 

Scheme 6. Substrate Scope of Phenols Derivatives with CaC2: 

Reaction conditions: Alcohol (1.0 mmol), CaC2 (4.0 mmol), Cs2CO3 

(0.5 mmol), DMSO + 7 vol% H2O (5mL), 140 °C, 16 h. NMR yield. 

Isolated yield is in parentheses. 
a 

CaC2 (8 mmol), 14 vol% H2O. 
b 

9 vol% 

H2O. 
c
 3

 
days. 

 

Diphenyl carbonate 13 as the key functional group in 

polycarbonate plastics could undergo C-O bond cleavage through 

basic hydrolysis, readily forming phenol 11a as the major product 

under the optimized condition. As reaction prolonged to 3 days, the 

resulting phenol then formed vinyloxy(benzene) 12a. (Scheme 7) 

 

 

 

 

 

 

Scheme 7. Vinylation of Diphenyl Carbonate with CaC2: Reaction 

conditions: Diphenyl carbonate (1.0 mmol), CaC2 (4.0 mmol), Cs2CO3 

(0.5 mmol), DMSO + 7 vol% H2O (5mL), 140 °C. 

 

Although base-catalyzed alcohol vinylation with acetylene is 

well known,
6
 the current calcium carbide with control amount of 

water system demonstrated much high activity for this reaction. It 

is believed that the small amount of water promotes the reaction 

by breaking down the polymeric structure of calcium carbide to 

form calcium acetylide which is much more active than acetylene.
11

 

In addition, the presence of base could also stabilize the acetylide 

intermediate.   

       

Conclusions 

We have developed a transition metal-free, mild and safe 

protocol for the direct vinylation of natural alcohols with calcium 

carbide. Various sugar alcohols, phenol and its derivatives were 

tested and proved to work using this green methodology. Selectivity 

of the reaction decreases with increasing hydroxyl groups due to 

side reactions occurring under the basic medium. Electron-donating 

substituted phenols works more efficiently as compared to 

electron-withdrawing substituted phenols in general. This 

methodology may provide new insights on selective vinylation of 

electron-rich biomass-derived materials. 
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