Nucleophilic acylation of arylfluorides catalyzed by imidazolidenyl carbene

Yumiko Suzuki,* Tomonori Toyota, Fumie Imada, Masayuki Sato and Akira Miyashita School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka, 422-8526, Japan.

E-mail: suzuvumi@smail.u-shizuoka-ken.ac.jp; Fax: +81 542645755; Tel: +81 542645755

Received (in Cambridge, UK) 21st February 2003, Accepted 9th April 2003 First published as an Advance Article on the web 6th May 2003

Imidazolidenyl carbene catalyzes nucleophilic acylation reaction of arylfluorides with electron withdrawing groups to give benzophenone derivatives.

Nucleophilic aromatic substitution is an important process in synthetic aromatic chemistry.¹ As for substitution by carbon nucleophiles, one of the most significant examples is the vicarious nucleophilic substitution of hydrogen.² Displacement of methoxy group by organometallics is a convenient route to alkylate arenes.³ The organometallic complexes with the methoxy and the *ortho*-activating group to facilitate the substitution reaction. In contrast to these examples, nucleophilic aromatic substitutions of halogen atoms by carbanions are less common,^{1,2} as halonitroarenes often react with carbanions by electron-transfer processes^{2,4} or intra- or intermolecular redox processes.^{2,5}

We have previously reported the nucleophilic aromatic substitutions of haloheteroarenes to afford aroylheteroarenes.⁶ This reaction proceeds by the catalytic action of imidazolidenyl carbene **2**. **2** and aromatic aldehyde form the intermediate **3** known as an 'activate aldehyde',⁷ which is an 'aroyl anion equivalent'. **3** behaves as a carbon nucleophile, and its addition to heteroarenes at the carbon-bearing halogen, followed by elimination of halogen and **2**, results in nucleophilic acylation (Scheme 1).

Herein we report the first example of nucleophilic acylation of nitrobenzenes. In refluxing THF, 4-fluoronitrobenzene (4) was found to react with benzaldehyde (5a) in the presence of 1,3-dimethylimidazolium iodide (1) and sodium hydride to afford 4-nitrobenzophenone in 47% yield (Table 1). In DMF at 0 °C, the yield increased to 57%.† Under the same conditions in DMF, the reaction of 4 with 4-chlorobenzaldehydes (5b), 4-anisaldehyde (5c), 3-fluorobenzaldehyde (5d), and 2-fluor-

CHEM. COMMUN., 2003, 1314–1315

1314

obenzaldehyde (**5e**) gave the corresponding benzophenones **6a**–**e** in good to moderate yields. It is well known that fluoride is often a better leaving group than the other halogens in nucleophilic aromatic substitution.⁸ The attempt at nucleophilic acylation of 4-chloronitrobenzene ended in the recovery of starting materials both in refluxing THF and in DMF at 0 °C.

The reaction mechanism of the acylation of 4 is considered to be as shown in Scheme 2. The intermediate 3 adds to the carbon atom bearing fluorine, followed by loss of the fluorine as an anion. Base-promoted elimination of a proton and 2 from the tetrahedral intermediate 8 takes place to afford 6. 2 is then recycled as a catalyst.

The acylation of other fluoroarenes with electron-withdrawing groups was also examined (Table 2). The reaction of 4-cyanofluorobenzene (9) and 4-fluorobenzophenone (10) with 5a gave 4-cyanobenzophenone (12) and 4-benzoylbenzophenone (13), respectively, but the yields were poor. The reaction of 3,4-difluoronitrobenzene (11) with 5a, 3-chlorobenzaldehye (5f), and 3-methoxybenzaldehyde (5g) afforded the corresponding benzophenones 14–16 in good yield.

In conclusion, we succeeded in carrying out the nucleophilic acylation of fluorobenzenes with electron-attracting groups. The reaction proceeds by the catalytic action of imidazolidenyl carbene, and the substitution occurs *via* an addition–elimination mechanism. It is impossible to directly introduce acyl groups to electron-deficient positions of benzene rings with 'ordinal' reactions such as the Friedel–Crafts reaction. As such, the acylation reaction using imidazolidenyl carbene as a catalyst is

Scheme 2 Reaction mechanism of acylation of 4-fluoronitrobenzene (4).

Table 2 Benzoylation of fluoroarenes

		R	├──F + Ar–CHO 9–11 5a, f,g	$\xrightarrow{1} \qquad \stackrel{R}{\swarrow} \xrightarrow{0} \qquad \stackrel{H}{\Box} \xrightarrow{0} \qquad \stackrel{H}{\Box} \xrightarrow{0} \xrightarrow{0} \qquad \stackrel{H}{\Box} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} 0$		
R	Fluoroarene	Ar	Aldehyde	Reaction conditions	Products	Yield (%)
4-CN	9	Ph	5a	0 °C, 20 min. and then r.t., 2 h	12	37
4-C ₆ H ₅ CO	10	Ph	5a	0 °C, 20 min. and then r.t., 2 h	13	32
2-F-4-NO ₂	11	Ph	5a	0 °C, 1.5 h	14	75
2-F-4-NO ₂	11	3-ClC ₆ H ₅	5f	0 °C, 1.5 h	15	56
2-F-4-NO ₂	11	3-MeOC ₆ H ₅	5g	-15 °C, 30 min. and then r.t., overnight	16	60

a useful method for introducing acyl groups to arenes with electron-deficient substituents.

Notes and references

[†] Procedure for nucleophilic acylation of **4**: sodium hydride (160 mg, 4 mmol) was added to a mixture of **4** (423 mg, 3 mmol), **5a** (382 mg, 3.6 mmol), and **1** (224 mg, 1 mmol) in DMF (20 ml). The mixture was stirred at 0 °C for 1 hour and then poured into ice-water. The product was extracted with ethyl acetate, washed with water and brine, and dried over Na₂SO₄. The combined organic layers were concentrated, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate) to give **6a** (386 mg, 57 %). Recrystallization of the crude product from methanol yielded crystals of **6a** as slightly orange needles. Mp. 136–137 °C (lit., ⁹ 138 °C).

- (a) F. Terrier, Nucleophilic Aromatic Displacement, VCH, New York, 1991; (b) C. Paradisi, Comprehensive Organic Synthesis, Pergamon Press, 1991, vol. 4, ch 2.1.
- 2 (a) M. Makosza, J. Golinski and J. Baran, J. Org. chem., 1984, 49, 1488;
 (b) M. Makosza and J. Winiarski, J. Acc. Chem. Res., 1987, 20, 282.

3 (a) M. Reuman and A. I. Meyers, *Tetrahedron*, 1995, **41**, 837; (b) T. Hattori, J. Sakamoto, N. Hayashizaka and S. Miyano, *Synthesis*, 1994, 199; (c) T. Hattori, H. Tanaka, Y. Okaishi and S. Miyano, *J. Chem. Soc.*, *Perkin Trans. 1*, 1995, 235; (d) T. Hattori, M. Suzuki, Y. Komuro and S. Miyano, *J. Chem. Soc.*, *Perkin Trans. 1*, 1995, 1473.

- 4 (a) G. A. Russel, E. G. Janzen and E. T. Storm, J. Am. Chem. Soc., 1964,
 86, 1807; (b) R. D. Guthrie, D. A. Hrovat, F. G. Prahl and I. J. Swam, J. Org. Chem., 1981, 46, 498.
- 5 (a) R. B. Davis and L. C. Pizziri, J. Org. Chem., 1960, 25, 1884; (b) R.
 B. Davis, L. C. Pizziri and E. J. Bara, J. Org. Chem., 1961, 26, 4270; (c)
 M. Makoska, M. Jagusztyn-Grochowska, M. Ludwikow and M. Jawdosiuk, Tetrahedron, 1974, 30, 3723.
- 6 (a) A. Miyashita, Y. Suzuki, K. Iwamoto, E. Oishi and T. Higashino, *Heterocycles*, 1998, **49**, 405–413; (b) A. Miyashita, Y. Suzuki, K. Iwamoto and T. Higashino, *Chem. Pharm. Bull.*, 1998, **46**, 390–399; (c) A. Miyashita, K. Obae, Y Suzuki, E. Oishi, K. Iwamoto and T. Higashino, *Heterocycles*, 1997, **45**, 2159–2173; (d) A. Miyashita, Y. Suzuki, I. Nagasaki, C. Ishiguro, K. Iwamoto and T. Higashino, *Chem. Pharm. Bull.*, 1997, **45**, 1254–1258.
- 7 R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719.
- 8 G. P. Briner, J. Mille, M. Liveris and P. G. Lutz, J. Chem. Soc., 1954, 1265.
- 9 Beilstein Handbook of Organic Chemistry, 1925, vol. 7, , 426.