
Reactions of 1-Cyanoimidazole and 1-Cyanobenzimidazole with Aliphatic Alcohols

P. P. Purygin, S. V. Pan'kov, N. A. Belyakova, and O. N. Labazova

Samara State University, Samara, Russia

Received December 14, 2000

Abstract—Alkyl imidazole-1-carboximidates and alkyl benzimidazole-1-carboximidates were synthesized by reaction of 1-cyanoimidazole and 1-cyanobenzimidazole with aliphatic alcohols. The reaction time and the product yield depend on the structure of the alcohol.

We previously described the reactions of 1-cyanobenzimidazole with amines, which led to formation of benzimidazole-1-carboxamidines [1]. The present communication reports on the results of our study of the reactions of 1-cyanoimidazole (I) and 1-cyanobenzimidazole (II) with a series of aliphatic alcohols. Cyanoazoles I and II reacted with excess anhydrous alcohols III–X at 64–65°C to give alkyl azole-1-carboximidates XI–XXVI:

$$\begin{array}{c} NH \\ \text{Ht-C=N} + ROH \xrightarrow{64-65^{\circ}\text{C}} & \text{Ht-C-OR,} \\ \textbf{I, II} & \textbf{III-X} & \textbf{XI-XXVI} \end{array}$$

I, XI–XVIII, Ht = 1-imidazolyl; II, XIX–XXVI, Ht = 1-benzimidazolyl; III, XI, XIX, R = Me; IV, XII, XX, R = Et; V, XIII, XXI, R = Pr; VI, XIV, XXII, R = i-Pr; VII, XV, XXIII, R = Bu; VIII, XVI, XXIV, R = i-Bu; IX, XVII, XXV, R = i-Bu; X, XVIII, XXVI, R = i-so-C₅H₁₁.

Cyanoazoles I and II readily react with primary alcohols III-V, VII, VIII, and X. The reactions take 2-3 h, and the corresponding alkyl azole-1-carboximidates are formed in more than 80% yield. The structure of the hydrocarbon radical in primary alcohols has no appreciable effect on the reaction rate and product yield. The rate of the reaction of cyanoazoles I and II with secondary and tertiary alcohols VI and IX is lower by a factor of 5–10, and the yields of the products do not exceed 20%. The conversion of the substrates in the reactions with 2-propanol (VI) does not reach 20%, and with tert-butyl alcohol (IX) it is as low as 10%. Azolecarboximidates XI-XXVI are colorless crystalline or oily substances, which decompose on prolonged storage (for 3-4 weeks) as follows from the IR spectral data.

Taking into account published data on alcoholysis of nitriles [2] and cyanic acid esters [3-6], we

presume that the reaction of cyanoazoles I and II with aliphatic alcohols III-X occurs as nucleophilic addition at the cyano group. The structure of imidates XI–XXVI was proved by the ¹H NMR and IR spectra (Table 1) and elemental analyses (Tables 2, 3). The IR spectra of XI-XXVI lack cyano group absorption at 2295-2265 cm⁻¹, but a strong band appears in the region 1700–1670 cm⁻¹, which corresponds to stretching vibrations of the newly formed C=N bond. A narrow medium-intensity band at 3300-3240 cm⁻¹ belongs to stretching vibrations of the N-H bond in the imino group. Absorption bands in the range from 3160 to 3020 cm⁻¹ are typical of heterocyclic C-H bond vibrations, and bands at 2990-2840 cm⁻¹ arise from stretching vibrations of aliphatic C-H bonds. The ¹H NMR spectra of **XI–XXVI** (Table 1) contain characteristic signals from alkyl protons, protons of the imidazole or benzimidazole ring, and the NH proton at δ 6.19–6.31 ppm; the latter appears as a broadened singlet.

EXPERIMENTAL

The IR spectra were measured on an IKS-29 spectrophotometer in KBr or in thin films on KBr support. The ^1H NMR spectra were recorded on a Bruker WP-200SI instrument at 200.13 MHz in DMSO- d_6 using TMS as internal reference. The purity of the products was checked, and the progress of reactions was monitored by TLC on Silufol UV-254 plates; acetone and acetone–petroleum ether (1:1) were used as eluents; spots were detected under UV light.

Alkyl imidazole-1-carboximidates XI–XVIII (general procedure). Preliminarily sublimed 1-cyano-imidazole, 0.063 g, was dissolved in 6 ml of the corresponding anhydrous alcohol. The solution was heated for several hours on a water bath at 64–65°C, and excess alcohol was removed under reduced pres-

Table	1. IR a	and ¹ H	NMR spectra of alkyl azole-1-ca	rboximidat	es XI–	XXVI	
Comp.	IR spectrum, v, cm ⁻¹		¹ H NMR spectrum, δ, ppm	Comp.	IR spectrum, v, cm ⁻¹		¹ H NMR spectrum, δ, ppm
	N-H	C=N		no.	N-H	C=N	
XI	3260	1700	3.64 s (3H, CH ₃ O), 6.23 br.s (1H, NH), 6.82 s, 7.45 s (2H, 4-H, 5-H),	XX	3260	1670	1.19 t (3H, CH ₃ , J 7.00 Hz), 3.95 q (2H, CH ₂ O, J 5.88 Hz), 6.30 br.s
XII	3270	1680	8.86 s (1H, 2-H) 1.13 t (3H, CH ₃ , <i>J</i> 6.6 Hz), 3.89 q (2H, CH ₂ O, <i>J</i> 5.6 Hz), 6.19 br.s (1H, NH), 7.00 s, 7.62 s (2H, 4-H,	XXI	3250	1680	(1H, NH), 7.11 m (2H, 5-H, 6-H), 7.51 d, 7.55 d (2H, 4-H, 7-H, <i>J</i> 1.8 Hz), 8.46 s (1H, 2-H) 0.78 t (3H, CH ₃ , <i>J</i> 8.0 Hz), 1.58 m
XIII	3260	1680	5-H), 8.88 s (1H, 2-H) 0.74 t (3H, CH ₃ , J 7.7 Hz), 1.50 m (2H, CH ₂), 3.99 t (2H, CH ₂ O, J 6.1 Hz), 6.23 br.s (1H, NH), 6.91 s, 7.55 s (2H, 4-H, 5-H), 8.15 s (1H,				(2H, CH ₂), 4.01 t (2H, CH ₂ O, <i>J</i> 6.2 Hz), 6.25 br.s (1H, NH), 7.11 m (2H, 5-H, 6-H), 7.51 d, 7.54 d (2H, 4-H, 7-H, J 1.8 Hz), 8.42 s (1H, 2-H)
			7.55 \$ (211, 4-11, 5-11), 8.15 \$ (111, 2-H)	XXII	3240	1670	
XIV	3270	1670	_	XXIII	3260	1670	0.73 t (3H, CH ₃ , J 7.3 Hz), 1.23 m
XV	3280	1690	0.73 t (3H, CH ₃ , J 7.3 Hz), 1.26 m				(2H, CH ₂), 1.49 m (2H, CH ₂), 4.07 t
			(2H, CH ₂), 1.48 m (2H, CH ₂), 4.05	t			(2H, CH ₂ O, <i>J</i> 6.6 Hz), 6.31 br.s
XV			(2H, CH ₂ O, <i>J</i> 6.5 Hz), 6.25 br.s				(1H, NH), 7.11 m (2H, 5-H, 6-H),
			(1H, NH), 6.79 s, 7.48 s (2H, 4-H,				7.50 d, 7.54 d (2H, 4-H, 7-H, <i>J</i> 1.7
XVI	3290	1700	5-H), 8.37 s (1H, 2-H) 0.75 d (6H, 2 CH ₃ , <i>J</i> 6.6 Hz),	XXIV	3275	1670	Hz), 8.45 s (1H, 2-H) 0.79 d (6H, 2 CH ₃ , <i>J</i> 6.7 Hz),
A V I	3270	1700	1.84 m (1H, CH), 3.82 d (2H,	2 X 2 X 1 V	3213	1070	1.92 m (1H, CH), 3.88 d (2H, CH ₂ O,
			CH ₂ O, J 6.5 Hz), 6.25 br.s (1H,				J 6.5 Hz), 6.23 br.s (1H, NH),
			NH), 6.83 s, 7.50 s (2H, 4-H,				7.12 m (2H, 5-H ,6-H), 7.51 d,
			5-H), 8.00 s (1H, 2-H)				7.55 d (2H, 4-H, 7-H, <i>J</i> 1.7 Hz),
XVII	3300	1675	_				8.50 s (1H, 2-H)
XVIII	3270	1680	0.68 d (6H, 2 CH ₃ , <i>J</i> 7.7 Hz),	XXV	3300	1670	
			1.25 m (1H, CH), 1.49 m (2H, CH ₂),	XXVI	3270	1675	0.72 d (6H, 2 CH ₃ , <i>J</i> 6.6 Hz),
			4.00 t (2H, CH ₂ O, <i>J</i> 7.3 Hz,), 6.66 br.s (1H, NH), 7.44 s, 7.62 s				1.21 m (1H, CH), 1.46 m (2H, CH ₂), 4.10 t (2H, CH ₂ O, <i>J</i> 6.3 Hz), 6.26
			(2H, 4-H, 5-H), 8.09 s (1H, 2-H)				br.s (1H, NH), 7.13 m (2H, 5-H,
XIX	3240	1680	3.76 s (3H, CH ₃ O), 7.13 m (2H,				6-H), 7.50 d, 7.54 d (2H, 4-H, 7-H,
			5-H, 6-H), 7.50 d, 7.53 d (2H, 4-H,				J 1.7 Hz), 8.47 s (1H, 2-H)
		L	7-H, J 1.7 Hz), 8.41 s (1H, 2-H)			l	

Table 2. Reaction times and yields, melting points or TLC data, and elemental analyses of alkyl imidazole-1-carboximidates XI-XVIII

Comp.	Danation times h	Yield, %	mp, °C (R_f^a)	Foun	d, %	F1-	Calculated, %	
	Reaction time, h			С	Н	Formula	С	Н
XI	3–3.5	85	(0.25)	47.96	5.69	C ₅ H ₇ N ₃ O	47.99	5.64
XII	2.5–3	88	68–69	51.74	6.54	$C_6H_9N_3O$	51.79	6.52
XIII	2.5–3	86	(0.32)	54.87	7.31	$C_7H_{11}N_3O$	54.89	7.24
XIV	11	18	(0.27)	_	_	_	_	_
XV	2–2.5	78	(0.30)	57.43	7.89	$C_8H_{13}N_3O$	57.46	7.84
XVI	2–2.5	85	(0.40)	57.39	7.90	$C_8H_{13}N_3O$	57.46	7.84
XVII	17–18	10	(0.32)	_	_	-	_	_
XVIII	2–2.5	64	(0.36)	59.57	8.41	$C_9H_{15}N_3O$	59.64	8.34

^a For oily products; eluent acetone-petroleum ether, 1:1.

Comp.	Reaction time, h	Yield, %	mp, °C $(R_f^{\rm a})$	Foun	d, %	Formula	Calculated, %	
	Reaction time, ii			С	Н	romuna	С	Н
XIX	5–6	82	109.5–110.5	61.68	5.21	$C_9H_9N_3O$	61.70	5.18
XX	2.5–3	84	79.5-80.5	63.43	5.93	$C_{10}H_{11}N_{3}O$	63.48	5.86
XXI	2.5–3	85	96.5–97.5	64.98	6.44	$C_{11}H_{13}N_3O$	65.01	6.45
XXII	11	15	(0.75)	_	_	-	_	_
XXIII	2–2.5	77	(0.73)	66.28	6.99	$C_{12}H_{15}N_3O$	66.34	6.96
XXIV	2–2.5	75	(0.75)	66.30	6.98	$C_{12}H_{15}N_3O$	66.34	6.96
XXV	20–20.5	9	(0.76)	_	_	_	_	
XXVI	2–2.5	64	(0.69)	67.43	7.47	$C_{13}H_{17}N_3O$	67.51	7.41

Table 3. Reaction times and yields, melting points or TLC data, and elemental analyses of alkyl benzimidazole-1-carboximidates **XIX-XXVI**

sure (water-jet pump). The oily residue was dissolved in 2 ml of dry benzene, and 1 ml of dry petroleum ether was added. The precipitate was filtered through a glass filter, and the filtrate was evaporated. The reaction time and yields, melting points, TLC data, and elemental analyses of the products are given in Table 2.

Alkyl benzimidazole-1-carboximidates XIX—XXVI (general procedure). Preliminarily sublimed 1-cyanobenzimidazole, 0.100 g, was dissolved in 10 ml of the corresponding anhydrous alcohol, and the solution was heated for several hours on a water bath at 62–65°C. Excess alcohol was removed under reduced pressure (water-jet pump), the precipitate was dissolved in 2 ml of dry benzene, and 2 ml of dry petroleum ether was added. The precipitate was filtered off through a glass filter, and the filtrate was evaporated. The reaction time and yields, melting points, TLC data, and elemental analyses of products XIX–XXVI are given in Table 3.

REFERENCES

- 1. Pan'kov, S.V., Belyakova, N.A., Vishnyakov, V.V., and Purygin, P.P., *Zh. Org. Khim.*, 2000, vol. 36, no. 3, pp. 460–461.
- 2. Zil'berman, E.N., *Reaktsii nitrilov* (Reactions of Nitriles), Moscow: Khimiya, 1972, pp. 27, 97.
- 3. Hedayatullah, M., Brancourt, M., and Penivelle, L., *Bull. Soc. Chim. Fr.*, 1970, no. 7, pp. 2639–2643.
- 4. Martin, D., Herrmann, H., Herrmann, Y., Rackow, S., and Nadolski, K., *Angew. Chem.*, 1965, vol. 77., no. 2, pp. 96–97.
- 5. Grigat, E., Piitter, R., Schneider, K., and Wedemeyer, K.F., *Chem. Ber.*, 1964, vol. 97, no. 11, pp. 3036–3044.
- 6. Martin, P., *Chem. Ber.*, 1965, vol. 98, no. 10, pp. 3286–3296.

^a For oily products; eluent acetone.