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Fused porphyrin-imidazole systems: new building blocks for
synthesis of porphyrin arrays
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Reaction of porphyrin-2,3-diones with aromatic aldehydes
and NH4OAc in AcOH–CHCl3 affords 2-aryl-1H-imidazo-
[4,5-b]porphyrins which, with appropriate substitution, are
useful building blocks for the synthesis of multi-porphyrin
arrays; porphyrin-tetraones are similarly converted into the
corresponding bis-fused systems.

Multi-porphyrin systems that occur naturally have a variety of
geometries between interacting chromophores. Most model
compounds designed to mimic such porphyrin systems have
relied on linkage through meso-positions or have used flexible
chains linked through single positions. The only previous multi-
porphyrin models with β-pyrrolic rings on adjacent porphyrin
rings were constructed by reaction of porphyrin-2,3-diones
with aromatic 1,2-diamines.1,2 The formation of the imidazole
ring in the synthesis of 2,3,5-triphenylimidazole (lophine) by
reaction of an α-dione, benzil, with benzaldehyde and ammonia
has been known since last century.3 We now report that por-
phyrin-2,3-diones, despite the α-dione system being attached to
a 5-membered heterocyclic ring, show similar reactivity towards
aromatic aldehydes and ammonia. This provides a new method
of functionalising the porphyrin macrocycle by introduction of
a 2�-arylimidazole ring fused across a β,β-pyrrolic position of
the porphyrin and allows the synthesis of more elaborated
systems by bridging of porphyrin units through the new
functionality.

2-Aryl-1H-imidazo[4,5-b]porphyrins 3–7† were prepared in
good yields by the condensation of porphyrin-2,3-dione 1 1
with the corresponding arylaldehyde in the presence of excess

NH4OAc in a refluxing 1 :1 mixture of AcOH–CHCl3 for 1 to
24 h (Scheme 1). These reactions could be carried out readily
on a multi-gram scale. The products 3–7 are easily purified by
column chromatography over silica and recrystallisation. The
1H NMR spectra of imidazoporphyrins 3–7 show a broad sing-
let at about 8.4 ppm, indicating the presence of the imidazole
NH and the lack of symmetry in the spectra show that imid-
azole tautomerism is slow on the 1H NMR timescale. In each
of the reactions producing compounds 3–7, the corresponding
22,23-diarylpyrazino[2,3-b]porphyrin product 9† was formed in
10–15% yield. More-highly substituted porphyrins are avail-
able from similar reactions of aldehydes and NH4OAc with
porphyrin-2,3,12,13-tetraone 4 10. Linear extended bis(2-aryl-
1H-imidazo)porphyrins 11 and 12† were obtained (Scheme 2),
again in good yields; the corresponding pyrazino compounds
were also observed as minor products. 5,10,15,20-Tetrakis-
(3,5-di-tert-butylphenyl)porphyrin-2,3,7,8-tetraone 4 also reacts
similarly with arylaldehydes to give bis-fused L-shaped
extended systems.

Compounds 14 and 15 are useful building blocks for con-
struction of a range of linear bis- and tris-porphyrin systems
with butadiyne linkages 5 generated by CuCl-mediated coupling
of the terminal acetylenes.6–10 Compound 14 was obtained in
98% yield by desilylation of the ethynyl unit of zinc() por-
phyrin 13 (Scheme 2). Compound 15 was obtained in two steps
[metallation with zinc() and desilylation] from porphyrin 6 in
71% overall yield.

The dizinc() butadiyne-linked bis(imidazoporphyrin) 16
was prepared in 90% yield by stirring a solution of zinc() 2-[4-

Scheme 1 Reagents and conditions: i, NH4OAc, AcOH–CHCl3, ∆ [3: 2 h (40%), 4: 6 h (54%), 5: 24 h (62%), 6: 4 h (48%) and 7: 2 h (66%)];
ii, Zn(OAc)2�2H2O, CH2Cl2–MeOH, ∆, 1 h (85%).
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Scheme 2 Reagents and conditions: i, NH4OAc, AcOH–CHCl3, ∆ [11: 48 h (31%) and 12: 6.5 h (31%)]; ii, Zn(OAc)2�2H2O, CH2Cl2–MeOH, ∆,
2 h (91%); iii, K2CO3, CH2Cl2–MeOH, ∆, 15 min (98%).

(ethynyl)phenyl]-1H-imidazo[4,5-b]porphyrin 15 in CH2Cl2

with an excess of freshly-prepared CuCl and TMEDA in air at
room temperature for 30 min (Scheme 3). The UV–vis spectrum
of bisporphyrin 16† shows slight broadening of the Soret band
and unaltered Q bands compared with the spectrum of the
monomer 15.† This indicated that there is negligible ground
state electronic communication between the porphyrin rings of
16.

Dizinc() bisporphyrin 16 was treated with 7 M HCl in a
two-phase system to afford the free base butadiyne-linked
bis(imidazoporphyrin) 17† in 93% yield. Bis(imidazo-
porphyrin) 17 was treated with Zn(OAc)2�2H2O (1 equiv.) to
afford a mixture of free base 17 (28%), dizinc() 16 (36%) and
the desired monozinc() bis(imidazoporphyrin) 18† (31%)
after purification (Scheme 3). Photo-induced energy-transfer
in butadiyne bis(imidazoporphyrin) system 18 (1 × 10�6 M in

CHCl3) from the zinc() porphyrin to the free base porphyrin
was found to be 80% efficient which accords with a Förster-type
(dipole–dipole) electronic energy-transfer mechanism.11

The synthesis of linear tris(imidazoporphyrin) 19 illustrates
the utility of the linear zinc() bis{2-[4-(ethynyl)phenyl]-1H-
imidazo}porphyrin building block 14 to prepare larger ordered
multi-porphyrin arrays. The linear trizinc() butadiyne-linked
tris(imidazoporphyrin) 19† was prepared in 29% yield by a
cross-coupling reaction between 14 (1 equiv.) and zinc() 2-
[4-(ethynyl)phenyl]-1H-imidazo[4,5-b]porphyrin 15 (2.5 equiv.)
using an excess of freshly-prepared CuCl and TMEDA in air
at room temperature for 3 h (Scheme 3). Dizinc() butadiyne-
linked bis(imidazoporphyrin) 16 was obtained as a by-product
in 45% yield.

The utility of the condensation is illustrated further by reac-
tion of the [zinc() (imidazo)porphyrin]-appended arylaldehyde

Scheme 3 Reagents and conditions: i, CuCl, TMEDA, CH2Cl2, stir for 30 min in air; ii, HCl (7 M), CH2Cl2, stir for 2 min; iii, Zn(OAc)2�2H2O,
CH2Cl2–MeOH, ∆, 1 h; iv, CuCl, TMEDA, CH2Cl2, stir for 3 h in air.

Scheme 4 Reagents and conditions: i, NH4OAc, AcOH–CHCl3, ∆, 72 h.
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8 with zinc() porphyrin-2,3-dione 2 and NH4OAc in AcOH–
CHCl3 at reflux for 72 h. This reaction gave the novel dizinc()
bisporphyrin 20† in 42% yield (Scheme 4). The zinc-to-zinc
distance in arene-linked bisporphyrin 20 was calculated 12 to be
18.5 Å which is significantly shorter relative to the zinc-to-zinc
distance in the dizinc() bis(imidazoporphyrin) 16 (ca. 28.3 Å)
and between the zinc ions in the terminal porphyrins of the
trizinc() tris(imidazoporphyrin) 19 (56.6 Å).

The use of these novel compounds and systems to probe
further the influence of porphyrin orientation and alignment
on interporphyrin electronic communication is under active
investigation in our laboratory.
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Notes and references
† All imidazoporphyrins have been fully characterised by elemental
analysis, mass spectroscopy, 1H NMR spectrometry and spectro-
scopic techniques. Visible spectroscopic data of selected porphyrins:
5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin: λmax(CHCl3)/nm
405sh (log ε 4.91), 422 (5.66), 487sh (3.66), 519 (4.28), 555 (4.04), 593
(3.78), 648 (3.85); 3: 317 (4.30), 424 (5.50), 484 (3.75), 519 (4.23), 554
(4.02), 587 (3.89), 646 (3.45); 4: 422 (5.51), 519 (4.24), 554 (4.00), 588
(3.94), 647 (3.85); 6: 423 (5.51), 519 (4.35), 554 (4.01), 588 (3.92), 649
(3.62); 8: 346 (4.42), 431 (5.42), 524 (3.90), 550 (4.29), 592 (4.05); 9

R = C���CSiMe3: 382 (3.86), 438 (5.33), 476 (3.41), 526 (3.36), 563 (3.70),
597 (3.99), 653 (3.40), 692 (3.20); 12: 326 (4.65), 420 (5.48), 517 (4.45),
552 (4.15), 587 (4.09), 640 (3.69); 15: 310 (4.41), 427 (5.43), 480 (3.39),
492 (4.31), 514 (3.68), 586 (4.03); 16: 348 (4.74), 426 (5.70), 513 (4.16),
550 (4.71), 587 (4.45); 17: 242 (4.66), 427 (5.85), 519 (4.75), 556 (4.38),
589 (4.29), 649 (3.91); 18: 241 (4.60), 429 (5.39), 519 (4.50), 552 (4.56),
588 (4.36), 649 (3.56); 19: 250 (4.82), 352 (5.01), 369 (5.00), 429 (5.87),
454 (5.83), 519 (4.50), 554 (4.87), 596 (4.80); 20: (toluene) 321 (4.60),
431 (5.68), 458 (5.43), 516 (4.15), 554 (4.69), 589 (4.42).
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