σ-Donor versus η⁶-π-Arene Interactions in Monomeric Europium(II) and Ytterbium(II) Thiolates – An Experimental and Computational Study

Mark Niemeyer^[a]

Dedicated to Professor Glen B. Deacon on the occasion of his 65th birthday

Keywords: Ab initio calculations / Lanthanides / π interactions / S ligands / Ytterbium

The base-free, hydrocarbon-soluble complexes $M(SAr^*)_2$ (4a: M = Eu, orange; 4b: M = Yb, purple; $Ar^* = 2,6$ -Trip₂C₆H₃; Trip = 2,4,6-*i*Pr₃C₆H₂) have been prepared by a protolysis reaction of the Grignard-analogous compound RLnI (R = 2-F₃CC₆H₄) with HSAr^{*}. Compound 4b has been characterized by melting point, elemental analysis, ¹H, ¹³C, and ¹⁷¹Yb NMR, IR spectroscopy, UV/Vis spectrophotometry, mass spectrometry, and X-ray crystallography. Additionally, the purple Yb^{III} complex YbI₂(SAr^{*})(THF)₃ (3) and the yellow DME adduct Yb(SAr^{*})₂(dme)₂ (5) have been synthesized and characterized by X-ray crystallography. The solid-state structures of 4a and 4b (as THF or benzene hemisolvates) show monomeric units with the metal atom bonded to two terminal thiolate ligands [av. M–S: 281.7 pm (**4a**)/269.1 pm (**4b**)]. Additional η^{6} - π -arene interactions are observed to two C₆H₂ rings of the Trip substituents [av. M···C: 306.5 pm (**4a**)/297.3 pm (**4b**)]. The binding energy for these interactions has been determined by variable-temperature ¹H NMR spectroscopy to be 54.3 kJ mol⁻¹ (in methylcyclohexane) and 57.1 kJ mol⁻¹ (in toluene). The nature and strength of the η^{6} - π -arene bonding has been studied by ab initio calculations on the model systems [M(arene)]²⁺ (arene = C₆H₆, C₆F₆, 1,3,5-Me₃C₆H₃, 1,3,5-*i*Pr₃C₆H₃) and Yb(SH)₂(C₆H₆)_n (*n* = 1, 2). The results are compared with the binding energies in the σ -donor adducts [M(THF)]²⁺, [M(dme)]²⁺, and [M(imidazol-2-ylidene)]²⁺.

Introduction

The use of charged π -donor ligands and the principle of steric saturation by associated neutral σ -donors or the addition of anionic ligands have dominated organolanthanoid^[1] chemistry over the past decades. More recently, however, there has been a growing interest in low-coordinate σ -bonded lanthanoid complexes with bulky substituted organyls,^[2,3] Group 14, Group 15, or Group 16 heteroelements.^[4] Moreover, the avoidance of coordinating solvents leads to novel structures often and unusual lanthanoid-ligand interactions. Examples of the latter include agostic-type interactions^[5] with alkyl-substituted ligands^[6-11] or metal $-\pi$ -arene interactions^[12-15] in arylsubstituted ligand systems. In this paper, the synthesis and characterization of the *m*-terphenyl-based^[16] metal thiolates $YbI_2(SAr^*)(THF)_3$ (3) (Ar* = 2,6-Trip₂C₆H₃; Trip = 2,4,6 $iPr_3C_6H_2$), M(SAr*)₂ [M = Eu (4a), Yb (4b)], and Yb(SAr*)₂ (dme)₂ (5) are described. The σ -donor-free compounds 4a and 4b show two metal $-\eta^6$ - π -arene interactions in the solid state. According to NMR-spectroscopic results, these interactions persist in solution. The nature and strength of these interactions has been studied by ab initio calculations on simple model systems.

Results and Discussion

Syntheses

The syntheses of compounds 1-5 are summarized in Scheme 1. Initially, the ytterbium(II) thiolate 4b was obtained from the reaction of Yb[N(SiMe₃)₂]₂ with HSAr*. Mixing the two compounds in *n*-pentane resulted in a color change from orange to purple. Removal of the solvent followed by recrystallization of the residue from a mixture of *n*-heptane and benzene gave **4b** as an extremely air-sensitive crystalline material. However, a much easier route to 4b, which circumvents the somewhat cumbersome preparation^[17] of donor-free Yb[N(SiMe₃)₂]₂, is a direct synthesis starting from ytterbium metal and 2-iodobenzotrifluoride. The reaction of lanthanide metals with organyl iodides to give Grignard-analogous compounds RLnI (Ln = Sm, Eu, Yb) has been known for some time.^[18] The isolation and structural characterization of such compounds has, however, only recently been achieved.^[15,19-21] The initially formed arylytterbium(II) iodide 1b is instantly protolysed by the thiol HSAr* to give the mixed (thiolato)ytterbium(II) iodide 2b. Replacing THF by n-pentane as the solvent causes the precipitation of YbI2(THF)4.[22] After removal of the solvent and recrystallization of the residue from an *n*-heptane/toluene mixture, purple **4b** is obtained in 66% yield. The preparation of the donor-free europium(II) thiolate Eu(SAr*)₂ 4a was accomplished in a similar manner. Attempts to isolate the intermediate mixed (thiolato)lanthanide(II) iodides 2a and 2b did not prove to be successful. Thus, in the case of the ytterbium derivative, crystalliza-

 [[]a] Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany Fax: (internat.) + 49-(0)711/685-4241 E-mail: niemeyer@iac.uni-stuttgart.de

tion at -15 °C only afforded YbI₂(THF)₄. Nevertheless, the formation of **2b** was confirmed by its ¹⁷¹Yb NMR signal. Moreover, it was possible to synthesize the diiodo(thiolato)ytterbium(III) complex 3 in good yield by oxidation of **2b** with iodine. A remarkable feature of the preparation of 4a and 4b is the ease with which the coordinated tetrahydrofuran can be removed. Although in the case of 4b coordination of THF is observed at low temperatures (vide infra), it can be completely removed by pumping at 10^{-3} mbar at ambient temperature. In the case of the europium compound, it is even possible to crystallize donor-free 4a from an *n*-heptane/THF mixture to give the packing complex $4a \cdot (THF)_{0.5}$, in which no Eu-O(THF) interactions are observed. This unusual behavior is in contrast to the preparation of other unsolvated lanthanide(II) compounds, e.g. LnCp^{*}₂ or Ln(OAr)₂, from solvated complexes, which normally requires repeated sublimation at elevated temperatures.^[23] Using dimethoxyethane as a more strongly chelating ligand, it is possible to synthesize the more stable yellow complex $Yb(SAr^*)_2(dme)_2$ (5). Even in this case, complete removal of the coordinated solvent can be achieved by pumping overnight at 20 °C/10⁻³ mbar.

Scheme 1. Syntheses of compounds 1-5

The protolysis of the aryllanthanide(II) iodides **1a** and **1b** seems to be of general interest for the preparation of other lanthanide(II) complexes. In contrast, the usual metathesis reactions often lead to alkali metal halide contaminated products or to the formation of unwanted ate complexes, while the related one-pot transmetallation/protolysis route of Deacon et al.^[17] relies on poisonous Ph₂Hg. Using our method, we were able to synthesize the known compounds^[23] Yb[N(SiMe₃)₂]₂(THF)₂, Yb(OAr')₂(THF)₂ (Ar' = 2,6-*t*Bu₂-4-MeC₆H₂), and YbCp*₂(THF)₂ in pure form and good yields.^[24] Although the 2-iodobenzotrifluoride used here can be replaced by other aryl iodides, we have found it to be superior, giving shorter reaction times and improved purity of the products.^[24]

X-ray Crystal Structures

Compounds 3, 4a, 4b, and 5 were examined by X-ray crystallography. Their molecular structures are shown in Figures 1, 2, 3 and 4, while salient structural parameters are given in Tables 1, 2 and 3. The solid-state structure of purple YbI₂(SAr*)(THF)₃ (3) consists of monomeric units (Figure 1). The central Yb atom shows a distorted octahedral coordination with two iodo ligands in apical positions $[I(1)-Yb-I(2) = 176.74(3)^{\circ}]$. Despite the presence of the sterically crowded SAr* ligand, the Yb-S bond length of 258.1(2) pm seems to be the shortest ytterbium-sulfur distance vet reported for a molecular vtterbium compound.^[4] It may be compared with the average Yb-S bond lengths in the six-coordinate complexes Yb(STrip)₃(py)₃ and mer-Yb(SPh)₃(py)₃, which were determined as 264.8 pm and 264.7 pm, respectively (Table 4). The shortest Yb-S distance of 260.9(4) pm is found *trans* to one pyridine ligand in the latter. In 3, the Yb-I bond lengths of 291.0(1) pm [Yb-I(1)] and 298.4(1) pm [Yb-I(2)] are close to the values seen in the previously reported dimeric complex $[(\mu -$ OMe)YbI₂(dme)]₂ (av. 293.2 pm)^[25] and the formally eightcoordinate compound Yb(Cp)₂I(THF) (293.2 pm).^[26] The different Yb-I bond lengths in 3 can be attributed to the significant deviation of the Yb atom from the S-O(41)-O(51)-O(61) plane by 10.6 pm (Table 1). A notable feature of the structure of 3 is that the Yb-O distances to the coordinated THF ligands are rather different. With a value of 239.0(6) pm, the Yb-O(41) bond *trans* to the SAr* group is unusually long, whereas the others (av. Yb-O = 227.3 pm) are in the normal range for Yb^{III} complexes with six-coordinate metal centers.^[27] The long Yb-O(41) bond may be compared with the average Yb-O distance of 239.5 pm trans to the C₆H₅ groups in fac-YbPh₃(THF)₃.^[28] The trans influence of THF ligands in lanthanoid(III) chemistry has been noted previously.^[29]

Figure 1. Molecular structure of **3**, showing the atom numbering scheme; hydrogen atoms have been omitted for clarity

Because of their very similar features, the solid-state structures of the compounds $Eu(SAr^*)_2$ [4a·(THF)_{0.5}] and Yb(SAr*)₂ [4b·(C₆H₆)_{0.5}] will be discussed together. Both complexes crystallize as monomers. Their molecular struc-

Figure 2. Molecular structure of **4a**, showing the atom numbering scheme for **4a** and **4b**; hydrogen atoms, the minor parts of the disordered isopropyl groups, and the co-crystallized THF molecule have been omitted for clarity

Figure 3. Molecular structure of **4b**, showing the two η^6 -coordinated arene rings and part of the atom numbering scheme; hydrogen atoms, the minor parts of the disordered isopropyl groups, and the co-crystallized benzene molecule have been omitted for clarity

Figure 4. Molecular structure of 5, showing the atom numbering scheme; hydrogen atoms and the minor parts of the disordered isopropyl groups have been omitted for clarity

tures are illustrated in Figure 2 (4a) and Figure 3 (4b), while salient bond parameters are listed in Table 2. Despite the difference in the ionic radii of europium(II) and ytterbium(II), both complexes crystallize in isomorphous cells. They differ in the type of solvent that is packed in the cavities of the structure. There are, however, no significant interactions between the metal centers and the co-crystallized tetrahydrofuran or benzene molecules. Each metal atom is coordinated to the sulfur atoms of the thiolate ligands with S-M-S angles of 141.89(4)° (4a) and 142.73(8)° (4b), respectively. The most striking structural features of **4a** and **4b** are the additional η^6 - π -interactions to two *ortho*-2,4,6triisopropylphenyl rings of the terphenyl groups (Figure 3). Although the occurrence of two η^6 - π -bonded arene rings is unprecedented for structurally authenticated di- or trivalent lanthanide species,^[12] such interactions are well-known in some bis(arene)lanthanide(0) derivatives. Structurally characterized examples include the compounds M(η^6 -1,3,5*t*Bu₃C₆H₃)₂ (M = Y, Gd, Ho).^[30] It should be noted that the cyclometallated scandium(II) complex ScH(η^6 *t*Bu₃C₆H₃)[η^6 , η^1 -(CH₂CMe₂)*t*Bu₂C₆H₃], which was formed by C–H insertion from Sc(η^6 -1,3,5-*t*Bu₃C₆H₃)₂, may also possess two metal– π -arene interactions, although this was based purely on ESR evidence.^[31]

The two terphenylthiolate ligands in 4a and 4b are orientated in such a way that the most favorable η^6 - π -arene bonding is maximized. In effect, the interplanar angles between the M-S-C planes and the central 2,6-substituted phenyl rings, i.e. A/D and E/H (Table 2), are in the range 0.3° to 6.7°. Together with the perpendicular arrangement of the ortho-Trip groups (A/B, A/C, E/F, E/G = $82.0-89.5^{\circ}$), an almost parallel orientation of the C(7)-C(12) and C(43)-C(48) rings to the central S(1)-M-S(2) plane is achieved (B/I, $F/I = 6.3-13.6^{\circ}$). Despite the formal coordination number of eight, the observed europium-sulfur and ytterbium-sulfur distances are surprisingly short. In fact, they are ca. 8-13 pm (4a) and 7-19 pm (4b) pm shorter than the metal-sulfur distances reported for other europium(II) and ytterbium(II) thiolates (Table 4). In 4a, the europium ion interacts essentially equally with both Trip rings with Eu-C distances in the relatively narrow range of 298.8(3)-315.0(3) pm for C(7)-C(12) and 296.7(3) - 316.1(3) pm for C(43) - C(48), with average values of 307.0 pm and 305.9 pm, respectively. In 4b, the Yb-C interactions to the C(7)-C(12) ring were found to have distances between 287.0(8) and 305.2(8) pm (av. 296.3 pm), with a somewhat greater variation of 282.4(8)-313.9(8) pm (av. 298.3) for the bonding to the second C(43) - C(48) arene ring. The average metal-centroid distances are 272.8 pm (4a) and 263.7 pm (4b), whereas the X(1)-M-X(2) angles, where X(1) and X(2) define the centroids of the coordinated arene rings, are 166.9° and 164.5° respectively. Salient structural parameters in known compounds with europium- and vtterbium $-\eta^6$ - π -arene coordination are summarized in Table 5. The Yb-C interactions in 4b are comparable to the reported average Yb^{II}-C distances, which fall in the range 296-304 pm. In accordance with the smaller radius of Yb^{III}, the complex $Yb(C_6Me_6)(AlCl_4)_3$ shows shorter Yb-C distances of 286 pm (av.). The nine-coordinate Eu center in the tetrameric compound [Eu(C₆Me₆)(AlCl₄)₂]₄ exhibits an average Eu-C interaction of 300 pm. The shortening by 6-7 pm compared to 4a may be explained in terms of a stronger polar attraction between the Eu ion and the arene ring caused by the more electronegative $AlCl_4^{-}$ ligands.

The molecular structure of the yellow complex $Yb(SAr^*)_2(dme)_2$ (5) is shown in Figure 4. The Yb atom has a distorted octahedral coordination, in which the thiolate groups and each DME ligand occupy a *cis* position. The

Table 1. (a) Selected interatomic distances [pm], (b) angles [°], (c) distances from least-square planes [pm], and (d) interplanar angles [°] in $YbI_2(SAr^*)(THF)_3$ (3)

A/B	74.5	A/C	73.0	A/D	88.8			
$(d)^{[b]}$								
+2.4	+3.3	-2.9	-2.8	+10.6	+300.4	-287.7		
S*	O(41)*	O(51)*	O(61)*	Yb	I(1)	I(2)	11.1	12.1
+21	-0.6	-1.0	+11	+0.4	-20	-14.6	-141	-124
$(c)^{[a]}$ C(1)*	C(2)*	$C(3)^{*}$	C(4)*	C(5)*	C(6)*	s	C(7)	C(22)
I(1) - Yb - O(51) I(1) - Yb - O(61) I(2) - Yb - O(41)		93.6(2) 91.9(2) 90.0(2)		S-C(1)-C C(1)-C(2) C(1)-C(6)	S-C(1)-C(2) C(1)-C(2)-C(7) C(1)-C(6)-C(22)			
I(1) - Yb -	O(41)	86.8(2)		S-C(1)-C	S - C(1) - C(6)			
S-Yb-I(2)		86.45(6)		Yb-S-C(1	Yb-S-C(1)			
S-Yb-I(1)		96.81(6)		O(51)-Yb-	O(51) - Yb - O(61)			
S = Y b = O(51) 95.7(2) S = Y b = O(61) 100.0(2)			O(41) - Yb	-O(61)	81.9(2)	81 9(2)		
S = Yb = O(41) S = Yb = O(51)		1/5.9(2) 93 7(2)		I(2) - Y b - 0 O(41) - Y b - 0	D(61) = O(51)	87.5(2)		
(b) I(1)-Yb-I(2) S-Yb-O(41)		176.74(3)		I(2) - Yb - Q	D(51)	86.2(2)		
Yb-O(41)	239.0(6)							
Yb-I(2)		298.40(10)		S-C(1)		177.8(9)		
Yb-S Yb-I(1)		258.1(2) 291.00(9)		Yb = O(51) Yb = O(61)		227.0(6)		
(a)		250 1(2)				227.0(0)		

^[a] Atoms marked with an asterisk define the least-square plane. - ^[b] Least-square planes defined by the following atoms: A: C(1) to C(6); B: C(7) to C(12); C: C(22) to C(27); D: C(1), S, Yb.

rather different S(1)–Yb–S(2), O(82)–Yb–O(85), and O(92)–Yb–O(95) angles of 141.3(1)°, 64.8(2)°, and 65.1(2)°, respectively, reveal a severe distortion from the ideal octahedral environment. The Yb–S bond length of 273.9 pm and the average Yb–O distances of 248.0 pm may be compared with the corresponding values of 275.6(8) pm and 253.5 pm in the related complex Yb(SMes*)₂(dme)₂.^[32] Apparently, the slightly shorter distances in **5** are compensated by the more acute S–Yb–S angle of 124.4(2)° in the latter.

Although the Ar* and Mes* substituents are of similar size, they often induce different oligomerization and solvent complexation behavior, as has been noted previously.^[16] In contrast to the structures of **4a** and **4b**, the interplanar angles between the M–S–C planes and the central C₆H₃ arene rings, i.e. A/D and E/H (Table 3), are close to 90°, which is a consequence of repulsive forces between the DME ligands and the *ortho*-Trip groups.

It is interesting to compare the molecular structures of 3, 4a, 4b, and 5 in terms of the different degrees of steric crowding. Thus, the average M-S-C angle increases from 115° and 116° in 4b and 4a, through 125° in 3, up to 146° in 5. Furthermore, the average displacement of the *ipso*-Trip carbon atoms [i.e. C(7), C(22), C(43), and C(58)] from the central C₆H₃ plane increases in the order 4a (8.2 pm), 4b (9.6 pm), 3 (13.3 pm), and 5 (22.9 pm). Apparently, the maximum steric congestion is observed for compound 5.

Spectroscopic Characterization

The diamagnetic complexes 4b and 5 have been characterized by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy. In addition,

compounds 2b, 4b, and 5 have been examined by ¹⁷¹Yb NMR spectroscopy (Table 6). The ¹⁷¹Yb NMR spectrum of an in situ prepared solution of 2b in $[D_8]$ THF shows a main signal at $\delta = 351$. Smaller resonances of equal height at $\delta = 281$ and $\delta = 457$ can be assigned to the dithiolato species $Yb(SAr^*)_2(THF)_x$ (6) and solvated ytterbium(II) iodide YbI₂(THF)₄ (**4b**).^[33] In the ¹⁷¹Yb NMR spectrum of **4b** in $[D_8]$ toluene or $[D_6]$ benzene, a sharp resonance is observed at $\delta = 768$. A different chemical shift is found if the aromatic solvent is replaced by an alkane. Thus, a ¹⁷¹Yb NMR signal at $\delta = 837$ is observed in [D₁₄]methylcyclohexane at 233 K, whereas no ¹⁷¹Yb resonance is detectable at ambient temperature. The reaction of purple 4b with more strongly coordinating solvents such as THF or DME results in a color change to yellow. In the ¹⁷¹Yb NMR spectrum, a shift to higher field is observed with resonances at $\delta = 204$ (at 233 K) and $\delta = 281$ for the solvated complexes Yb(SAr* $_{2}(dme)_{2}$ 5 and Yb(SAr*)₂(THF)_x 6, respectively. These values may be compared with the ¹⁷¹Yb NMR chemical shifts of the ytterbium(II) thiolate Yb(SMes*)₂(dme)₂ and related selenolates and tellurolates, which are found at lower field, specifically at $\delta = 485^{[32]}$ and $\delta = 430-526^{[34]}$ respectively. It is notable that no ¹⁷¹Yb NMR signal can be detected for 5 at ambient temperature. Apparently, dynamic processes such as solvent exchange, intermolecular arene coordination, or equilibria due to hindered rotation complicate the interpretation of solution NMR-spectroscopic data for compounds 4b and 5. In order to gain more insight into these different processes, variable-temperature ¹H NMR experiments were performed. At room temperature, the ¹H NMR spectrum of **4b** in [D₈]toluene shows only one type of thiolate ligand environment with equivalent Trip

Table 2. (a) Selected interatomic distances [pm], (b) angles [°], (c) distances from least-square planes [pm], (d) and interplanar angles [°] in $Eu(SAr^*)_2$ (4a) and $Yb(SAr^*)_2$ (4b)

			4a •(THF) ₀	0.5			4b •(C ₆ H ₆)	0.5	
(a) M-S(1) M-S(2) M···C(7) M···C(8)			281.6(1) 281.8(1) 303.7(3) 309.4(3)		{281.7} ^[a]		268.5(2) 269.6(2) 292.2(8) 297.1(8)		{269.1}
M···C(9) M···C(10 M···C(11 M···C(12 M···C(43 M···C(44))))		312.8(3) 315.0(3) 302.4(3) 298.8(3) 301.1(3) 306.9(3)		{307.0}		302.8(8) 305.2(8) 293.3(9) 287.0(8) 287.7(8) 311.8(8)		{296.3}
M •••C(44 M•••C(45 M•••C(46 M•••C(47 M•••C(48 M•••C(48 M•••X(1) ¹)))))		311.1(3) 316.1(3) 303.3(3) 296.7(3) 273.4		{305.9}		313.9(8) 301.7(8) 292.3(8) 282.4(8) 262.3		{298.3}
$\begin{array}{l} M \cdots X(2) \\ (b) \\ S(1) - M - \\ Yb - S(1) \\ Yb - S(2) \\ X(1) - M \\ S(1) - C(1) \\ S(2) - C(2) \\ S(2) - C(2) \\ C(1) - C(2) \\ C(1) - C(2) \\ C(37) - C \\ C(37) - $	$\begin{array}{c} -S(2) \\ -C(1) \\ -C(37) \\ -X(2) \\ 1)-C(2) \\ 1)-C(6) \\ 37)-C(38) \\ 37)-C(42) \\ 2)-C(7) \\ 6)-C(22) \\ (38)-C(43) \\ (42)-C(58) \end{array}$		272.2 141.89(4) 115.85(11) 115.40(11) 166.9 122.3(2) 119.5(2) 122.3(3) 120.4(2) 120.3(3) 119.6(3) 119.9(3) 119.6(3)		{272.8}		265.0 142.73(8) 115.7(3) 115.0(3) 164.5 121.7(6) 120.4(6) 121.2(6) 119.4(7) 120.4(7) 120.4(7) 120.9(7) 121.1(7)		{263.7}
(c) ^[c] 4a: 4b: 4a: 4b:	C(1)* +3.0 +3.2 C(37)* +1.4 +1.4	C(2)* -0.9 -1.5 C(38)* -0.7 -1.5	C(3)* -1.7 -1.7 C(39)* -0.6 +0.4	C(4)* +2.2 +3.1 C(40)* +1.1 +0.7	C(5)* +0.0 -1.3 C(41)* -0.4 -0.8	C(6)* -2.6 -1.9 C(42)* -0.9 -0.2	S(1) +15.0 +17.5 S(2) +3.0 +1.0	C(7) -2.8 -10.8 C(43) -7.6 -1.1	C(22) -16.2 -20.1 C(58) -6.2 -6.3
(d) ^[d] 4a: 4b:	A/B 83.6 82.0	A/C 89.5 89.0	E/F 85.2 84.2	E/G 85.0 82.7	B/I 11.5 13.6	F/I 6.3 7.3	B/F 16.0 19.5	A/D 4.7 6.7	E/H 1.7 0.3

^[a] Average values are given in brackets. - ^[b] X(1) and X(2) define the centroids of the C(7) to C(12) and C(43) to C(48) arene rings, respectively. - ^[c] Atoms marked with an asterisk define the least-square plane. - ^[d] Least-square planes defined by the following atoms: A: C(1) to C(6); B: C(7) to C(12); C: C(22) to C(27); D: C(1), S(1), M; E: C(37) to C(42); F: C(43) to C(48); G: C(58) to C(63); H: C(37), S(2), M; I: S(1), M, S(2).

substituents, although the signals are very broad. If the temperature is gradually increased, the linewidth decreases and sharp signals are observed at 358 K. At lower temperatures, two coalescence points were detected at 284 K and 227 K, corresponding to energy barriers of 57.1 kJ mol⁻¹ and 46.5 kJ mol⁻¹, respectively. A full interpretation of the low-temperature ¹H NMR spectra has not yet been possible due to their complex nature and overlapping signals. It is clear, however, that below 284 K two different Trip substituent environments exist, as is evident from the appearance of two different resonances for the *m*-Trip protons. This observation can be interpreted in terms of hindered rotation about the S(1)–C(1) or S(2)–C(37) bonds and hence the

persistence of the metal $-\pi$ -arene interactions in solution. In order to exclude additional interactions with the aromatic solvent toluene, further low-temperature ¹H NMR experiments were performed in [D₁₄]methylcyclohexane. In this solvent, a single energy barrier of 54.3 kJ mol⁻¹ is found and two signals due to the aromatic protons of the Trip substituents are observed below 263 K. In contrast, the ¹H NMR spectrum of **5** shows only one set of signals due to the Trip substituents and the coordinated DME molecules in the temperature range 223–300 K.

The weak tendency of **4b** to coordinate THF was examined by additional ¹⁷¹Yb NMR experiments. As mentioned above, a yellow solution of **4b** in neat $[D_8]$ THF shows a

Table 3. (a) Selected interatomic distances [pm], (b) angles [°], (c) distances from least-square planes [pm], and (d) interplanar angles [°] in $Yb(SAr^*)_2(dme)_2$ (5)

(a) Yb-S(1) Yb-S(2) Yb-O(82)		2.739(2) 2.739(3) 2.478(6)		Yb-O(85) Yb-O(92) Yb-O(95)		2.477(5) 2.510(6) 2.461(5)		
(b) S(1)-Yb-Si S(1)-Yb-O S(1)-Yb-O S(1)-Yb-O S(2)-Yb-O	(2) ((82) ((92) ((95) ((82) ((82) ((85) ((92) ((95) O((85) O((92) O((95) O((95))	141.25(11) 77.18(16) 100.22(13) 136.93(17) 88.61(13) 138.08(14) 87.19(14) 79.95(14) 102.00(14) 64.8(2) 71.1(2) 92.7(2) 152.8(2)		$\begin{array}{c} O(85) - Yb - \\ O(92) - Yb - \\ Yb - S(1) - C \\ Yb - S(2) - C \\ S(1) - C(1) - \\ S(2) - C(37) - \\ S(2) - C(37) - \\ C(1) - C(2) - \\ C(1) - C(2) - \\ C(1) - C(6) - \\ C(37) - C(38) \\ C(37) - C(42) \\ \end{array}$	CO(92) CO(95) C(1) C(37) C(6) C(2) -C(42) -C(38) C(7) C(22))-C(43))-C(58)	91.9(2) 65.1(2) 149.0(4) 142.8(3) 121.0(6) 120.9(6) 120.4(6) 120.9(6) 122.6(7) 121.5(7) 124.1(7) 122.6(7)		
$\begin{array}{c} (c)^{[a]} \\ C(1)^{*} \\ -3.1 \\ C(37)^{*} \\ +5.1 \\ (d)^{[b]} \\ A/B \\ 89.6 \end{array}$	C(2)* +2.0 C(38)* -3.5 A/C 89.1	C(3)* +0.7 C(39)* -1.5 E/F 71.7	C(4)* -2.4 C(40)* +4.7 E/G 78.6	C(5)* +1.2 C(41)* -3.2 A/D 82.1	C(6)* +1.6 C(42)* -1.8 E/H 87.3	S(1) -1.7 S(2) +11.1	C(7) +22.1 C(43) -27.6	C(22) +21.1 C(58) -20.9

^[a] Atoms marked with an asterisk define the least-square plane. - ^[b] Least-square planes defined by the following atoms: A: C(1) to C(6); B: C(7) to C(12); C: C(22) to C(27); D: C(1), S(1), Yb; E: C(37) to C(42); F: C(43) to C(48); G: C(58) to C(63); H: C(37), S(2), Yb.

Table 4. Salient structur	al parameters f	for selected	europium	and ytterbiu	m thiolates
---------------------------	-----------------	--------------	----------	--------------	-------------

Compound	Oxid.	c. n. ^[a]	av. Yb-S [pm]	av. Yb–S–C [°] ^[b]	Ref.
Eu₂(STrip)₄(THF) ₆	+II	6	289.8 ^[c] /301.6 ^[d]	125 ^[c]	[55]
$Eu(SC_5H_4N-2)_2(py)_4$	+II	8	304.6		[56]
$Eu(SC_5H_4N-2)_2(THF)_2(bipy)$	+II	8	300.6		[56]
4a	+II	2(+6)	281.7	116	
Yb(SMes*) ₂ (dme) ₂	+II	6	275.6	125	[32]
$Yb(SPh)_2(py)_4$	+II	6	282.7	102	[57]
$[Yb(\mu-SPh)(\eta^5-C_4Me_4P)(THF)_2]_2$	+II	7	282.6		[58]
$Yb(SC_5H_4N-2)_2(py)_3$	+II	7	288.4		[59]
5	+II	6	273.9	146	
4b	+II	2(+6)	269.1	115	
$Yb(SPh)_3(py)_3$	+III	6	264.7		[56]
$Yb(STrip)_3(py)_3$	+III	6	264.8	117	[55]
$Yb_2(StBu)_6(bipy)_2$	+III	6	262.3 ^[c] /274.7 ^[d]	124	[60]
$Yb(SC_5H_4N-2)_3(py)_2$	+III	8	276.1		[59]
3	+III	6	258.1	125	

^[a] Coordination number. - ^[b] Selected values for monomeric compounds with monodentate ligands. - ^[c] Terminal ligand. - ^[d] Bridging ligand.

¹⁷¹Yb NMR resonance of $\delta = 281$. In contrast, there is no detectable signal in the ¹⁷¹Yb NMR spectrum at ambient temperature if a 4:1 mixture of toluene and THF is used as solvent. However, if this purple solution is cooled to 253 K, a color change to yellow is observed and a broad resonance appears at $\delta = 316 (w_{1/2} = 700 \text{ Hz})$. At 233 K, the signal is shifted to $\delta = 336$ and the linewidth is reduced to 180 Hz. Apparently, if the concentration of THF is too low, the solvated complex Yb(SAr*)₂(THF)_x (**6**) is only stable at low

temperatures. The temperature dependence of the chemical shift for **6** (-0.85 ppm K⁻¹) may be compared with other reported values, which typically vary between +2 and -0.5 ppm K⁻¹.^[34]

In the mass spectra of 4a and 4b, intense signals due to the molecular ions were found (base peak for 4b; rel. intensity of 48% for 4a). In addition, solutions of 4b in *n*-pentane (purple) and THF (yellow) were studied by UV/Vis spectro-

Compound	Oxid.	Yb-C [pm] ^[a]	Yb-X [pm] ^[b]	Ref.
[Eu(CAMea)(AlCla)2]	+II	292(2)-307(2) {300}	{267}	[61]
4a	+II	298.8(3)-315.0(3) {307}	273	
		$296.7(3) - 316.1(3)$ {306}	272	
$Yb(C_6Me_6)(AlCl_4)_3$	+III	$274(4) - 301(5)$ {286}	248	[62]
Yb(ODpp) ₃ ^[c]	+III	$281.4(4) - 314.8(6)$ {296}	263	[63]
$Yb_2(ODpp)_4$ ^[d]	+II	275(3)-318(4) {296}		[14]
$[Yb_2(ODpp)_3]^+$	+II	$294(1) - 315(1)$ {304}	270	[14]
		$287(1) - 306(1)$ {297}	263	
4b	+II	$287.0(8) - 305.2(8)$ {296}	262	
		282.4(8)-313.9(8) {298}	265	

Table 5. Salient structural parameters for compounds with europium and ytterbium η^6 - π -arene coordination

^[a] {Av. values}. - ^[b] X defines the centroid of the arene rings. - ^[c] Dpp = 2,6-Ph₂C₆H₃. - ^[d] Av. values for two independent molecules.

Table 6. ¹⁷¹Yb NMR parameters for compounds 1b, 2b, 4b, and 5

Compound	Solvent	<i>T</i> [K]	δ [ppm]	w _{1/2} [Hz]
 1b	ID₀ITHF	298	[a]	
2b	[D _s]THF	298	351[b]	28
4b	[D ₆]benzene	298	768	8
4b	$[D_{14}]$ methylcyclohexane	298	[c]	
	[D ₁₄]methylcyclohexane	233	837	70
4b	$[D_6]$ toluene (80%) + $[D_8]$ THF (20%)	298	[c]	
	$[D_6]$ toluene (80%) + $[D_8]$ THF (20%)	253	316	700
	$[D_6]$ toluene (80%) + $[D_8]$ THF (20%)	233	336	180
4b	[D ₈]THF	298	281	50
5		298	[c]	
		233	204	75

^[a] No ¹⁷¹Yb NMR signal besides the resonance for YbI₂(THF)₄ ($\delta = 457$) detectable. – ^[b] Additional smaller signals for the homoleptic species YbI₂(THF)₄ ($\delta = 457$, $w_{1/2} = 40$ Hz) and Yb(SAr*)₂(THF)_x ($\delta = 281$, $w_{1/2} = 70$ Hz) were observed. – ^[c] No ¹⁷¹Yb NMR signal detectable.

photometry. Absorption maxima were observed at 475/ 546 nm and 369/417 nm, respectively.

It is know from studies on dimeric lanthanide and actinide aryl oxide complexes $M_2(OAr)_6$ (Ar = 2,6-*i*Pr₂C₆H₃; M = La, Nd, Sm, Er, U) that infrared spectroscopy is a valuable tool for the identification of η^6 -arene-bridged dimeric structures.^[35–37] IR spectroscopy shows distinct differences in the aromatic C=C vibrational modes for the π bound and *O*-bridged phenoxide ligands in these compounds. Table 7 shows the IR vibrational frequencies for the aromatic stretching modes in compounds **3**, **4a**, **4b**, **5** and the thiol Ar*SH, recorded as Nujol mulls. Two bands in the regions 1604-1606 cm⁻¹ and 1565-1569 cm⁻¹ are common to all the spectra. Additional stretching modes at

Table 7. Infrared vibrational wavenumbers $[cm^{-1}]$ for the v(C=C) stretching modes in compounds 3, 4a, 4b, and 5 and the thiol Ar*SH

Compound	v(C=C)			
3	1605		1565	
4a	1606	1591	1569	1545
4b	1606	1592	1568	1544
5	1604		1566	
Ar*SH	1605		1567	

1591/1545 cm⁻¹ (**4a**) and 1592/1544 cm⁻¹ (**4b**) are observed only in the IR spectra of the donor-free compounds. The latter clearly indicate a weakening of the aromatic C=C bonds, consistent with the presence of π -arene interactions, as observed by X-ray crystallography.

Ab initio Calculations

Previous theoretical studies of lanthanide bonding to arenes have been mainly limited to complexes of the zerovalent metals.^[38,39] To gain more insight into the Eu^{2+} or $Yb^{2+}-$ arene interactions present in **4a** and **4b**, ab initio calculations on suitable model systems were performed. Quasi-relativistic pseudo-potentials of the Stuttgart/Bonn group were employed for atoms heavier than sulfur.

(a) [Ln(donor)]²⁺ Species

In order to test the influence of different substituents and to gain a qualitative impression of the magnitude of the $Ln^{2+}-\eta^{6}$ -arene interaction, the simple complexes $[Ln(arene)]^{2+}$ (Ln = Eu, Yb; arene = C₆H₆, C₆F₆, 1,3,5-Me₃C₆H₃, 1,3,5-*i*Pr₃C₆H₃) were first examined. For comparison, the coordination of Eu²⁺ and Yb²⁺ to the strong σ -donors tetrahydrofuran, dimethoxyethane, and the Arduengo-type carbene imidazol-2-ylidene was also investigated. Table 8 summarizes the results of these calculations,

Table 8. B3LYP/6-31G*-	optimized bond l	engths [pm] and	d binding energie	s [kJ mol ⁻¹]	for [Ln(arene)] ²⁺	$, [Ln(THF)]^{2+},$	$[Ln(dme)]^{2+}$, and
[Ln(imidazol-2-ylidene)] ²⁻	$^+$ species (Ln = F	Eu, Yb)						

Compound	Symm.	Yb-C/O	$C-C^{[a]}$	$\Delta E_{ m e}$	$\Delta E_{\rm ZPE}$	ΔH_0
$[Eu(C_6H_6)]^{2+}$	C_{6v}	298.9	141.0	-277.1	3.8	-273.3
$[Eu(C_6F_6)]^{2+}$	C_{6v}	308.5	141.2	-115.6	2.1	-113.5
$[Eu(1,3,5-Me_3C_6H_3)]^{2+}$	C_3	{293.1} ^[b]	{141.6}	-334.4	3.8	-330.6
$[Eu(1,3,5-iPr_3C_6H_3)]^{2+}$	C_3	{290.9}	{141.3}	-382.3	-1.0	-383.3
$[Eu(THF)]^{2+}$	C_2	231.2	()	-297.0	2.3	-294.7
$[Eu(dme)]^{2+}$	$\tilde{C_2}$	241.0		-428.3	5.1	-423.2
[Eu(imidazol-2-ylidene)] ²⁺	$\tilde{C_{2v}}$	258.8		-386.2	6.5	-379.7
$[Yb(C_6H_6)]^{2+}$	C_{6v}	287.9	141.1	-305.3	3.6	-301.7
$[Yb(C_6F_6)]^{2+}$	C_{6v}	297.1	141.4	-134.2	1.9	-132.3
$[Yb(1,3,5-Me_3C_6H_3)]^{2+}$	C_3	{282.6}	141.7	-366.4	3.6	-362.8
$[Yb(1,3,5-iPr_3C_6H_3)]^{2+}$	C_3	{280.7}	141.3	-420.7	-1.4	-422.1
$[Yb(THF)]^{2+}$	$\tilde{C_2}$	222.5		-325.8	2.4	-323.4
$[Yb(dme)]^{2+}$	$\tilde{C_2}$	231.6.0		-470.2	5.4	-464.8
[Yb(imidazol-2-ylidene)] ²⁺	$\tilde{C_{2v}}$	249.1		-425.7	6.5	-419.2

^[a] For the isolated arenes, the following C–C distances were obtained at the B3LYP/6–31G* level of theory: 139.7 (C_6H_6), 139.4 (C_6F_6), {139.9} (1,3,5-Me_3C_6H_3) {140.0} (1,3,5-*i*Pr_3C_6H_3). - ^[b] {Av. values}.

Figure 5. Optimized structures for the model compounds (a) $[Yb(C_6H_6)]^{2+}$, (b) $[Yb(C_6F_6)]^{2+}$, (c) $[Yb(1,3,5-Me_3C_6H_3)]^{2+}$, (d) $[Yb(1,3,5-Me_3C_6H_3)]^{2+}$, (e) $[Yb(THF)]^{2+}$, (f) $[Yb(imidazol-2-ylidene)]^{2+}$, (g) $[Yb(SH)_2(C_6H_6)]$, and (h) $[Yb(SH)_2(C_6H_6)_2]$; calculations were either performed at the B3LYP/6-31G* [(a)-(f)] or the MP2/6-31G* [(g), (h)] level of theory

which were performed at the B3LYP/6-31G* level of theory. The optimized structures of the Yb²⁺ adducts are shown in Figure 5 (a)–(f). Obviously, the binding energy largely depends on the electron-withdrawing or -donating ability of the substituents on the arene rings, as would be expected for a cation–arene interaction dominated by electrostatics. Therefore, as a result of the strong -I effect of the fluorine atoms, the smallest binding energy (ΔH_0) of -113.5 kJ mol⁻¹ is calculated for the compound [Eu(C₆F₆)]²⁺, whereas a value of -273.3 kJ mol⁻¹ is calculated for the benzene complex [Eu(C₆H₆)]²⁺. The introduction of electron-donating alkyl groups leads to a substantial increase in ΔH_0 from -330.6 kJ mol⁻¹ for [Eu(1,3,5-Me₃C₆H₃)]²⁺ to -383.3 kJ mol⁻¹ for [Eu(1,3,5*i*Pr₃C₆H₃)]²⁺. With a value of 297 kJ mol⁻¹, the dissociation energy of the adduct [Eu(THF)]²⁺ is intermediate between the values for $[Eu(C_6H_6)]^{2+}$ and [Eu(1,3,5- $Me_3C_6H_3)$ ²⁺. This is in accordance with the experimental observation that intramolecular arene binding in 4a and 4b is favored over the coordination of THF. It is notable that the binding energy for the interaction of Eu²⁺ with the Arduengo-type carbene imidazol-2-ylidene is substantially larger than that for the coordination of THF and comparable to that for coordination of the arene $1,3,5-iPr_3C_6H_3$. Therefore, it should be possible to obtain adducts of 4a or 4b with substituted carbenes of the imidazol-2-ylidene type. As one might expect, the greatest dissociation energy of 423 kJ mol⁻¹ is found for the compound [Eu(dme)]²⁺. This is in agreement with the isolation of the bis(DME) adduct 5. Compared to the corresponding Eu^{2+} compounds, the binding energies of the Yb2+ complexes are increased by 9-14%, which is attributable to the smaller ionic radius of

	H Y_b H Y_b H Y_b S H Y_b S Y_b S Y_b S								
Compound	Symm.	Yb-S	S-Yb-S	S-H	H-S-Yb	H-S-Yb-S	E _e	$E_{\rm ZPE}$	
	B3LYP/6	-31G*							
Yb(SH)2 antilanti	C_{2v}	270.5	132.1	135.7	96.7	180	-830.601965	0.015359	
Yb(SH) ₂ syn/syn	$\tilde{C_2}$	269.0	128.5	135.4	98.4	3.4	-830.604450	0.015495	
()2 / /	B3LYP/6	$-31+G^{**}$							
Yb(SH)2 antilanti	C_{2v}	270.8	133.9	135.3	95.9	180	-830.612178	0.015359	
Yb(SH) ₂ syn/syn	$\tilde{C_2}$	269.2	128.8	135.0	97.8	3.5	-830.614476	0.015489	
()2 / /	MP2/6-3	31G*							
Yb(SH)2 antilanti	no minin	num							
$Yb(SH)_2 syn/syn$	C_2	270.6	149.7	134.5	101.7	20.2	-829.238995	0.015563	
	MP2/6-3	31+G**							
Yb(SH) ₂ syn/syn	C_2	271.3	152.1	133.6	97.2	34.3	-829.267290	0.015833	

Table 9. Calculated bond lengths [pm], bond angles [°], torsion angles [°], and energies [Hartree] for $Yb(SH)_2$ species (see below) at different levels of theory

the latter. In accordance with the electronic properties of the various arene ligands, the metal····C(arene) distances also vary considerably by 16-17 pm, being shortest in $[M(1,3,5-iPr_3C_6H_3)]^{2+}$ and longest in $[M(C_6F_6)]^{2+}$. A notable feature of the calculated $[M(1,3,5-iPr_3C_6H_3)]^{2+}$ structures is the presence of three agostic-type M···H interactions to C–H bonds of the isopropyl groups (Eu···H: 296.2 pm; Yb···H: 285.5 pm). The shortest experimentally determined M···H distances in **4a** and **4b** are 303 pm and 301 pm, respectively.

(b) $Yb(SH)_2$

DFT calculations with two different basis sets revealed at least two stable conformers (Table 9). The U-shaped syn,syn species with C_2 symmetry is energetically favored by ca. 6 kJ mol⁻¹ over the W-shaped *anti,anti* conformer (C_{2v}) . According to MP2 results, only the former is a minimum on the potential-energy surface. The bending angle at the Yb center and the Yb-S distance were computed at MP2/ $6-31+G^{**}$ level to be 152.1° and 271.3 pm, respectively. The DFT calculations showed slightly shorter Yb-S bonds and a more acute S-Yb-S angle of ca. 130° for both conformers. The occurrence of bent equilibrium geometries for some lanthanide MX_2 species^[40,41] and related compounds of the heavier alkaline earth elements^[42,43] is now well established. This bending can be explained by the presence of small σ -bonding contributions (involving metal d orbitals) and/or the polarization of the metal cation by the ligands. According to Kaupp et al., the MX₂ compounds can be divided into molecules with genuinely bent structures [for example, EuF₂, Ba(CH₃)₂] and molecules with quasi-linear equilibrium geometries (for example, SmCp₂, CaF₂). The latter show almost no energy change ($< 1-2 \text{ kJ mol}^{-1}$) when the equilibrium angle is increased to 180°, whereas the former exhibit considerable linearization energies of up to 33 kJ mol⁻¹.

Figure 6. Bending potential curve for syn/syn Yb(SH)₂ at the MP2/ $6-31+G^{**}$ level of theory

Figure 6 shows the rather shallow bending potential curve for syn/syn Yb(SH)₂ calculated at the MP2/6-31+G** level of theory. With a linearization energy of 1.1 kJ mol⁻¹, it can be classified as a quasi-linear molecule.

(c) $Yb(SH)_2(C_6H_6)_n$ Complexes (n = 1, 2)

Calculated bond parameters and binding energies for $Yb(SH)_2(C_6H_6)$ and $Yb(SH)_2(C_6H_6)_2$ species, both of which were computed at the B3LYP and MP2 levels of theory using the $6-31G^*$ basis set, are summarized in Table 10. The MP2-optimized structures are shown in Figure 5 (g) and (h). Compared to the experimentally determined distances in complex 4b, the calculated Yb-S bond lengths for the model compound $Yb(SH)_2(C_6H_6)_2$ are overestimated by 5.1 pm (MP2) and 7.1 pm (B3LYP), respectively. The difference between the DFT-computed and observed Yb ... C distances is quite substantial, amounting to +22.3 pm. A much better description is provided by the MP2 calculation, which overestimates the distance of the Yb…arene interaction by only 5.6 pm. Replacing the coordinated benzene in $Yb(SH)_2(C_6H_6)_2$ by the substituted arene $1,3,5-iPr_3C_6H_3$ can be expected to result in a further reduction in the Yb…C distances, which might, however, be partly compensated by repulsion between the isopropyl groups. The dissociation enthalpy corresponding to the reaction

Compound ^[a]	Symm.	Yb-C ^[b]	Yb-S	S-Yb-S	H-S-Yb-S	$\Delta E_{\rm e}$	$\Delta E_{\rm ZPE}$	ΔH_0 ^[c]
	B3LYP/6-	-31G*						
$Yb(SH)_2(C_6H_6)$	C_2	{310.5}	272.9	139.1	0.4	-70.8	+4.4	-66.4
$Yb(SH)_2(C_6H_6)_2$	$\tilde{C_2}$	{319.6}	276.2	124.5	44.0	-105.2	+7.3	-97.9
()2(0 0)2	MP2/6-3	1G*						
$Yb(SH)_2(C_6H_6)$	C_2	{298.1}	271.8	149.9	0.02	-108.3	$+4.6^{[d]}$	-103.7
$Yb(SH)_2(C_6H_6)_2$	$\tilde{C_2}$	{302.9}	274.2	126.6	52.4	-185.4	$+7.8^{[d]}$	-177.6

Table 10. Calculated bond lengths [pm], bond angles [°], torsion angles [°], and binding energies $[kJ mol^{-1}]$ for $Yb(SH)_2(C_6H_6)$ and $Yb(SH)_2(C_6H_6)_2$ species at different levels of theory

^[a] syn/syn isomers only. - ^[b] {Av. values}. - ^[c] According to the reaction Yb(SH)₂ + $n C_6H_6 \rightarrow$ Yb(SH)₂(C_6H_6)_n. - ^[d] E_{ZPE} was taken from the DFT calculation above.

 $Yb(SH)_2(C_6H_6)_2 \rightarrow Yb(SH)_2(C_6H_6) + C_6H_6$ was estimated to be 31.5 kJ mol⁻¹ (B3LYP) and 73.9 kJ mol⁻¹ (MP2). These values may be compared with the NMR-spectroscopically determined energy barriers of 57.1 kJ mol⁻¹ and 54.3 kJ mol⁻¹ found for solutions of **4b** in [D₈]toluene or [D₁₄]methylcyclohexane.

Conclusion

The use of the very bulky *m*-terphenyl-substituted Ar*S ligand has permitted the synthesis of the first monomeric σ donor-free lanthanide(II) thiolates. In the solid state, steric saturation of the europium and ytterbium centers is achieved by two η^6 - π -arene interactions, as has been demonstrated by X-ray structural analysis and IR spectroscopy. Evidence that these interactions also persist in solution has been provided by variable-temperature NMR experiments, which show an energy barrier of 54.3 kJ mol⁻¹ for **4b** in methylcyclohexane solution. In contrast, the ¹H NMR spectrum of the bis(DME) adduct 5 shows no dynamic character in the temperature range 223-300 K, despite the more crowded environment of the Yb center. From ab initio calculations on the model system Yb(SH)₂(C₆H₆)₂, it has been estimated that the dissociation of one molecule of benzene requires between 31.5 and 73.9 kJ mol⁻¹ depending on the method used.

Experimental Section

General: All manipulations were performed using standard Schlenk techniques under purified argon. Solvents were freshly distilled under argon from Na wire or LiAlH₄. The compounds Yb[N(SiMe₃)₂]₂ ^[17] and Ar*SH^[44] were synthesized according to known literature procedures. – NMR spectra were recorded with Bruker AM 200, AC250, and AM 400 instruments and were referenced to solvent resonances (¹H, ¹³C) or YbCp*₂(THF)₂ ^[34] (¹⁷¹Yb). – UV spectra were recorded with a Bruins Omega 10 spectrophotometer. – IR spectra were recorded in the range 4000–200 cm⁻¹ with a Perkin–Elmer Paragon 1000 PC spectrometer. – Mass spectra were measured with a Varian MAT711 instrument. – Melting points were determined under Ar in sealed glass tubes.

Yb(SAr*)I₂(THF)₃ (3): A solution of **2b** was prepared from Ar*SH (1.76 g, 3.41 mmol), Yb chips (0.59 g, 3.41 mmol), and 2-iodoben-

1978

zotrifluoride (0.48 mL, 3.41 mmol) as described below for the synthesis of **4b**. With stirring, a solution of iodine (0.42 g, 3.31 mmol) in THF was added dropwise at 0 °C. The mixture was allowed to warm to ambient temperature and ca. 30 mL of *n*-heptane was added. After filtration through a glass filter frit, the resulting purple solution was concentrated until crystallization commenced and then stored in a freezer at ca. -25 °C for 2 d to give **3** as purple crystals (2.25 g, 57%); m.p. 120–240 °C (dec., compound gradually decolorizes). – IR (CsBr, Nujol): $\tilde{v} = 1605$ ms, 1565 m, 1358 s, 1345 sh, 1315 ms, 1299 s, 1247 m, 1166 ms, 1154 mw, 1130 mw, 1115 m, 1098 m, 1068 ms, 1037 s, 1000 vs, 954 w, 940 m, 916 m, 878 s, 851 sh, 835 vs, 800 s, 774 s, 745 s, 732 s, 674 m, 663 mw, 650 ms, 608 w, 590 w, 526 m, 508 w, 427 mw, 410 cm⁻¹ w. – C₄₈H₇₃I₂O₃SYb (1157.0): calcd. C 49.83, H 6.36; found C 49.50, H 6.38.

Eu(SAr*)₂ (4a): At 0 °C, an Eu ingot (3.9 g, 25.7 mmol) was added to a stirred solution of Ar*SH (1.08 g, 2.10 mmol) and 2-iodobenzotrifluoride (0.48 mL, 3.41 mmol) in THF (60 mL). Stirring was continued for 1 h at 0 °C and for a further 1 h at 20 °C, whereupon the resulting light-orange solution was carefully decanted from the excess Eu metal. The volume of the solution was reduced to ca. 5 mL and *n*-heptane (ca. 20 mL) was added. After separation from the precipitated EuI₂(THF)₅, the remaining solution was concentrated in vacuo until crystallization commenced. Storage in a freezer at 5 °C overnight afforded 4a·(THF)_{0.5} as orange crystals (0.89 g, 70%); m.p. 289–292 °C (compound softens > 216 °C). – IR (CsBr, Nujol): $\tilde{v} = 1606$ m, 1591 m, 1569 ms, 1545 m, 1411 m, 1363 s, 1336 m, 1314 ms, 1249 ms, 1167 ms, 1150 m, 1110 ms, 1081 m, 1069 ms, 1049 vs, 1003 m, 939 ms, 922 m, 886 vs, 870 s, 850 w, 791 s, 775 m, 756 m, 738 vs, 733 vs, 649 ms, 612 w, 587 m, 562 w, 519 ms, 426 w, 360 cm⁻¹ m. – EI-MS (70 eV): m/z (%) = 1179.7 (48) [Eu(SAr*)₂⁺], 666.3 (100) [EuSAr*+], 514.4 (77) [SAr*+]. -C₇₄H₁₀₂EuO_{0.5}S₂ (1215.7): calcd. C 73.11, H 8.46; found C 72.91, H 8.72.

Yb(SAr*)₂ (4b). – Method A: Ar*SH (0.26 g, 0.50 mmol) was added through a solid-addition tube to a stirred solution of Yb[N(SiMe₃)₂]₂ (0.12 g, 0.24 mmol) in *n*-pentane (ca. 15 mL). The reaction mixture was stirred for a further 30 min and then the solvent was removed under reduced pressure. The intensely colored residue was redissolved in a mixture of *n*-heptane and a small amount of benzene. Cooling in a freezer at 5 °C afforded 4b·(C₆H₆)_{0.5} as purple crystals (0.19 g, 64%), which were suitable for X-ray crystallographic studies. The solvate-free compound 1 was obtained by pumping at 10^{-3} mbar for 2 h. – Method B: Ar*SH (2.06 g, 4.00 mmol) and Yb chips (1.1 g, 6.36 mmol) were suspended in THF (60 mL) at 0 °C. With stirring, 2-iodobenzotrifluoride (0.56 mL, 4.00 mmol) was added dropwise and after a short induction period a color change to orange was observed. Stirring was continued for 2 h, whereupon the resulting maroon solution was carefully decanted from the unchanged excess Yb metal. Most of the solvent was removed under reduced pressure and the concentrate was treated with n-pentane (50 mL). The solution was separated from the precipitated greenish-yellow YbI₂(THF)₄ and all volatile materials were distilled off in vacuo. Recrystallization of the purple-brown residue from n-heptane/toluene (20:1) followed by pumping at 10^{-3} mbar for 2 h gave pure **4b** as a purple powder (1.58 g, 66%); m.p. 263-265 °C (compound softens > 220 °C). -¹H NMR (250.1 MHz, [D₈]toluene, 85 °C): $\delta = 1.06$ [d, ³J_{HH} = 6.9 Hz, 24 H, o/p-CH(CH₃)₂], 1.24 [d, ${}^{3}J_{HH} = 6.9$ Hz, 24 H, o/p- $CH(CH_3)_2$], 1.31 [d, ${}^{3}J_{HH} = 6.9$ Hz, 24 H, o/p- $CH(CH_3)_2$], 2.89 [sept, ${}^{3}J_{HH} = 6.9 \text{ Hz}, 8 \text{ H}, o-CH(CH_{3})_{2}$], 3.07 [sept, ${}^{3}J_{HH} = 6.9 \text{ Hz},$ 4 H, p-CH(CH₃)₂], 6.86 (m, 6 H, m/p-C₆H₃), 7.17 (s, 8 H, m-Trip). $- {}^{13}$ C NMR (62.9 MHz, [D₈]toluene, 85 °C): $\delta = 23.8, 24.3, 24.8$ [o/p-CH(CH₃)₂], 31.2 [o-CH(CH₃)₂], 34.0 [p-CH(CH₃)₂], 120.6 (p-C₆H₃), 122.0 (m-Trip), 129.0 (m-C₆H₃), 141.6, 142.7 (i-Trip, o- C_6H_3), 148.3 (o-Trip), 149.3 (p-Trip), 152.5 (i- C_6H_3). – ¹⁷¹Yb NMR (70.1 MHz, [D₆]benzene, 25 °C): $\delta = 768 (w_{1/2} = 8 \text{ Hz}) -$ IR (CsBr, Nujol): $\tilde{v} = 1606$ m, 1592 m, 1568 m, 1544 m, 1314 ms, 1249 ms, 1168 ms, 1150 m, 1110 ms, 1082 m, 1069 m, 1049 s, 1004 w, 939 s, 920 m, 886 vs, 869 vs, 849 w, 791 vs, 774 m, 755 ms, 740 vs, 733 vs, 650 s, 611 w, 587 m, 519 s, 425 w, 363 m, 306 cm⁻¹ w. - EI-MS (70 eV): m/z (%) = 1200.7 (100) [Yb(SAr*)₂⁺], 687.3 (32) [YbSAr^{*+}], 514.4 (19) [SAr^{*+}]. $- C_{72}H_{98}S_2Yb$ (1200.74): calcd. C 72.02, H 8.23; found C 71.41, H 8.36. – UV/Vis (*n*-pentane): λ_{max} $(\epsilon) = 475 \text{ nm} (110 \text{ m}^{-1} \text{ cm}^{-1}), 546 (90). - \text{UV/Vis} (\text{THF}): \lambda_{\text{max}}$ $(\varepsilon) = 369 \text{ nm} (480 \text{ M}^{-1} \text{ cm}^{-1}), 417 (250).$

Yb(SAr*)₂(THF)_x (6): ¹H NMR (200.13 MHz, $[D_8]$ THF, 25 °C): $\delta = 0.95$ [d, ³*J*_{HH} = 6.8 Hz, 24 H, *o/p*-CH(CH₃)₂], 1.16 [d, ³*J*_{HH} =

6.8 Hz, 24 H, *o/p*-CH(CH₃)₂], 1.26 [d, ${}^{3}J_{HH} = 6.8$ Hz, 24 H, *o/p*-CH(CH₃)₂], 2.86 [sept, ${}^{3}J_{HH} = 6.8$ Hz, 4 H, *p*-CH(CH₃)₂], 2.95 [sept, ${}^{3}J_{HH} = 6.8$ Hz, 8 H, *o*-CH(CH₃)₂], 6.67 (m, 6 H, *m/p*-C₆H₃), 6.93 (s, 8 H, *m*-Trip). – 13 C NMR (50.33 MHz, [D₈]THF, 25 °C): $\delta = 24.5$, 24.5, 25.8 [*o/p*-CH(CH₃)₂], 31.2 [*o*-CH(CH₃)₂], 34.9 [*p*-CH(CH₃)₂], 119.3 (*p*-C₆H₃), 121.1 (*m*-Trip), 129.9 (*m*-C₆H₃), 142.9, 144.4 (*i*-Trip, *o*-C₆H₃), 146.3 (*p*-Trip), 147.3 (*o*-Trip), 152.5 (*i*-C₆H₃). – 171 Yb NMR (70.1 MHz, [D₈]THF, 25 °C): $\delta = 281$ ($w_{1/2} = 50$ Hz). – 171 Yb NMR {70.1 MHz, [D₈]toluene (ca. 80%) + [D₈]THF (ca. 20%), –40 °C}: $\delta = 336$ ($w_{1/2} = 180$ Hz).

Yb(SAr*)₂(dme)₂ (5): In a Schlenk tube, purple 4b (0.35 g, 0.29 mmol) was treated with two drops of DME, which immediately gave 5 as a yellow, microcrystalline material in quantitative yield. The excess DME was carefully removed in vacuo at 0 °C. Prolonged pumping at 10^{-3} mbar overnight gave 4b once more. Crystals of 5 suitable for X-ray crystallographic studies were obtained from an *n*-pentane/DME mixture (5:1) at -25 °C; m.p.: compound darkens > ca. 110 °C and melts to a purple-brown liquid between 265 and 270 °C. After cooling to ambient temperature and standing for 1 h, the upper crust of the solid turns yellow again. $- {}^{1}$ H NMR (250.1 MHz, [D₁₀]DME, 25 °C): $\delta = 0.97$ [d, ${}^{3}J_{\text{HH}} = 6.8 \text{ Hz}, 24 \text{ H}, o/p-CH(CH_{3})_{2}], 1.18 \text{ [d, } {}^{3}J_{\text{HH}} = 6.8 \text{ Hz},$ 24 H, o/p-CH(CH₃)₂], 1.25 [d, ${}^{3}J_{HH} = 6.8$ Hz, 24 H, o/p- $CH(CH_3)_2$], 2.87 [m, 12 H, o- + p- $CH(CH_3)_2$], 3.27 (s, 12 H, OCH₃), 3.43 (s, 8 H, OCH₂) [these two signals correspond to the coordinated non-deuterated DME; another set of signals is observed for the perdeuterated solvent], 6.67 (m, 6 H, m- + p-C₆H₃), 6.88 (s, 8 H, m-Trip). - ¹⁷¹Yb NMR (70.1 MHz, [D₁₀]DME, -40 °C): $\delta = 204 \ (w_{1/2} = 75 \text{ Hz}). - \text{IR} \ (\text{CsBr, Nujol}): \tilde{v} = 1604 \text{ m},$ 1566 ms, 1358 s, 1315 ms, 1276 w, 1243 ms, 1209 w, 1190 m, 1168

Table 11. Selected crystallographic data for compounds 3, 4a, 4b, and 5

Compound ^[a]	3	4a •(THF) _{0.5}	$4b \cdot (C_6 H_6)_{0.5}$	5
Empirical formula	C ₄₈ H ₇₃ I ₂ O ₃ SYb	$C_{74}H_{102}S_2Eu$	C ₇₅ H ₁₀₁ S ₂ Yb	C ₈₀ H ₁₁₈ O ₄ S ₂ Yb
Molecular mass	1157.0	1215.6	1239.7	1380.9
Color, habit	purple, plate	deep orange, block	purple, block	yellow, needle fragment
Crystal size [mm]	$0.45 \times 0.20 \times 0.05$	$0.70 \times 0.40 \times 0.35$	$0.75 \times 0.65 \times 0.60$	$0.40 \times 0.30 \times 0.30$
Crystal system	orthorhombic	triclinic	triclinic	monoclinic
Space group	$P2_{1}2_{1}2_{1}$	$P\overline{1}$	$P\overline{1}$	$P2_1$
a [Å]	13.543(3)	13.278(2)	13.028(5)	13.905(3)
b [Å]	15.984(3)	14.537(3)	14.270(6)	18.837(4)
c [Å]	23.448(5)	18.804(4)	18.681(8)	15.329(3)
α [°]	90	105.60(2)	106.63(3)	90
β[°]	90	95.18(1)	96.02(2)	107.56(2)
γ [°]	90	97.80(1)	96.61(2)	90
$V[\dot{A}^3]$	5076(2)	3433(1)	3271(2)	3828(1)
Z	4	2	2	2
$d_{\text{calcd.}} [\text{g cm}^{-3}]$	1.514	1.176	1.259	1.198
$\mu [cm^{-1}]$	31.35	10.13	15.34	13.21
2θ range [°]	3-54	4-54	4-50	3-54
Unique data/ R_{int}	6727/0.0630	14752/0.0373	11176/0.0652	9449/0.0466
Data with $I > 2\sigma(I)$ (N _o)	5499	11454	8311	7449
Parameters (N_p)	527	832	828	829
$R1 \ [I > 2\sigma(I)]^{[b]}$	0.0436	0.0419	0.0671	0.0479
wR^2 (all data) ^[c]	0.0848	0.1018	0.1818	0.1033
GoF ^[d]	1.213	0.956	1.225	1.206
Largest diff. peak and hole $[e \cdot Å^{-3}]$	0.62/-0.83	1.10/-0.83	1.78/-1.62	1.19/-0.60

^[a] All data were collected at 173 K using Mo- K_{α} ($\lambda = 0.71073$ Å) radiation. - ^[b] $R1 = (||F_o| - |F_c||)/|F_o|$. - ^[c] $wR2 = \{[w(F_o^2 - F_c^2)^2]/(N_o - N_p)\}$.

X-ray Crystallography: X-ray-quality crystals were obtained as described above. Crystals were removed from Schlenk tubes and immediately covered with a layer of viscous hydrocarbon oil (Paratone N, Exxon). A suitable crystal was selected, attached to a glass fibre, and instantly placed in a low-temperature N2 stream.[45] All data were collected at 173 K using either a Syntex $P2_1(3, 5)$ or a Siemens P4 (4a, 4b) diffractometer. Crystal data are given in Table 11. Calculations were carried out with the SHELXTL PC 5.03^[46] and SHELXL-97^[47] program systems installed on a local PC. The structures were solved by direct methods and refined against F_{o}^{2} by full-matrix least-squares techniques. An absorption correction was applied by using semiempirical ψ -scans (5) or the program XABS2^[48] (3, 4b). For 4a, no absorption correction was used. Anisotropic thermal parameters were included for all non-hydrogen atoms with the exception of the co-crystallized THF molecule, which was refined with a common isotropic U value. The methyl carbon atoms of two (5) or four (4a, 4b) disordered isopropyl groups were refined with split positions. The geometries of the disordered isopropyl groups and the co-crystallized benzene molecule (4b) were restrained with SADI and DFIX commands. H atoms were placed in geometrical positions and were refined using a riding model that included free rotation of the methyl groups. Their isotropic thermal parameters were either allowed to refine or were constrained to 1.2 (aryl H) or 1.5 (methyl groups) times U_{eq} of the carbon atom to which they were bound. Final R values are listed in Table 11. Salient bond lengths and angles are given in Tables 1-3. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-150909 (3), -150907 (4a), -150908 (4b), and -150910 (5). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Computational Details: The Gaussian 98^[49] package was used for all energy and frequency calculations. The geometries of the molecules were optimized using either density functional theory (DFT) with the functional B3LYP or second-order Møller-Plesset perturbation theory (MP2). Quasi-relativistic 11- or 10-valence-electron pseudo-potentials of the Stuttgart/Bonn group were employed for the heavy atoms Sc,^[50] Eu, and Yb.^[51,52] The corresponding (8s7p6d1f)/[6s5p3d1f] valence basis set for Sc was taken from the literature, whereas the (7s6p5d)/[5s4p3d] valence basis sets for Eu and Yb were augmented by one set of f-functions. The basis sets for C, H, F, and S were either 6-31G* or 6-31+G** [Yb(SH)₂ species only]. Frequency calculations were carried out to verify that the geometries were true minima on the potential-energy surface and to obtain the zero-point energy (E_{ZPE}) . The sum of the electronic energy $(E_{\rm e})$ and the zero-point energy was used to calculate differences interpreted as reaction enthalpies (ΔH_0) at 0 K. For calibration purposes, test calculations were performed to compute the cation-ring binding energy of [Sc(C6H6)]+, which was determined experimentally as $-222 \pm 21 \text{ kJ mol}^{-1}$.^[53,54] The results of B3LYP and MP2 calculations with the 6-31+G** basis set fall within the experimental error bars. The binding energy was found to be overestimated by 9-16% using the 6-31G* or 6-311+G** basis sets.

Acknowledgments

Support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged. The author also wishes to thank Prof. G. Becker for generous support.

- [1] M. N. Bochkarev, L. N. Zakharov, G. S. Kalinina, Organoderivatives of Rare Earth Elements, Kluwer Academic Press, Dordrecht, 1995.
- [2] F. T. Edelmann, Angew. Chem. 1995, 107, 2647-2669; Angew. Chem. Int. Ed. Engl. 1995, 34, 2466-2488.
- ^[3] S. A. Cotton, Coord. Chem. Rev. 1997, 160, 93-127.
- ^[4] F. Nief, Coord. Chem. Rev. 1998, 178-180, 13-81.
- [5] J. M. Boncella, R. A. Andersen, Organometallics 1985, 4, 205-206.
- [6] P. B. Hitchcock, M. F. Lappert, R. G. Smith, R. A. Bartlett, P. P. Power, J. Chem. Soc., Chem. Commun. 1988, 1007–1009.
- [7] P. B. Hitchcock, J. A. K. Howard, M. F. Lappert, S. Prashar, J. Organomet. Chem. 1992, 437, 177–189.
- [8] W. J. Evans, R. Anwander, J. W. Ziller, *Inorg. Chem.* 1995, 34, 5927–5930.
- [9] M. Westerhausen, M. Hartmann, W. Schwarz, Inorg. Chim. Acta 1998, 269, 91–100.
- ^[10] W. T. Klooster, R. S. Lu, R. Anwander, W. J. Evans, T. F. Koetzle, R. Bau, *Angew. Chem.* **1998**, *110*, 1326–1329; *Angew. Chem. Int. Ed.* **1998**, *37*, 1268–1270.
- [^{11]} W. T. Klooster, L. Brammer, C. J. Schaverien, P. H. M. Budzelaar, J. Am. Chem. Soc. **1999**, 121, 1381–1382.
- ^[12] G. B. Deacon, Q. Shen, J. Organomet. Chem. 1996, 506, 1-17.
- ^[13] M. Niemeyer, S.-O. Hauber, Z. Anorg. Allg. Chem. **1999**, 625, 137–140.
- ^[14] G. B. Deacon, C. M. Forsyth, P. C. Junk, B. W. Skelton, A. H. White, *Chem. Eur. J.* **1999**, *5*, 1452–1459.
- [15] G. Heckmann, M. Niemeyer, J. Am. Chem. Soc. 2000, 122, 4227–4228.
- ^[16] B. Twamley, S. T. Haubrich, P. P. Power, *Adv. Organomet. Chem.* **1999**, *44*, 1–65.
- ^[17] G. B. Deacon, G. D. Fallon, C. M. Forsyth, H. Schumann, R. Weimann, *Chem. Ber./Recueil* **1997**, *130*, 409–415.
- ^[18] D. F. Evans, G. V. Fazakerley, R. F. Phillips, J. Chem. Soc. A **1971**, 1931–1934.
- ^[19] C. Eaborn, P. B. Hitchcock, K. Izod, Z.-R. Lu, J. D. Smith, *Organometallics* **1996**, *15*, 4783–4790.
- ^[20] C. Eaborn, P. B. Hitchcock, K. Izod, J. D. Smith, J. Am. Chem. Soc. 1994, 116, 12071–12072.
- ^[21] M. Niemeyer, Z. Anorg. Allg. Chem. 2000, 626, 1027-1029.
- ^[22] The precipitated Ybl₂(THF)₄ was identified by ¹⁷¹Yb NMR and UV/Vis spectroscopy. The latter method also showed the absence of Yb^{III} impurities.
- [23] F. T. Edelmann, Lanthanides and Actinides in Synthetic Methods of Organometallic and Inorganic Chemistry (Hermann/ Brauer) (Ed.: W. A. Hermann), Georg Thieme Verlag, Stuttgart, 1997.
- ^[24] M. Niemeyer, unpublished results.
- ^[25] D. J. Duncalf, P. B. Hitchcock, G. A. Lawless, *Chem. Commun.* 1996, 269–271.
- ^[26] G. B. Deacon, S. C. Harris, G. Meyer, D. Stellfeldt, D. L. Wilkinson, G. Zelesny, J. Organomet. Chem. 1996, 525, 247-254.
- ^[27] A search of the CCDC database (Vers. April 2000) for Yb^{III}-O(THF) distances with a six-coordinate metal center gave 23 hits in the range 225.5 to 240.9 pm (av. 231.9 pm). A search for the *trans*-O(THF)-Yb^{III}-O(THF) fragment resulted in seven hits with an average distance of 226.9 pm.
- ^[28] L. N. Bochkarev, T. A. Zheleznova, A. V. Safronova, M. S. Drozdov, S. F. Zhiltsov, L. N. Zakharov, G. K. Fukin, S. Y. Khorshev, *Russ. Chem. Bull.* **1998**, 47, 165–168.
- ^[29] G. B. Deacon, T. C. Feng, B. W. Skelton, A. H. White, Aust. J. Chem. **1995**, 741–756.
- ^[30] F. G. N. Cloke, Chem. Soc. Rev. 1993, 17-24.

- ^[31] F. G. N. Cloke, K. Khan, R. N. Perutz, J. Chem. Soc., Chem. Commun. 1991, 48, 1372–1373.
- [^{32]} B. Cetinkaya, P. B. Hitchcock, M. F. Lappert, R. G. Smith, J. Chem. Soc., Chem. Commun. **1992**, 932–934.
- ^[33] J. R. van den Hende, P. B. Hitchcock, S. A. Holmes, M. F. Lappert, W. P. Leung, T. C. W. Mak, S. Prashar, J. Chem. Soc., Dalton Trans. 1995, 1427–1433.
- ^[34] J. M. Keates, G. A. Lawless, ¹⁷¹ Yb NMR Spectroscopy in Advanced Applications of NMR to Organometallic Chemistry (Eds.: M. Gielen, R. Willem, B. Wrackmeyer), Wiley, Chichester, **1996**, chapter 12.
- ^[35] W. G. van der Sluys, C. J. Burns, J. C. Huffman, A. P. Sattelberger, J. Am. Chem. Soc. **1988**, 110, 5924–5925.
- ^[36] D. M. Barnhart, D. L. Clark, J. C. Gordon, J. C. Huffman, R. L. Vincent, J. G. Watkin, B. D. Zwick, *Inorg. Chem.* **1994**, *33*, 3487–3497.
- ^[37] R. J. Butcher, D. L. Clark, S. K. Grumbine, R. L. Vincent-Hollis, B. L. Scott, J. G. Watkin, *Inorg. Chem.* **1995**, *34*, 5468-5476.
- ^[38] W. A. King, S. Di Bella, G. Lanza, K. Khan, D. J. Duncalf, F. G. N. Cloke, I. L. Fragala, T. J. Marks, *J. Am. Chem. Soc.* **1996**, *118*, 627–635.
- ^[39] G. Hong, F. Schautz, M. Dolg, J. Am. Chem. Soc. 1999, 121, 1502-1512.
- ^[40] M. Dolg, H. Stoll, H. Preuss, J. Mol. Struct. (Theochem) 1991, 235, 67–79.
- ^[41] M. Kaupp, P. v. R. Schleyer, M. Dolg, H. Stoll, J. Am. Chem. Soc. 1992, 114, 8202-8208.
- [42] M. Kaupp, P. v. R. Schleyer, J. Am. Chem. Soc. 1992, 114, 491-497.
- ^[43] R. Blom, K. Faegri, Jr., H. V. Volden, *Organometallics* 1990, 9, 372–379.
- ^[44] M. Niemeyer, P. P. Power, Inorg. Chem. 1996, 35, 7264-7272.
- [45] H. Hope, Handling of Reactive Compounds for X-ray Structure Analysis in Experimental Organometallic Chemistry: A Practicum in Synthesis and Characterization (Eds.: A. L. Wayda, M. Y. Darensbourg), American Chemical Society, Washington DC, 1987, chapter 10.
- [46] SHELXTL PC 5.03, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
- [47] G. M. Sheldrick, Program for Crystal Structure Solution and Refinement, Universität Göttingen, 1997.
- ^[48] S. Parkin, B. Moezzi, H. Hope, J. Appl. Crystallogr. 1995, 28, 53-56.

- [^{49]} M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, *Gaussian 98, Rev. A.7*, Gaussian, Inc., Pittsburgh PA, **1998**.
- ^[50] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866-872.
- ^[51] M. Dolg, H. Stoll, A. Savin, H. Preuss, *Theor. Chim. Acta* **1989**, *75*, 173–194.
- ^[52] M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* **1993**, *85*, 441–450.
- ^[53] L. M. Lech, B. S. Freiser, Organometallics 1988, 7, 1948-1957.
- ^[54] C. W. Bauschlicher Jr., H. Partridge, S. R. Langhoff, J. Phys. Chem. **1992**, 96, 3273–3278.
- ^[55] K. Mashima, Y. Nakayama, H. Fukumoto, N. Kanehisa, Y. Kai, A. Nakamura, J. Chem. Soc., Chem. Commun. 1994, 2523–2524.
- ^[56] M. Berardini, J. G. Brennan, *Inorg. Chem.* **1995**, *34*, 6179–6185.
- ^[57] M. Brewer, D. Khasnis, M. Buretea, M. Berardini, T. J. Emge, J. G. Brennan, *Inorg. Chem.* **1994**, *33*, 2743–2747.
- ^[58] F. Nief, L. Ricard, J. Chem. Soc., Chem. Commun. **1994**, 2723-2724.
- ^[59] M. Berardini, J. Lee, D. Freedman, J. Lee, T. J. Emge, J. G. Brennan, *Inorg. Chem.* **1997**, *36*, 5772–5776.
- ^[60] H. C. Aspinall, S. A. Cunningham, P. Maestro, P. Macaudiere, *Inorg. Chem.* **1998**, *37*, 5396–5398.
- ^[61] H. Liang, Q. Shen, S. Jin, Y. Lin, J. Chem. Soc., Chem. Commun. 1992, 480–481.
- ^[62] H. Liang, Q. Shen, J. Guan, Y. Lin, J. Organomet. Chem. 1994, 474, 113–116.
- ^[63] G. B. Deacon, S. Nickel, P. MacKinnon, E. R. T. Tiekink, Aust. J. Chem. 1990, 43, 1245–1257.

Received October 17, 2000 [I00395]