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ABSTRACT: A novel copper-catalyzed intermolecular aminoalkynyla-
tion of alkenes through a radical relay process has been developed in this N SO,Ph
work, in which N-fluoro-N-alkylsulfonamides (NFASs) are used as *R_N, ——————>

nitrogen-centered radical precursors and alkynyltrimethoxysilanes as @
alkynylating reagents. This method presents an efficient and
straightforward approach to various enantioenriched 2-alkynyl-2-
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up to 98% ee

arylethylamines in good yields with excellent enantioselectivity, and
these products can be readily converted into a series of synthetically useful chiral terminal alkynes, allenes, alkenes, amines, amino

acids, and N-heterocycles.

2-Alkynylamines are frequently found in natural products and
therapeutics, such as trace amine-associated receptor 1
(TAARL1) inhibitors, dopamine f-hydroxylase (DBH), and -
hydroxytyptamine reportor la inhibitor (HTR1A) (Scheme
la)."” In addition, 2-alkynylethylamines are also regarded as

Scheme 1. Representative Bioactive Molecules and
Asymmetric Radical Aminoalkynylation of Alkenes
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valuable and versatile building blocks for the synthesis of amines,
amino acids, N-heterocycles, and so on.> Therefore, chemists
have directed considerable effort toward their synthesis, and
aminoalkynylation of alkenes serves as a prevalent and powerful
tool for their synthesis. In the past decade, transition-metal-
catalyzed intramolecular aminoalkynylation of alkenes has been
developed by the groups of Waser,” Bower,” Wang,” and Han,’
where ethynylbenziodoxolone (EBX) reagents or bromoacety-
lenes were employed as alkynylating reagents.8 Nevertheless,
intermolecular aminoalkynylation of alkenes remains elusive.
Very recently, an elegant intermolecular aminoalkynylation of
alkenes via a radical pathway under metal-free conditions was
demonstrated by Studer and co-workers, in which Troc-
protected a-amidocarboxylic acids were employed as nitrogen-
centered radical precursors and EBX reagents were used as the
resulting carbon-centered radical acceptors (Scheme 1b, i)’
Despite these advances, to the best of our knowledge there have
been no documented examples of such asymmetric variants to
date, presumably because of the highly reactive carbon-centered
radicals. Herein we communicate the first enantioselective
intermolecular radical aminoalkynylation of styrenes via a
copper-catalyzed radical relay process, providing easy access to
structurally diverse 2-alkynyl-2-arylethylamines in good yields
with excellent enantioselectivities under very mild reaction
conditions (Scheme 1b, ii).

As part of our continuous interest in asymmetric radical
transformations (ARTs),'® we have disclosed a series of
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enantioselective cyanation''/arylation'” reactions of benzylic
and/or allylic radicals via a Cu-catalyzed radical relay process,
providing easy access to enantioenriched alkylnitriles and 1,1-
diarylmethane derivatives. Very recently, asymmetric alkynyla-
tion of benzylic radicals was also developed by the use of
alkynyltrimethoxysilanes as suitable alkynylating reagents,"
which encouraged us to investigate the asymmetric amino-
alkynylation of styrenes. Therefore, we speculated that if the
benzylic radicals generated by N-centered radical (NCR)
addition to alkenes could be captured by the highly reactive
chiral (L*)Cu"—alkynyl species, enantioselective intermolecular
aminoalkynylation of alkenes could be realized (Scheme 1b, ii).

To test the above-mentioned hypothesis, we examined the
reaction of 4-tert-butylstyrene (1a) with alkynyltrimethoxysilane
2a under our previously reported asymmetric aminoarylation
conditions'*" using N-methyl-N-fluorobenzenesulfonylamide
(NFAS™¢) as the NCR precursor. To our delight, when the
chiral bis(oxazoline) (Box) ligand L1 was employed in
combination with Cu(CH;CN),PF,, the reaction indeed
provided the desired product 3a in 70% vyield with 29% ee
(Scheme 2A). Encouraged by this result, a series of Box ligands

.. . . cps b
Scheme 2. Optimization of the Reaction Conditions™”*
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“Unless otherwise noted, the reactions were run on a 0.1 mmol scale
with Cu(CH;CN),PFs (10 mol %), ligand (12 mol %), 1a (0.1
mmol), 2a (0.15 mmol), and NFASM® (0.12 mmol). *’H NMR yields
of 3a obtained using CH,Br, as an internal standard are reported.
Enantlomenc excess was determined by HPLC on a chiral stationary
phase. “DCM:DMA (1 mL, 9:1 v/v). °Cu(CH,CN),PF (1 mol %)
and ligand (1.2 mol %) were used for the reaction for 16 h.

were then screened. Compared with L1, ligand L2 bearing a
geminal three-membered ring gave 3a in alower yield (46%) and
enantioselectivity (20% ee). For the acyclic substituted Box
ligands, L4 bearing gem-diethyl groups exhibited better
enantioselectivity than L3 with gem-dimethyl groups, while L6
bearing gem-dibenzyl groups performed the best, giving the
desired product 3a in 88% vyield with 93% ee. Furthermore,
increasing the ratio of dichloromethane (DCM) to N,N-
dimethylacetamide (DMA) from 4:1 to 9:1 led to a slightly
better yield of 3a (92%) without loss of enantioselectivity (93%

ee). It is noteworthy that the reaction still proceeded smoothly
without loss of reaction efficiency and enantioselectivity in the
presence of only 1 mol % Cu(CH,;CN),PF; and 1.2 mol % L6,
although the reaction time was prolonged from 8 to 16 h.
Moreover, because of the synthetic utility of RNHTs, NFAS™
was used as the NCR precursor for the asymmetric amino-
alkynylation; unfortunately, the desired product 4a was not
detected (Scheme 2B). During the synthesis of NFAS™, an
unexpected N—F reagent, NFAS", was produced by over-
fluorination of the N-methyl group. Gratifyingly, NFASF also
performed very well in the reaction, and the fluoromethyl group
in NFASF was simultaneously converted into the methoxymethyl
group, affording the product Sa in 78% yield with 95% ee. Sa
could easily be further converted to 4a by removal of the
methoxy group under mild reaction conditions (see Scheme 7).

With the optimized reaction conditions, we next explored the
substrate scope of styrenes using NFAS™®. As shown in Scheme
3, the reaction seems quite general with respect to the electronic
nature of substituents on the aromatic ring of styrene at C3 or
C4, affording the desired aminoalkynylation products 3a—p in
good to excellent yields (54—95%) with excellent enantiose-

Scheme 3. Scope of Alkenes Using NFASM*”
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“Reaction conditions: 1 (0.2 mmol), NFAS™® (0.24 mmol), 2a (0.4
mmol), Cu(CH;CN),PF (1 mol %), and L6 (1.2 mol %) in DCM/
DMA mixed solvent (2 mL). “Isolated yields are reported; ee values
were determined by HPLC on a chiral stationary phase.
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lectivities (92—98% ee). Notably, a wide variety of functional
groups such as halogen, ether, ester, and nitrile were compatible
with the current conditions. In addition, the aryl framework
could be extended to a naphthalene-derived system (3q and 3r).
Furthermore, vinylarenes bearing various heteroarenes, such as
pyrazole (3s, 3v), pyridine (3t), and benzothiophene (3u), were
suitable, affording the corresponding products in good to
excellent yields (71—93%) with excellent enantioselectivities
(82—96% ee). Importantly, the reaction of a substrate derived
from estrone proceeded smoothly to deliver the desired product
3w in 58% yield with 92% de. The reaction of 4-bromostyrene
could be conducted on a gram scale (S mmol) to provide 1.62 g
of the desired product 3d in 72% yield with 96% ee, and the
absolute configuration of (S)-3d was unambiguously determined
by X-ray diffraction analysis.

In addition, the substrate scope of alkenes using NFASF was
also examined (Scheme 4). Similar to the above-shown

Scheme 4. Scope of Alkenes Using NFAS™"
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“Reaction conditions: 1 (0.2 mmol), NFASF (0.24 mmol), 2a (0.4
mmol), Cu(CH3CN)4PF6 (1 mol %), and L6 (1.2 mol %) in DCM/
DMA (2 mL). “Isolated yields are reported; ee values were
determined by HPLC on a chiral stationary phase.

reactions, styrenes bearing either electron-rich or electron-
deficient substituents on the aryl ring at C3 or C4 were suitable
for the reaction, providing the desired products Sa—r in good
yields (52—76%) with excellent enantioselectivities (92—98%
ee). Again, various functional groups such as halogen, ether,
trifluoromethoxy, ester, and nitrile were well-tolerated under the
mild conditions.

Moreover, a wide array of alkynylating reagents with different
substituents on the C—C triple bond, such as ‘Bu, "Pr,
cyclopropyl, and phenyl groups, were applied to the asymmetric
aminoalkynylation of styrenes using either NFAS™® or NFASF as
the NCR precursor. Compared with the reactivity of 2a, these

alkynyl reagents proved to be good candidates but were slightly
less active. As shown in Scheme S, the reactions proceeded

Scheme 5. Scope of Alkynylating Reagentsa’b
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?All of the reactions were run on a 0.2 mmol scale with 1 (0.2 mmol),
NFASM® or NFASF (0.24 mmol), alkyne 2 (04 mmol), Cu-
(CH,CN),PF4 (5 mol %), and L6 (6 mol %). “Isolated yields are
reported; ee values were determined by HPLC on a chiral stationary
phase

smoothly using a catalyst loading of 5 mol % and yielded the
corresponding aminoalkynylation products 3x—aa, Ss, and St in
moderate to good yields (48—68%) with excellent enantiose-
lectivities (93—96% ee).

To demonstrate the potential synthetic utility of our present
method, further transformations of the aminoalkynylation
products were surveyed (Scheme 6). Oxidation of the alkynyl

Scheme 6. Product Transformations”
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“Reaction conditions: (a) RuCl; (S mol %), NaIO, (4.0 equiv), rt, 2
h. (b) Cu(OAc), (10 mol %), NaAsc (0.2 equiv), ‘BuOH/H,0 (1:1
v/v), tt, 24 h. (c) NH,F (8 equiv) in MeOH, rt, 12 h. (d) Sml, (6
equiv), H,O (3.0 equiv), and Et;N (2 equiv) in THF. (e) DIBAL-H
(4.0 equiv) in Et,O, rt, 48 h.

moiety of 3d provided easy access to f-amino acid 6 in 85% yield
with 95% ee (Scheme 6a)."* Upon exposure to NH,F, the C—Si
bond in 3d was successfully cleaved to afford terminal alkyne 7 in
96% yield with 96% ee (Scheme 6b), and 7 could be further
transformed into 1,2,3-triazole 8 in 80% yield with 97% ee by a
click reaction (Scheme 6¢)." It is noteworthy that the sulfonyl
group in the aminoalkynylation products could be removed in
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the presence of Sml,/H,O/Et;N to furnish secondary alkyl-
amine 9 in 80% yield with 96% ee (Scheme 6d)."° Moreover, the
C—C triple bond could be reduced with diisobutylaluminum
hydride (DIBAL-H) to deliver the (Z)-alkene in 94% yield with
95% ee (Scheme 6e)."”

More importantly, the aminoalkynylation products could be
converted into various chiral heterocyclic motifs that commonly
exist in therapeutics and natural products (Scheme 7). Upon

Scheme 7. Synthetic Applications”
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“Reaction conditions: (a) Conc. HCl in MeCN, rt, 2 h. (b) NH,F (8
equiv) in MeOH, rt, 12 h. (c) AgOAc (10 mol %) in CH,CL, 40 °C,
18 h. (d) AgNO; (10 mol %), NBS (1.2 equiv), and H,O (3 equiv) in
acetone, t, 2 h. (e) Hg(OTf), (20 mol %), H,O (3.0 equiv), rt, 18 h.
() L, (3 equiv), K,COj; (3 equiv), and AgOAc (3 equiv) in CH;CN, 0
°C, 12 h. (g) TBD (20 mol %) in THF, rt, 48 h.

treatment of Ss with concentrated hydrochloric acid, the
methoxymethyl (MOM) N-protecting group could be easily
removed to give secondary sulfonamide 4s in 95% yield with 94%
ee. Sulfonamide 5d could be transformed into 2,3-dihydropyr-
role 11 in 85% overall yield over three steps with 96% ee through
sequential MOM deg)rotection, desilylation, and silver(I)-
catalyzed cyclization.'® After MOM deprotection of 5q, direct
bromination of the alkynyl-TMS group using N-bromosuccini-
mide (NBS) enabled access to 12 in 90% yield with 94% ee. In
the presence of Hg(OTf), and water, 12 could be readily
transformed into lactam 13 in 88% yield with 92% ee.'” In
addition, iodocyclization of sulfonamide 4s led to the formation
of iodopyrroline 14 in 83% yield with 96% ee.”’ Moreover, 4s
could be isomerized to allene 15 in 96% yield with 88% ee by the
use of triazabicyclodecene (TBD) as a catalyst.”'

In conclusion, we have developed the first copper-catalyzed
enantioselective intermolecular aminoalkynylation of styrenes
via a radical relay process, which provides easy access to 2-
alkynylethylamines in good yields with excellent enantioselec-
tivities. The reaction displays a wide substrate scope, high
functional group tolerance, and mild conditions. In addition, the
aminoalkynylation products can be easily converted into a wide
variety of synthetically useful chiral synthons, such as terminal
alkynes, (Z)-alkenes, allenes, amines, bromoalkynes, carboxylic
acids, and heterocycles, making the method particularly useful.

Further applications of this strategy are still in progress in our
laboratory.
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