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A One-Pot Process for the Enantioselective Synthesis of 

Tetrahydroquinolines and Tetrahydroisoquinolines via 

Asymmetric Reductive Amination (ARA) 

Tao Yang, Qin Yin, Guoxian Gu,
 
and Xumu Zhang*

,†

Asymmetric reductive amination for the synthesis of both chiral 

tetrahydroquinolines (THQs) and tetrahydroisoquinolines 

(THIQs) has been realized with an Ir/ZhaoPhos catalytic system 

via a one-pot N-Boc deprotection/intramolecular asymmetric 

reductive amination (ARA) sequence. Control experiments 

reveal that HCl plays a vital role to the success of this 

transformation. The HCl acid assists the removal the N-Boc 

protecting group and also provides chloride ion to interact with 

the thiourea moiety in ZhaoPhos, thus leading to excellent 

reaction enantiocontrol. 

Chiral tetrahydroquinolines (THQs) and tetrahydroisoquinolines 

(THIQs) are universal structural units in a large number of 

biologically active molecules, including natural alkaloids and 

pharmaceuticals.1 For instance, chiral 2-substituted THQ units exist 

in naturally occurring (-)-angustrureine,2a (-)-galipinine2b and (-)-

cuspareine,2c and 1-substituted THIQ motifs are present in (+)-

cryptostyline  II,2d drug molecule Solifenacin2e as well as an AMPA 

receptor antagonist.2f Due to their significance, extensive efforts 

have been devoted to the development of high efficient methods 

toward chiral THQs and THIQs.  
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Scheme 1. Strategies toward chiral THQs and THIQs 

Direct asymmetric reduction of easily accessed quinoline or 

isoquinoline derivatives represents the most straightforward route to 

achieve enantioenriched THQs and THIQs. To this end, transition 

metal (TM) catalysis with molecular H2
3 and organocatalysis with 

hydrogen transfer reagents have been well established (Eq 1, Scheme 

1).4 TM-catalyzed asymmetric reduction of benzo-fused cyclic 
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imines is an alternative strategy and several efficient catalytic 

systems have been identified (Eq 2, Scheme 1)5. Besides, 

intramolecular ARA,6 an approach which avoids the presynthesis of 

the imines, provides another facile and efficient route towards chiral 

THIQs. Remarkably, based on Wills’s original contribution 

regarding a one-pot deprotection/cyclization/asymmetric transfer 

hydrogenation for the synthesis of chiral amines,7a Chang recently 

unveiled an elegant one-pot N-Boc deprotection and Ir-catalyzed 

ARA sequence for the preparation of chiral THIQs (Eq 3, Scheme 

1).7b Despite remarkable advances, high efficient catalytic systems 

capable of furnishing both chiral THQs and THIQs remain rare and 

thus highly desirable.  

Recently we have developed a kind of novel ligand, ZhaoPhos,     

comprising a chiral ferrocenyl bisphosphine scaffold and a tunable 

thiourea subunit.8 By taking advantage of the anion bonding 

interaction between the thiourea moiety in the ligand and chloride 

counterion from the substrates, we have successfully realized the 

asymmetric hydrogenation of unprotected NH imines,9a 

isoquinolines and quinolones,9b as well as indoles.9c We envisaged 

that in situ formed cyclic iminium ion, paired with a suitable 

counteranion (such as Cl-), could be stereoselectively reduced 

through similar working models (Eq 4, Scheme 1). We herein report 

a unified strategy for asymmetric synthesis of both chiral THQs and 

THIQs via a one-pot N-Boc deprotection and Ir-catalyzed ARA 

sequence. 

Table 1. Optimization of Reaction Conditionsa 

 

   We began our study by exploring the reductive amination 

conditions for the synthesis of chiral THQs with model substrate 1a. 

Since the removal of the Boc protecting group on N atom is essential 

to the subsequent cyclization, CF3COOH (TFA), as an obvious 

choice, was first tried. With all volatile components removed, the 

resulting mixture underwent smoothly asymmetric reductive 

amination in the presence of a catalyst combination of [Ir(cod)Cl]2 

and ZhaoPhos, however, with only moderate enantiocontrol (entry 1, 

Table 1). We speculated that the poor asymmetric induction was due 

to a very weak interaction between the anion of TFA and the 

thiourea subunit in ZhaoPhos. TFA was thus replaced with HCl/Et2O 

to remove the N-Boc protecting group. As expected, benefiting from 

the strong anion bonding interaction between the thiourea moiety 

and the chloride ion,9a,10 the asymmetric induction of the cyclization 

step enhanced remarkably, affording the desired product 2a with 

97% ee (entry 2). Commercially available chiral phosphine ligands 

BINAP and SegPhos were also investigated, but both displayed 

inferior results (entries 3-4). Screening of other solvents, such as 

THF, iPrOH, toluene and EtOAc, demonstrated that dichloromethane 

remained the most efficient one (entries 5-8). In addition, rhodium 

precatalyst proved to be also efficient, giving full conversions albeit 

with slightly decreased enantiocontrol (entries 9-10). Further attempt 

to use other HCl source did not provide superior results (entry 11). 

Therefore, the optimal condition was identified as follows: 

employing HCl/Et2O to remove the N-Boc protecting group, 

[Ir(cod)Cl]2 and ZhaoPhos as the catalyst, and dichloromethane as 

the solvent at 25 °C with a hydrogen pressure of 30 atm.  
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 Scheme 2. Substrate scope for the synthesis of chiral THQsa-c 

With the optimal conditions in hand, the scope of the reductive 

amination for the synthesis of chiral THQs was then studied, as 

depicted in Scheme 2. Alkyl substituents (1b-1h) with various chain 

lengths attached to the carbonyl moiety had only small influence to 

the outcome of enantiocontrol, and excellent enantioselectivities of 

the desired THQs were generally obtained (92-97% ee). Substituent 

effect on the bridged benzene ring is not obvious in terms of 

reactivity or enantioselectivity, and the enantiocontrol was excellent 

throughout, regardless of the position and electronic property of the 

substituents (2i-2n). Remarkably, a bromo-containing alkyl side 

chain on the phenyl ring was well tolerated (2l). Besides alkyl 
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substituents, different aryl substituents attached to the carbonyl 

moiety were also investigated. In general, these substrates output 

slightly inferior results regarding conversions and enantioselectivity 

(2o-2r, 80-90% ee).  

Encouraged by the success towards the synthesis of chiral THQs 

with Ir/ZhaoPhos catalytic system, we then copied the optimal 

reaction conditions for the synthesis chiral THIQs. Unfortunately, 

the reaction was totally shut down for 3a at the second step. We 

were glad to find that addition of Ti(OiPr)4 over the reductive 

amination step could overcome the obstacle.11 The ARA step of 3a 

processed smoothly to give desired product 4a in a high yield albeit 

moderate ee value (75% ee). Solvent effect was then evaluated to 

improve the enantiocontrol, revealing that EtOAc was the optimal 

solvent which afforded 4a with 94% yield and 93% ee (for details 

see the Supporting Information).  

  
Scheme 3. Substrate scope for the synthesis of chiral THIQsa-c  

Under slightly revised reaction conditions, we explored the 

generality of the protocol for the synthesis of chiral THIQs, as 

summarized in Scheme 3. A variety of 1-aryl substituted THIQs 

were effectively prepared with up to 98% ee and 95% yield (4a-4l). 

The substituent position on both benzene rings of the THIQ has little 

influence on the outcome of enantioselectivity. Notably, the 

transformation went smoothly even with a catalyst loading of 0.2 

mol% to efficiently give product 4a, a key intermediate to the drug 

molecule Solifenacin2e and biologically active molecule (+)-

FR115427.12 

To obtain insight into the efficacy of the catalytic system, L1 and 

L2 were tested under otherwise standard conditions, and the results 

were summarized in Table 2. The N-methylated ligand L1 displayed 

comparable activity and slightly diminished enantiocontrol, possibly 

due to the reason that there is only one acidic N-H proton available 

to interact with the counterion (entry 2, 92% ee). Further, the ligand 

L2 which has no thiourea subunit exhibited high activity but with 

much worse asymmetric induction (entry 3, 55% ee). These results 

suggest the importance of hydrogen bonds in this reaction and that 

the thiourea motif could efficiently help to form a better chiral 

environment. 

Table 2. Investigation of Structure-Activity Relationship of 

ZhaoPhos
 

 

To showcase the practicality of this protocol, TON experiments 

were conducted. 1e was selected because its corresponding product 

2e was a key intermediate to natural product angustureine.13 

Although the transformation remained highly efficient with a 

catalyst loading of 0.1 mol% (TON= 1000), further decrease of the 

catalyst loading resulted in an obvious drop of the reactivity (94% to 

40% yield, entries 1-5, Scheme 4).  

 Scheme 4. TON experiments of 1e 

In summary, we have developed a highly efficient catalytic system 

for asymmetric synthesis of both chiral THQs and chiral THIQs. The 

strong Brønsted acid HCl plays a critical role in this transformation, 

not only facilitating the removal the N-Boc protecting group, but 

also providing chloride ion to interact with the thiourea moiety in 

ZhaoPhos, thereby offering excellent enantiocontrol. Control 

experiments revealed the superiority of ZhaoPhos against several 

commercially available bisphosphine ligands. 
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Asymmetric reductive amination for the synthesis of both chiral tetrahydroquinolines  and 

tetrahydroisoquinolines has been realized with an Ir/ZhaoPhos catalytic system via a one-pot 

N-Boc deprotection/intramolecular asymmetric reductive amination (ARA) sequence. 
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