COMMUNICATION

Efficient Total Synthesis of Marine Alkaloid (–)-Nakadomarin A

Bin Cheng,^[a] Fufang Wu,^[a] Xiaobao Yang,^[b] Yuedong Zhou,^[a] Xiaolong Wan,^[b] and Hongbin Zhai*^[b, c]

In 1997, Kobayashi and co-workers disclosed the isolation of (-)-nakadomarin A (**1**, Scheme 1) from an Okinawan marine sponge *Amphimedon* sp. Its unique $\frac{8}{5}{\frac{5}{5}{\frac{5}{15}}}$ hexacyclic full-ring structure containing four stereogenic centers and an imbedded furan was shown with extensive NMR spectroscopic analyses including NOE and proton coupling

Scheme 1. Retrosynthetic analysis of (-)-nakadomarin A (1). R: $(CH_2)_3OTBDPS$.

 [a] Dr. B. Cheng, F. Wu, Y. Zhou
Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry
University of Science and Technology of China
Hefei 230026 (P.R. China)

- [b] Dr. X. Yang, X. Wan, Prof. Dr. H. Zhai CAS Key Laboratory of Synthetic Chemistry of Natural Substances and State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 (P.R. China)
- [c] Prof. Dr. H. Zhai State Key Laboratory of Applied Organic Chemistry Lanzhou University, Lanzhou 730000 (P.R. China)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201102101.

data.^[1a] The biological properties of **1** range from prominent cytotoxicity against murine lymphoma L1210 cells to outstanding antimicrobial and CDK4 inhibitory activities.[1b] Since 2003, elegant total and formal syntheses^[2] of **1** have been accomplished by the laboratories of Nishida,^[2a,b] Kerr,^[2c] Dixon,^[2d] Mukai,^[2e] and Funk,^[2f] and relevant synthesis studies have been reported by an array of research teams.^[3] Having communicated a rapid construction of the tetracyclic core (ABCD rings) of ent-1 by showcasing the power of a Pt^{II}-promoted cascade reaction sequence,^[3i] we report herein a novel total synthesis of (-)-nakadomarin A with higher practicality and efficiency. The synthesis features: 1) the assembly of the tetracyclic core through the PtCl₂-catalyzed cascade cyclization strategy^[3i] $(4\rightarrow 3,$ Scheme 1) followed by saturation^[3i] of the C8=C9 double bond $(3\rightarrow 2)$, and 2) CSA-assisted^[2d] Z-selective olefin ringclosing metathesis (RCM: within $2 \rightarrow 1$) involving a monoamine precursor (17, Scheme 2) used to replace Dixon's more polar *diamine* substrate (19b)^[2d] for the F ring generation. For the rest of our synthesis plan (Scheme 1), the E ring can be forged by typical olefin $\text{RCM}^{[2a-c,e]}$ (within $2 \rightarrow$ 1) prior to the Fring formation. Envne 4 can be obtained through Sonogashira coupling of terminal alkyne 5 with iodofuran 7. While reductive amination of aldehyde 6 can be implemented to form alkyne 5, furan 7 can be accessible from cyclization/iodination of conjugated ynone 8 in the presence of hydriodic acid. Finally, ketone 8 can be prepared from 9 and 10.

The synthesis of disubstituted furan **7** is described in Scheme 3. Propargyl alcohol THP ether^[4] (**9**) was deprotonated and then treated with γ -butyrolactone (**10**) in the presence of BF₃·OEt₂ to give ynone **8**, treatment^[5] of which with hydriodic acid (**3** M) effected the desired cyclization/iodination to afford a mixture containing alcohol **11** and its THP ether (generated due to THP migration). Subjecting the above mixture to TsOH in MeOH led to **11** (52 %, from **9**) as the sole product, which was silylated to furnish iodofuran **7** in 89% yield.

Unsaturated aldehyde $6^{[6]}$ was converted into compound 5 (54%, overall yield) by stepwise^[3i] reductive amination (propargylamine HCl, TEA, *t*BuOH, evaporation, NaBH₄, MeOH) followed by *N*-sulfonylation (BsCl, TEA, DCM). [Pd(PPh₃)₂Cl₂]/CuI-catalyzed Sonogashira coupling of terminal alkyne 5 with furan 7 in degassed TEA/DMF at room temperature gave rise to the key molecule 4 (87%), in which the enecarbamate, alkyne and furan functionalities

Chem. Eur. J. 2011, 17, 12569-12572

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WILEY CONLINE LIBRARY

- 12569

Scheme 2. Synthesis of (–)-nakadomarin (1). Reagents and conditions: a) propargylamine HCl, TEA, *t*BuOH, evaporation, NaBH₄, MeOH; b) BsCl, TEA, DCM, 54% (2 steps); c) **7**, [Pd(PPh₃)₂Cl₂], CuI, TEA, DMF, 87%; d) PtCl₂, MePh, 80°C, 81%; e) BH₃·SMe₂, THF, H₂O₂, NaOH, 81%; f) NaH, CS₂, MeI, THF; g) Bu₃SnH, AIBN, MePh, 94% (2 steps); h) DIBAL-H, DCM; i) Wittig, 74% (2 steps); j) ZnBr₂, DCM; k) 5-hexenoyl chloride, TEA, DMAP, DCM; l) TBAF, THF, 70% (3 steps); m) Grubbs' second-generation catalyst (20 mol%), DCM, 50°C; n) Swern; o) Wittig, 70% (3 steps); p) Na, naphthalene, THF; q) 6-bromo-1-hexene, K₂CO₃, EtOH, 91% (2 steps); r) Grubbs' first-generation catalyst (25 mol%), (–)-CSA, DCM, 50°C, *Z/ E* about 2:1, 65% (*E*+*Z*), 31% (pure **18**); s) Red-Al, MePh, 85%. R: (CH₂)₃OTBDPS; R': (CH₂)₃OH; Bs: benzenesulfonyl chloride; TEA: triethyl-amine; AIBN: azodiisobutyronitrile; TBAF: tetrabutylammonium fluoride; CSA: camphorsulfonic acid; Red-Al: sodium bis(2-methoxyethoxy)-aluminum hydride.

Scheme 3. Synthesis of iodofuran 7. Reagents and conditions: a) BuLi, BF_3 · Et_2O , THF, **10**; b) HI, MePh; c) TsOH, MeOH, 52% (3 steps); d) TBDPSCl, Im, DMAP, DCM, 89%. TBDPSCl: *tert*-butyldiphenyl-chlorosilane; Im: imidazole; THP: tetrahydropyranyl.

are properly situated for a Pt^{II}-promoted cascade reaction sequence originally developed by Dake.^[7] By adopting our modified procedure,^[3i] treatment of **4** (introduced to the reaction system via a syringe pump) with PtCl₂ (20 mol%) in toluene at 80 °C triggered the anticipated cascade reaction sequence in a seemingly regiospecific (6-*endo* vs. 5-*exo*) and stereospecific fashion. To our delight, tetracycle **3** was produced exclusively, and the yield reached 81%. The mechanism for the process involves three steps and has been discussed elsewhere.^[3i,7] No racemization was observed at C14. Since saturation of the C8=C9 double bond within the A ring could not be accomplished by: 1) hydrogenation,^[3c,i] 2) reduction with TFA/Et₃SiH,^[3i] or 3) hydroboration followed by protonation (with HBr or HOAc),^[3i] **3** was subjected to stereoselective hydroboration (BH₃·SMe₂) followed by oxidation (H₂O₂, NaOH)^[3i] to form alcohol **12** (81%), and the C8 configuration was correctly established. Barton-McCombie reaction^[8] (Bu₃SnH, AIBN, MePh) with prior xanthate formation^[9] (NaH, CS₂, MeI, THF) generated tetracyclic core **2** (ABCD rings) in 94% overall yield.^[3i]

At this point, how to efficiently construct the E and Frings in 1 became a central problem. Thus, compound 2 was transformed into dienol 14 in 52% overall yield after a five-step reaction sequence: 1) partial reduction (DIBAL-H, DCM) of the ester moiety to afford an aldehyde, 2) Wittig reaction (MePPh₃Br, tBuOK, THF) to produce the terminal alkene 13, 3) Boc-deprotection (ZnBr₂, DCM, reflux), 4) Nacylation (5-hexenoyl chloride, TEA, DMAP, DCM), and 5) desilvlation (TBAF, THF). Facile RCM of 14 (2 mm) took place in the presence of Grubbs' second-generation catalyst (20 mol%) to give cleanly pentacycle 15 (ABCDE rings). Swern oxidation^[10] and Wittig olefination (MePPh₃Br, K₂CO₃, [18]crown-6, DCM)^[11] to furnish terminal alkene 16 was achieved in 70% overall yield from 14. After desulfonation (Na, naphthalene, THF) and N-alkylation (6-bromo-1hexene, K₂CO₃, EtOH), 16 was converted into bis(terminal alkene) 17 in 91% overall yield. Inspired by Dixon's obser-

COMMUNICATION

Table 1. The Z/E selectivity and separability of the isomeric products from the RCM reactions of **17**, **19a**, and **19b**.

19a: X = Y = O

	19b : X = Y = H ₂	1 : $X = Y = H_2$ (24 <i>E</i>)- 1 : $X = Y = H_2$	
RCM products	Data source	RCM type $(Z/E \text{ ratio})$	Z/E isomer separability
18 /(24 <i>E</i>)- 18	current work	Z selective $(Z/E, 2:1)$	separable (SFC-HPLC)
18 /(24 <i>E</i>)- 18	Nishida ^[2i]	regular $(Z/E, 1:2)$	inseparable
ent-18/ent-(24E)-18	Kerr ^[2c]	regular $(Z/E, 3:5)$	inseparable
20 /(24 <i>E</i>)- 20	Nishida ^[2b]	regular $(Z/E, 1:1.8)$	separable (column chromatography)
ent-20/ent-(24E)-20	Nishida ^[2a]	regular $(Z/E, 2:3)$	separable (column chromatography)
ent-20/ent-(24E)-20	Kerr ^[2c]	regular (Z:E unavailable)	separable (column chromatography)
1 /(24 <i>E</i>)- 1	Dixon ^[2d]	Z selective $(Z/E, 63:37)$	separable (NP-HPLC)
1 /(24 <i>E</i>)- 1	Nishida ^[2i]	obtained by lactam reduction	inseparable
ent-1/ent-(24E)-1	Kerr ^[2c]	obtained by lactam reduction	inseparable

20: X = Y = O

(24E)-20: X = Y = O

vation of amine protonation-assisted E/Z selectivity reversal in a related investigation,^[2d] we attempted treating **17** (0.5 mM) with Grubbs' first-generation catalyst (25 mol%) in the presence of (-)-camphorsulfonic acid (CSA, 200 mol%). The desired RCM proceeded smoothly while the E/Z selectivity was reversed compared to the amine-free lactam/amide substrates utilized by Nishida^[2a,b] and Kerr.^[2c]

Regular chromatographic purification resulted in a mixture of 18 and its (24E)-isomer (65%, combined yield), which upon semipreparative SFC-HPLC gave 18 in a pure form in 31% (unoptimized) yield. Table 1 summarizes the Z/E selectivity and separability of the isomeric products from the RCM reactions. The substrate polarity is most likely 19b > 17 > 19a, and the trend should remain the same for their RCM products. Dixon^[2d] and we (in the current work) have separated 1/(24E)-1 and 18/(24E)-18, respectively, despite the related negative results by Nishida^[2i] and Kerr.^[2c] Note that HPLC separation of 18 and (24E)-18 proved to be much more practical than that of 1 and (24E)-1;^[2a-d] this is consistent with compound polarity considerations. To complete the total synthesis, 18 was reduced with Red-Al in toluene to form (-)-nakadomarin A (1) in 85% yield. The $[\alpha]_{D}^{21}$ of **1** was found to be -66.9 (c=0.28 in MeOH); $[a]_{D}^{23} = -73.0$ (c = 0.08 in MeOH);^[2b] $[a]_{D}^{25} = -65.6$ $(c=0.66 \text{ in MeOH});^{[2d]} [\alpha]_{D} = -72.7 (c=0.12 \text{ in MeOH});^{[2f]}$ (ent-1) $[\alpha]_{\rm D}^{20} = -79.2$ (c=0.12 in MeOH);^[2a] (ent-1) $[\alpha]_{\rm D} =$ +60.7 (c=0.27 in MeOH).^[2c] The ¹H and ¹³C NMR spectroscopic data were in agreement with those disclosed in the literature.^[1a,2a-d,f]

In summary, we have accomplished efficient total synthesis of the complex marine alkaloid (–)-nakadomarin A from aldehyde $6^{[6]}$ Key transformations include: 1) PtCl₂-promoted cascade reactions of compound **4** (accessed by Sonogashira coupling) for the assembly of the tetracyclic core (ABCD rings) followed by saturation of the challenging

C8=C9 double bond through a three-step protocol, 2) Grubbs' second-generation catalyst-mediated RCM for assembling the eight-membered ring, and 3) Grubbs' firstgeneration catalyst-promoted, (–)-CSA-assisted Z-selective RCM of *monoamine* **17** instead of the more polar diamine substrate (**19b**)^[2d] for constructing the fifteen-membered ring.

Acknowledgements

We are grateful for the generous financial support from the National Basic Research Program of China (973 Program: 2010CB833200), "111" Program of MOE, and NSFC (20625204, 20632030, 90713007, 20772141).

Keywords: alkaloids • cascade reactions • monoamines • total synthesis • Z-selective RCM

www.chemeurj.org

a) J. Kobayashi, D. Watanabe, N. Kawashi, M. Tsuda, J. Org. Chem. 1997, 62, 9236–9239; b) J. Kobayashi, M. Tsuda, M. Ishibashi, Pure Appl. Chem. 1999, 71, 1123–1126.

^[2] a) T. Nagata, M. Nakagawa, A. Nishida, J. Am. Chem. Soc. 2003, 125, 7484-7485; b) K. Ono, M. Nakagawa, A. Nishida, Angew. Chem. 2004, 116, 2054-2057; Angew. Chem. Int. Ed. 2004, 43, 2020-2023; c) I. S. Young, M. A. Kerr, J. Am. Chem. Soc. 2007, 129, 1465-1469; d) P. Jakubec, D. M. Cockfield, D. J. Dixon, J. Am. Chem. Soc. 2009, 131, 16632-16633; e) F. Inagaki, M. Kinebuchi, N. Miyakoshi, C. Mukai, Org. Lett. 2010, 12, 1800-1803; f) M. G. Nilson, R. L. Funk, Org. Lett. 2010, 12, 4912-4915; for reviews, see: g) A. Nishida, T. Nagata, M. Nakagawa, Top. Heterocycl. Chem. 2006, 5, 255-280; h) D. B. C. Martin, C. D. Vanderwal, Angew. Chem. 2010, 122, 2893-2895; Angew. Chem. Int. Ed. 2010, 49, 2830-2832; for a paper written in Japanese, see: i) M. Nakagawa, T. Nagata, K. Ono, A. Nishida, J. Synth. Org. Chem. Jpn. 2005, 63, 200-210.

 ^[3] a) A. Fürstner, O. Guth, A. Rumbo, G. Seidel, J. Am. Chem. Soc.
1999, 121, 11108–11113; b) A. Fürstner, O. Guth, A. Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, Chem. Eur. J. 2001, 7, 4811–

A EUROPEAN JOURNAL

4820; c) T. Nagata, A. Nishida, M. Nakagawa, *Tetrahedron Lett.* 2001, 42, 8345–8349; d) P. Magnus, M. R. Fielding, C. Wells, V. Lynch, *Tetrahedron Lett.* 2002, 43, 947–950; e) E. Leclerc, M. A. Tius, Org. Lett. 2003, 5, 1171–1174; f) K. A. Ahrendt, R. M. Williams, Org. Lett. 2004, 6, 4539–4541; g) I. S. Young, J. L. Williams, M. A. Kerr, Org. Lett. 2005, 7, 953–955; h) M. G. Nilson, R. L. Funk, Org. Lett. 2006, 8, 3833–3836; i) H. Deng, X. Yang, Z. Tong, Z. Li, H. Zhai, Org. Lett. 2008, 10, 1791–1793; j) T. Haimowitz, M. E. Fitzgerald, J. D. Winkler, *Tetrahedron Lett.* 2011, 52, 2162– 2164.

- [4] a) J. T. Lowe, W. Youngsaye, J. S. Panek, J. Org. Chem. 2006, 71, 3639–3642; b) J. A. H. Inkster, I. Ling, N. S. Honson, L. Jacquet, R. Gries, E. Plettner, Tetrahedron: Asymmetry 2005, 16, 3773–3784.
- [5] a) D. Obrecht, *Helv. Chim. Acta* **1989**, *72*, 447–456; b) A. Abson, N. J. P. Broom, P. A. Coates, J. S. Elder, A. K. Forrest, P. C. T. Hannan, A. J. Hicks, P. J. O'Hanlon, N. D. Masson, N. D. Pearson, J. E. Pons, J. M. Wilson, *J. Antibiot.* **1996**, *49*, 390–394.
- [6] For the preparation of *ent*-(5*S*)-(-)-6 (ref. [3i]), see: a) E. Coudert, F. Acher, R. Azerad, *Synthesis* **1997**, 863–865; b) J. Yu, V. Truc, P. Riebel, E. Hierl, B. Mudryk, *Tetrahedron Lett.* **2005**, 46, 4011–4013; c) T. Shono, Y. Matsumura, K. Tsubata, Y. Sugihara, S. Yamane, T. Kanazawa, T. Aoki, *J. Am. Chem. Soc.* **1982**, *104*, 6697–6703. Compound 6 {(5*R*)-(+)-, [α]_D¹⁸ = +42.8 (*c*=0.99 in CHCl₃)} was synthe-

sized by Vilsmeier formylation (ref. [6c]; DMF, POCl₃, CH₂Cl₂, 0°C) of the corresponding enecarbamate (CAS No. 1260617-47-7, according to a recent SciFinder search). The most enatiopure commercial D-pyroglutamic acid, which was the starting material, was found to be 95.1% *ee*, as determined by HPLC analysis of its benzyl ester (Chiralpak AD-H column (250×4.6 mm), UV detector 214 nm, eluent 2-propanol/hexane (1:9), flow-rate 0.7 mLmin⁻¹).

- [7] T. J. Harrison, B. O. Patrick, G. R. Dake, Org. Lett. 2007, 9, 367–370.
- [8] a) D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. 1 1975, 1574–1585; b) F.-T. Hong, L. A. Paquette, Chemtracts 1998, 11, 67–72.
- [9] J. R. Williams, D. Chai, J. D. Bloxton II, H. Gong, W. R. Solvibile, *Tetrahedron* 2003, 59, 3183–3188.
- [10] a) K. Omura, A. K. Sharma, D. Swern, J. Org. Chem. 1976, 41, 957–962; b) S. L. Huang, D. Swern, J. Org. Chem. 1978, 43, 4537–4538; c) K. Omura, D. Swern, Tetrahedron 1978, 34, 1651–1660.
- [11] a) S. C. Nigam, A. Mann, M. Taddei, C. G. Wermuth, *Synth. Commun.* **1989**, *19*, 3139–3142; b) H. Mizutani, J. Takayama, T. Honda, *Synlett* **2005**, 328–330.

Received: July 8, 2011 Published online: September 29, 2011