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Platinum(IV) prodrugs of clinically used cisplatin and oxaliplatin 

with two axial long lipid chains were developed for nanoparticle 

delivery to combat cisplatin resistance. 

 

Because of their exceptional anti-cancer efficacy, cisplatin and 

oxaliplatin have been widely used as first-line anti-cancer regimens 
either alone or in combination therapies.1-3 Nonetheless, the 

therapeutic outcomes are compromised by drug resistance and great 

side effects.4-6 Drug resistance against platinum drugs firstly arises 

from the difficulty of drugs in entering the cancer cells.7-9 Moreover, 

platinum drugs are susceptible to deactivation by intracellular 

reductants, i.e. methionine, glutathione (GSH), and metallothio-
nein.10-13 Therefore, they have to be administrated at higher doses 

once drug resistance arises, leading to further formidable systemic 

toxicity. One possible way to overcome resistance and reduce 

toxicity is engineering platinum drugs into nanoparticle-based drug 

delivery systems.3, 14-16 Nanoparticles can ameliorate pharmaco-

kinetic profiles, enhance cell internalization, and improve drug 

stability by modulating size, surface properties, and targeting 

capacities.17-22 However, it remains a challenging task to load 

cisplatin and oxaliplatin into conventional nano-carriers because of 

limited functional groups for drug conjugation and poor 

hydrophilicity/hydrophobicity for drug encapsulation.  
To address these issues, starting from cisplatin and oxaliplatin, 

we developed Pt(IV) prodrugs (CisPt(IV) and OxaPt(IV))  with two 

long lipid chains into axial positions (Scheme 1) and encapsulated 

these prodrugs with FDA approved biodegradable polymer methoxyl 

poly - (ethylene glycol) - block - poly (lactic acid) (mPEG5000-b-

PLA6000) .23, 24 The lipid chain endows lipophilicity into Pt(IV) 

drugs, providing with the possibility of incorporating them into 

amphiphilic nano-carriers, which ultimately improves cellular uptake 

of platinum drugs.25 In addition, compared to Pt(II), Pt(IV) prodrugs 

are more resistant to deactivation by reductants and sequestration 

owing to their exceptional chemical stability.26 Once in the cells, 
with abundant intracellular GSH, inert Pt(IV) prodrugs can  be 

triggered to be reduced to toxic Pt(II) and then kill the cancer cells.27 

To demonstrate this strategy, mPEG5000-b-PLA6000 was employed to 

encapsulate Pt(IV) prodrugs of cisplatin and oxaliplatin to form 
nanoparticles (M(CisPt) and M(OxaPt)). These Pt(IV) prodrugs 

containing nanoparticles could be endocytosed by the cancer cells, 

naturally circumventing the cellular pathway of internalizing small 

molecule-based Pt drugs by cells which adopts passive diffusion as 

well as copper transporter mediated active transportation as the 
major internalization pathway1. Moreover, the nanoparticle 

encapsulation brings with additional protection of the Pt drugs by 

polymers, which reduces the thiol-mediated detoxification of them. 

Here, optimized formulation, triggered drug release and subsequent 

biological evaluation on resistant ovarian cancer cells were 

performed.  
CisPt(IV) and OxaPt(IV) were synthesized by oxidizing 

cisplatin and oxaliplatin with hydrogen peroxide (H2O2) and 

subsequently  attaching  two  axial  long  lipid  chains  to  the  Pt(IV)  

 

CisPt(IV)Cisplatin M(CisPt)

i)

ii) DMF/H2O

mPEG5000-b-PLA6000

A

B

DNA binding

CisPt(IV):mPEG5000-b-PLA6000:

Endocytosis

Cisplatin:

 
Scheme 1. The schematic illustration of the process of preparing 

M(CisPt) and its mechanism to combat cisplatin resistance. 

Cisplatin was oxidized to quadrivalent CisPt(IV) and modified with 

two axial long lipid chains to form CisPt(IV), which was 

encapsulated into biodegradable polymer mPEG5000-b-PLA6000 to 

form M(CisPt) (i: H2O2; ii: hexadecyl isocyanate) (A). The pathway 

of micelles to enter the cells and possible pathway after endocytosis 

was shown (B). 
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spheres (Figure S1). CisPt(IV) and OxaPt(IV) were successfully 

synthesized and proved by characterization of 1HNMR (Figure S2), 

ESI-MS (Figure S3) and IR (Figure S4). The long lipid chains 

endow CisPt(IV) and OxaPt(IV) with possibility for encapsulation of 

drugs. Here various formulations via drug encapsulation by 

mPEG5000-b-PLA6000 were studied and appropriate nanoparticle size 

and loading efficiency were monitored (Figure 1, Figure S5). The 
mean diameters of M(CisPt) and M(OxaPt) increased 

correspondingly as the drug to polymer feed ratio increased from 

0.01 to 0.4 (Figure 1A and Figure S5A). The polymer dispersity 

index (PDI) for M(CisPt) and M(OxaPt) ranged from ~0.1 to ~0.4, 

which indicated all nanoparticles formed have moderate 
polydispersity (Figure 1B and Figure S5B). The zeta potentials for 

both M(CisPt) and M(OxaPt) were almost kept at around -20 mV 

(Figure 1C and Figure S5C), suggesting that the drug to polymer 

feed ratio in the range of 0.01 to 0.4 has no significant impact on the 

zeta potential for both systems. Furthermore, the Pt loading ratios 

were increased correspondingly as the drug to polymer feed ratio 

increased from 0.01 to 0.4, but became similar when the drug to 

polymer ratio was at 0.2 and 0.4 (Figure 1D and Figure S5D). Based 

on the above characterization results, we selected the drug to 

polymer ratio at 0.2 as the optimized ratio in the following study.  

To prove the formation of nanoparticles, the morphology and 

diameter of micelle obtained were evaluated using TEM and DLS 
(Figure 2). Specifically, both M(CisPt) and M(OxaPt) were spherical 

in shape and had a smooth surface without any aggregation, with a 

diameter of 140 nm and 120 nm, respectively. This was further 

confirmed by DLS (Figure 2C), showing average diameters of 220 

nm and 178 nm for M(CisPt) and M(OxaPt), respectively. The 

discrepancy in diameter between TEM and DLS could be 

contributed to shrinkage of samples during the drying process in the 

TEM sample preparation. 
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Figure 1. Formulation optimization of the nanoparticles of 

M(CisPt). Mean diameter (A), PDI (B) Zeta potential (C) and Pt 

loading at various drug to polymer ratios (D) were shown.  

In vitro platinum release behavior of M(CisPt) was studied at pH 

7.4, pH 5.0 and in the presence of 10 mM GSH respectively (Figure 
2D). At pH 7.4 which mimics the pH values in the blood circulation 

and normal tissue28, less than 15% platinum was released even up to 

12 h, while there is 43% of M(CisPt) at pH 5.0. However, in the 

reductive environment (10 mM GSH), 100% of platinum released 

after 36 h. The results indicated that the release behavior of M(CisPt) 

was highly dependent on the reducing agents and acid hydrolysis.  
The acid and GSH could benefit the platinum release. In the acid 

environment (pH 5.0), the polymer could be easily degraded to 

diffuse the drugs out of the biopolymer. In contrast, it was relatively 

stable at pH 7.4. In the presence of GSH, the platinum could be 

released rapidly in a short time. That was because GSH could reduce 

hydrophobic CisPt(IV) into relatively hydrophilic cisplatin, which 

promotes the release of Pt in the polymer matrix. Above results 

indicated that the CisPt(IV) loaded drug delivery system showed 

sensitivity for both acid and GSH. As acidic environment and high 
concentration of GSH are present in tumor cells, such system is 

expected to release the active component rapidly during the 

treatment process.  
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Figure 2. Characterization of M(CisPt) and M(OxaPt). TEM 

images of representative nanoparticles of M(CisPt) (A), M(OxaPt) 

(B) and DLS of M(CisPt) and M(OxaPt) (C) as well as the drug 

release profiles of M(CisPt) at pH 7.4, pH 5.0 and in the presence of 
10 mM GSH (D). 

To gain further insight into the toxicity of M(CisPt) and 

M(OxaPt) against cancer cells, A2780 (cisplatin sensitive) and 

A2780DDP (cisplatin resistant) cells were chosen. Dose dependent 

behaviors of cellular viability of A2780 and A2780 DDP at 48 h 
were shown in Figure 3A, respectively. On A2780 cells, cisplatin 

and M(OxaPt) showed almost similar toxicity against the cells. 

M(OxaPt) was much more toxic than oxaliplatin on the cells. 

However, M(CisPt) was the most effective. Nevertheless, on the 

resistant A2780DDP cells, cisplatin was less effective. Oxaliplatin 

and M(OxaPt) were almost the same in cell killing. Notably, 

M(CisPt) was the most effective on the resistant cells. To further 

describe this, the half inhibitory concentration (IC50) based on Pt as 

well as the resultant drug resistance fold for all drugs were shown in 

Figure 3B. Cisplatin showed IC50 values of 2.7 ± 0.6 µM and 24 ± 

1.45 µM Pt on A2780 and A2780DDP cells, which indicated a drug 

resistance fold of 9. For oxaliplatin, the IC50 were 0.86 ± 0.1 µM and 
2.08 ± 0.47 µM on A2780 and A2780DDP respectively with a drug 

resistance fold of 2.4. It seemed that cells resistant to cisplatin did 

not show resistance to oxaliplatin. Notably, M(CisPt) had the lowest 

IC50 values on both cells lines (0.0067 ± 0.001 µM on A2780 and 

0.0205 ± 0.0034 µM on A2780DDP). The resistance fold of M(CisPt) 

was 3.1. 

 The platinum drugs could finally target DNA in the cancer cells 

via formation of Pt-DNA adduct, disrupting the DNA duplicates and 

eventually leading to apoptosis. The uptake of Pt by A2780 and 

A2780DDP cells were measured by ICP-MS after treatment of the 

cells at 5 h and 9 h. It could be observed that drug uptake by the cell 
lines were in a cell line and time dependent manner (Figure 4A).  For 

almost all drug treated groups, as the time increased, more drugs 

were internalized for both cell lines. However, it seemed that A2780 
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took more cisplatin and oxaliplatin than A2780DDP cells at the same 

time point. The less uptake of free drugs cisplatin and oxaliplatin 

may explain the drug resistance for them. Moreover, the drug uptake 

of M(CisPt) and M(OxaPt) had shown almost the same on both 

A2780 and A2780DDP cells, which were more than cisplatin and 

oxaliplatin. Thus, the nanoparticles helped to increase the drug 

internalization greatly and may circumvent the intracellular 
pathways and biological barriers of the free drugs, which resulted in 

the increase of intracellular drug accumulation and the enhanced 

cellular cytotoxicity.  
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Figure 3. In vitro evaluation of M(CisPt) and M(OxaPt) on 

ovarian cancer cells. Cytotoxic assay by MTT of cisplatin, 

oxaliplatin, M(CisPt) and M(OxaPt) on cisplatin sensitive A2780 
cells and cisplatin resistant A2780DDP cells (A). The IC50 values 

and the drug resistance fold were then derived (B). Significance is 

defined as *** p<0.001. 

To further study the specific internalization pathway, uptake of 

M(CisPt) in the presence of various endocytosis inhibitors were 

performed (Figure 4B). Results showed that minimal uptake by the 
cells was found at 4 °C, indicating this process is ATP dependent 

endocytosis.29 Moreover, chlorpromazine, genistein and sodium 

azide were used as endocytosis inhibitors to further determine the 

internalization pathway of M(CisPt). Sodium azide works as an 

electron transport chain inhibitor19, while chlorpromazine and 

genistein are routinely used to inhibit clathrin-mediated endocytosis 
and caveolae-mediated endocytosis, respectively30. It could be 

clearly found that the cell lines cultured with sodium azide and 

genistein had less uptake compared to the PBS treated control group. 

However, cells treated with chlorpromazine exhibited the least 

uptake, indicating the pathway of M(CisPt) by cancer cells is 

majorly clathrin-mediated endocytosis. Taken together, M(CisPt) 
adopts different internalization pathways from small molecule-based 

Pt drugs.  

To visualize the intracellular internalization pathway of 

M(CisPt). A fluorescent dye Rhodamine B (RhB) was co-loaded to 

label the nanoparticles (M(CisPt/RhB)). Treatment of the cells with 

M(CisPt/RhB) for 2 h and imaging of the cells by confocal laser 

scanning microscopy (CLSM) were performed (Figure 4C). It 

showed that M(CisPt/RhB) were in the cell cytoplasm, indicating the 

nanoparticles were in the cell plasma. To further quantify the 

intracellular uptake, cells were treated with M(CisPt/RhB) for 2 h to 

4 h and monitored by flow cytometry (Figure 4D). Results showed 

that as time gone by, more and more M(CisPt/RhB) were 

endocytosed into cells and this internalization was continuous and 

progressive from 2 h to 4 h. 

Cisplatin is considered to induce cell and cycle arrest and 

apoptosis.19 To evaluate whether M(CisPt) and M(OxaPt) had 

similar impact on the cell fate, especially for cell cycle arrest and 
apoptosis, flow cytometry experiments and cell cycle analysis were 

carried out (Figure S6 and Figure S7). Results showed that the PBS 

treated cells were mostly in the G1 phase. However, when dosed 

with M(CisPt) and M(OxaPt), the ratio of cells in S phase increased 

significantly, while G1 phase decreased dramatically. In the G1 
phase, the biosynthetic activities of the cell reach a high rate and cell 

stores more proteins, enlarges the number of organelles, and grows 

bigger.31 During the S phase, DNAs start to duplicate and the 

amount of DNA is doubled. Most cells stay in S phase when exposed 

to Pt based drug indicated that the DNA replication process is 

disrupted in the presence of M(CisPt) and M(OxaPt) and fail to 

move to the next phase. The S phase disruption effect could be due 

to the association of platinum drugs to DNA structure and blockade 

of the DNA helix, which could lead to inhibition of cell division and 

finally results in cell apoptosis. 
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Figure 4. Intracellular uptake of Pt(IV) loaded nanoparticles.  Pt 

uptake of M(CisPt) and M(OxaPt) by A2780 and A2780DDP cells 

were measured by ICP-MS (A). Different from the internalization 

pathway of cisplatin via passive diffusion, the mechanism of uptake 

of M(CisPt) was studied in the presence of various endocytosis 

inhibitors (B). To visualize the nanoparticles, A2780DDP cells were 

treated with M(CisPt/RhB) and imaged at 4 h. DAPI was used to 

stain the cell nucleus (blue). The red fluorescence comes from RhB 
in the nanoparticles (C). To quantify the nanoparticle uptake, flow 

cytometry was used to monitor the fluorescence intensity in the 

A2780 cells at 2 h and 4 h (D). Significance is defined as * p < 0.05, 

** p < 0.01; *** p<0.001. 
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In summary, an acid and reduction sensitive Pt(IV) prodrug 

delivery system was developed and optimized to overcome cisplatin 
resistance. The Pt(IV) prodrug micelle exhibited rapid drug release 

under acid and high concentration reducing agent conditions. These 

systems could release toxic Pt drugs rapidly in human ovarian cancer 

cells and showed greater toxicity to A2780DDP cells. What’s more, 

the endocytic mechanisms of this system were ATP dependent and 
multiple receptor-mediated. Further, most cells were arrested in S 

phase after treatment of M(CisPt) and M(OxaPt), which resulted in 

apoptosis. Therefore, the present study suggested a new strategy for 

overcoming cisplatin-resistance by delivering and activating 

platinum drugs in cancer cells.  
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