Synthese und Deprotonierung eines Phosphinomethylimidazoliumsalzes. Zur Delokalisierung der π -Elektronen in Aminovinylphosphanen [1]

Norbert Kuhn*, Martin Göhner und Manfred Steimann

Tübingen, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 14. Dezember 2001.

Professor Günter Schmid zum 65. Geburtstag gewidmet

Inhaltsübersicht. Das ylidartige Olefin 1,3,4,5-Tetramethyl-2-methylenimidazolin (1, Im=CH₂) reagiert mit Chlordiphenylphosphan unter Bildung des Phosphansalzes [(Im-CH₂)PPh₂]Cl (6); hieraus ist das Vinylphosphan Im=CHPPh₂ (8) durch Deprotonierung zugänglich. 8 reagiert mit HBF₄-Etherat zum Tetrafluorobo-

rat-Salz [(Im-CH₂)PPh₂]BF₄ (7). Die Kristallstrukturen von 7 und 8 werden ermittelt und diskutiert. Die Delokalisierung der π -Elektronen in 8 wird durch Strukturdaten und temperaturabhängige NMR-Spektroskopie angezeigt.

Synthesis and Deprotonation of a Phosphinomethylimidazolium Salt. On the π -Electron Delocalization im Aminovinyl Phosphanes [1]

Abstract. The ylidic olefin 1,3,4,5-tetramethyl-2-methyleneimidazoline (1, Im=CH₂) reacts with chlorodiphenylphosphane to give the phosphane salt [(Im-CH₂)PPh₂]Cl (6) from which the vinylphosphane Im=CHPPh₂ (8) is obtained by deprotonation. 8 reacts with HBF₄ etherate to give the tetrafluoroborate salt [(Im-CH₂)-PPh₂]BF₄ (7). The crystal structures of 7 and 8 are determined and

discussed. In 8, π -electron delocalisation is indicated both by structural data and temperature dependent n.m.r. spectroscopy

Keywords: Betaines; Heterocycles; Phosphorus; Enamines; Crystal structure

Einleitung

1,3,4,5-Tetramethyl-2-methylenimidazolin [2] weist wegen der ausgeprägten Tendenz des heterozyklischen Rings zur Übernahme einer positiven Formalladung (1) stark basische Eigenschaften auf; das Ylid-ähnliche Verhalten der Verbindung ist durch Reaktionen mit elektrophilen Zentren der Haupt- und Nebengruppenelemente [3, 4] nachhaltig belegt [5] (2).

Die auf einer analogen Ladungsverteilung beruhende Basizität der 2,3-Dihydroimidazol-2-ylidene 3 [6, 7] hat eine ausgedehnte Koordinationschemie dieser stabilen nucleophilen Carbene (4) hervorgebracht [8]. Bei der Reaktion von 3 mit elektrophilen Verbindungen des Phosphors wurde neben der Reduktion von RPCl₂ zu Methylenphosphanen [9] die Koordination an RPF₄ [10] sowie, bei der Umsetzung mit R₂PCl, der Austausch des Chlorosubstituenten unter Bildung eines kationischen Imidazoliophosphans (5) beobachtet [11].

Wir sind am Vergleich der elektroneutralen Kohlenstoff-Basen 1 und 3 hinsichtlich ihrer Koordination an Atome der Hauptgruppenelemente interessiert und bearbeiten deshalb die Reaktion dieser heterozyklischen Basen mit substitutions- bzw. reduktionslabilen Verbindungen des Phosphors. Nachfolgend berichten wir über unsere Ergebnisse der Umsetzung von 1,3,4,5-Tetramethyl-2-methylenimidazolin (1) mit Chlordiphenylphosphan und Folgereaktionen.

Synthese und Struktur des 2-Diphenylphosphinomethyl-1,3,4,5-tetrametylimidazolium-Kations

Analog zur Reaktion von Tetraalkylimidazol-2-ylidenen [11] reagiert 1,3,4,5-Tetramethyl-2-methylenimidazolin (1) mit Chlordiphenylphosphan unter Substitution des Chloro-Substituenten. Hierbei läßt sich das Phosphansalz 6 in sehr guten Ausbeuten als farbloser, mäßig hygroskopischer Feststoff gewinnen.

Die chemische Verschiebung im 31 P-NMR-Spektrum ($\delta = -15.4$) liegt im Erwartungsbereich von Alkyldiarylphosphanen [12] und bestätigt somit das Vorliegen separierter Ionen in Lösung. Dem entspricht auch die Signallage der an das Phosphoratom gebundenen Methylengruppe [1 H-NMR: $\delta = d$, 4.24 (d), $^{2}J = 2.2$ Hz; 13 C-NMR: $\delta = 26.1$ (d), $^{1}J = 22.9$ Hz]. Die weiteren Signallagen einschließlich der für Imidazolium-Ionen charakteristischen Verschiebung für C2 ($\delta = 143.1$, $^{2}J = 6.1$ Hz) sind unauffällig (vgl.

Institut für Anorganische Chemie der Universität Tübingen Auf der Morgenstelle 18

Auf der Morgenstelle 18 D-72076 Tübingen

Fax: +(49 70 71) 29 53 06 E-mail: kuhn@uni-tuebingen.de

^{*} Prof. Dr. N. Kuhn

Abb. 1 Ansicht von 7 (Kation) im Kristall.

Exp. Teil). Im Massenspektrum (FAB) sind die Masse des Kations sowie die von 1 sichtbar.

Da wir von **6** keine brauchbaren Kristalle zur Kristallstrukturanalyse erhalten konnten, haben wir eine Einkristallstrukturanalyse des entsprechenden Tetrafluoroborat-Salzes **7** durchgeführt, dessen Synthese wir später besprechen (Tab. 1–3, Abb. 1). Die Winkelsumme am Phosphoratom sowie die PC-Bindungslängen bestätigen den zuvor genannten Befund [P(1)-C(1) 1.875(4), P(1)-C(9) 1.834(3), P(1)-C(15) 1.832(4) Å; C(1)-P(1)-C(9) 103.78(15), C(1)-P(1)-C(15) 100.00(16), C(9)-P(1)-C(15) 101.87(14)°]. Die deutliche Aufweitung [C(1)-C(2) 1.484(4) Å] der "ylidi-

 Tabelle 1
 Daten zur Kristallstrukturanalyse von 7 und 8.

	$C_{20}H_{24}BF_4N_2P$ (7)	$C_{20}H_{23}N_2P$ (8)	
Zellparameter	a = 11.639(4) Å	a = 8.075(4) Å	
•	b = 17.899(6) Å	b = 10.355(2) Å	
	c = 19.553(5) Å	c = 11.316(2) Å	
	. ,	$\alpha = 107.56(1)^{\circ}$	
		$\beta = 100.60(3)^{\circ}$	
		$\beta = 91.95(2)^{\circ}$	
Zellvolumen	$4073(2) \text{ Å}^3$	882.5(4) Å ³	
Z	8	2	
Dichte (berechnet)	1.338 g/cm ³	1.213 g/cm ³	
Kristallsystem	orthorhombisch	triklin	
Raumgruppe	Pbca	ΡĪ	
Messgerät	Siemens P4		
Wellenlänge	0.71	073 Å	
Messtemperatur	173	(2) K	
gemessener θ-Bereich	2.08 bis 27.53°	2.08 bis 27.50°	
Gesamtzahl der Reflexe	18972	1577	
Symmetrieunabhängige Re-	4685 [R(int) =	1577	
flexe	0.0918]		
beobachtete Reflexe	3049	1080	
$[F_0>4\sigma(F_0)]$			
Vollständigkeit bis $\theta =$	99.9 %	38.8 %	
27.53°			
Strukturverfeinerung	Vollmatrix Least-Squares Methode an F ²		
Anzahl der Parameter	287 213		
Verwendete Rechenpro-	Shelxtl V5.10 NT		
gramme	D1 0.0640 D2	D1 0.0652 D2	
endgültige R-Werte	R1 = 0.0649, wR2 = 0.1805	R1 = 0.0652, wR2 = 0.1509	
[I>2 σ (I)]			
R-Werte (alle Daten)	R1 = 0.1047, wR2 = 0.2214	R1 = 0.1070, wR2 = 0.1799	
grösste Maxima und Mi-	$0.824, -0.349 \text{eÅ}^{-3}$	0.302 , -0.255eÅ^{-3}	
nima		, 0.200 0.1	
**			

Tabelle 2 Atomkoordinaten (\times 10⁴) und Koeffizienten der äquivalenten isotropen Temperaturfaktoren (Å² \times 10³) von 7. U_{eq} ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

	X	у	Z	$U_{\rm eq}$
P(1)	8419(1)	2084(1)	3853(1)	34(1)
B(1)	4336(3)	446(2)	3544(2)	49(1)
F(1)	3507(3)	558(2)	3067(2)	82(1)
F(2)	4815(8)	1003(4)	3882(7)	115(6)
F(3)	5297(5)	118(5)	3193(3)	65(2)
F(4)	4020(7)	-97(6)	3978(5)	100(4)
F(2A)	5077(7)	1011(5)	3496(4)	90(3)
F(3A)	4788(12)	-208(4)	3522(8)	184(11)
F(4A)	3758(9)	566(8)	4164(3)	144(6)
N(1)	9755(2)	403(2)	3661(1)	32(1)
N(2)	8269(2)	-8(2)	4209(1)	31(1)
C(1)	7948(3)	1157(2)	3505(2)	35(1)
C(2)	8637(2)	530(2)	3786(2)	30(1)
C(3)	10103(3)	-231(2)	4009(2)	33(1)
C(4)	9180(3)	-492(2)	4356(2)	32(1)
C(5)	10501(3)	856(2)	3223(2)	43(1)
C(6)	11285(3)	-543(2)	3954(2)	45(1)
C(7)	9047(3)	-1159(2)	4799(2)	43(1)
C(8)	7093(3)	-122(2)	4450(2)	42(1)
C(9)	7795(3)	2108(2)	4714(2)	33(1)
C(10)	8403(3)	2519(2)	5198(2)	41(1)
C(11)	7991(4)	2601(2)	5863(2)	52(1)
C(12)	6993(4)	2252(3)	6050(2)	53(1)
C(13)	6379(3)	1838(2)	5581(2)	49(1)
C(14)	6763(3)	1773(2)	4909(2)	39(1)
C(15)	7452(3)	2705(2)	3380(2)	39(1)
C(16)	7912(4)	3393(2)	3170(2)	47(1)
C(17)	7205(5)	3905(2)	2827(2)	59(1)
C(18)	6077(5)	3742(3)	2688(2)	61(1)
C(19)	5629(4)	3066(3)	2897(2)	58(1)
C(20)	6305(4)	2553(2)	3236(2)	48(1)

Tabelle 3 Ausgewählte Bindungslängen/Å und -winkel/° von 7.

P(1)-C(15)	1.832(4)	N(2)-C(2)	1.341(4)	
P(1)-C(9)	1.834(3)	N(2)-C(4)	1.398(4)	
P(1)-C(1)	1.875(4)	C(1)- $C(2)$	1.484(4)	
N(1)-C(2)	1.343(4)	C(3)-C(4)	1.353(5)	
N(1)-C(3)	1.384(4)			
C(15)-P(1)-C(9)	101.87(14)	N(2)-C(2)-N(1)	107.4(3)	
C(15)-P(1)-C(1)	100.00(16)	N(2)-C(2)-C(1)	126.8(3)	
C(9)-P(1)-C(1)	103.78(15)	N(1)-C(2)-C(1)	125.8(3)	
C(2)-N(1)-C(3)	109.5(3)	C(4)-C(3)-N(1)	107.3(3)	
C(2)-N(2)-C(4)	109.2(3)	C(3)-C(4)-N(2)	106.6(3)	
C(2)-C(1)-P(1)	112.1(2)			

schen" CC-Doppelbindung in 1 (1.357 Å [2]) entspricht dem Befund weiterer Addukte von 1 mit Lewis-aciden Zentren der Haupt- und Nebengruppen L (vgl. z.B. L = Ph₂SnCl₂, I₂, Mo(CO)₅ [3,4]) und ist der Struktur bekannter Pentaalkylimidazolium-Salze ähnlich [13]. Das Molekülion liegt hinsichtlich der Bindung P(1)-C(1) in gestaffelter Konformation mit *gauche*-Anordnung der Substituenten vor und ist somit im festen Zustand chiral. Das Tetrafluoroborat weist eine Rotationsfehlordnung hinsichtlich der Bindung B(1)-F(1) auf; der kürzeste interionische Abstand [F(2A)-H(20A) 2.211 Å] liegt außerhalb des Bereichs bindender Wechselwirkungen.

Synthese und Struktur von 2-Diphenylphosphinomethylen-1,3,4,5-tetramethyl-imidazolin

Am Beispiel der Bildung von 1 läßt sich zeigen, daß durch Deprotonierung von 2-Alkylimidazolium-Ionen 2-Methylenimidazoline zugänglich sind [2]. Zur Deprotonierung von 6 läßt sich vorteilhaft die Carbenbase 3 (R = iso-Pr) [7] verwenden; hierbei wird das Phosphinomethylenimidazolin 8 in sehr guten Ausbeuten als luftempfindlicher, hellgelber Feststoff erhalten. 8 ist auch auf direktem Wege durch Umsetzung von Chlordiphenylphosphan mit zwei Äquivalenten 1 zugänglich.

Im 31 P-NMR-Spektrum von **8** ist die Signallage gegenüber **6** nur geringfügig verschoben (**6**: $\delta = -16.9$; **8**: $\delta = -24.2$). Die Verminderung der positiven Ladung im heterozyklischen Ring durch Deprotonierung bewirkt im 1 H-NMR-Spektrum von **8** die für den Übergang vom Imidazolium- zum Imidazolinsystem charakteristische Verschiebung

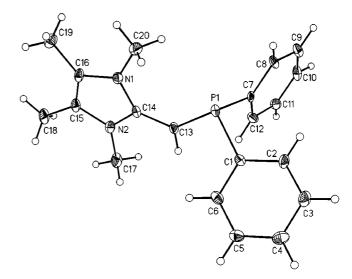


Abb. 2 Ansicht von 8 im Kristall

Tabelle 4 Atomkoordinaten (\times 10⁴) und Koeffizienten der äquivalenten isotropen Temperaturfaktoren ($\mathring{A}^2 \times 10^3$) von **8**. U_{eq} ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	$U_{\rm eq}$
P(1)	6299(1)	7514(2)	7601(2)	29(1)
N(1)	7168(4)	9577(6)	5867(5)	33(1)
N(2)	6691(4)	11377(6)	7326(6)	36(1)
C(1)	7137(4)	7460(5)	9213(5)	29(1)
C(2)	6775(5)	6273(7)	9527(7)	38(2)
C(3)	7506(6)	6131(9)	10677(9)	47(2)
C(4)	8609(6)	7203(10)	11586(8)	51(2)
C(5)	8964(5)	8366(8)	11288(7)	44(2)
C(6)	8230(4)	8513(7)	10128(7)	40(2)
C(7)	4055(4)	7014(6)	7494(6)	26(1)
C(8)	3322(5)	5772(7)	6605(8)	35(2)
C(9)	1590(5)	5347(8)	6438(9)	41(2)
C(10)	627(5)	6208(8)	7169(8)	46(2)
C(11)	1338(5)	7421(8)	8027(7)	39(2)
C(12)	3050(5)	7856(8)	8231(7)	37(2)
C(13)	6389(5)	9278(6)	7843(6)	32(1)
C(14)	6731(4)	10002(5)	7040(5)	30(1)
C(15)	7150(4)	11819(6)	6356(6)	36(2)
C(16)	7440(4)	10721(6)	5464(6)	36(2)
C(17)	6370(11)	12239(10)	8497(12)	55(3)
C(18)	7261(7)	13283(9)	6441(11)	51(2)
C(19)	7901(6)	10591(9)	4223(8)	48(2)
C(20)	7335(8)	8195(9)	5175(9)	47(2)

der zugehörigen Signallagen zu hohem Feld [6: $\delta = 2.13$ (4,5-Me), 3.45 (1,3-Me); **8**: $\delta = 1.96$ (4,5-Me), 3.31 (1,3-Me)]; dem entspricht im ¹³C-NMR-Spektrum das merkliche Auseinanderrücken der den ringständigen Kohlenstoffatomen zugehörigen Signallagen [6: $\delta = 126.3$ (C4,5), 143.1 (C2); **8**: $\delta = 116.5$ (C4,5), 154.7 (C2)]. Erwartungsgemäß deutlich wirkt sich die durch die Deprotonierung bewirkte Umwandlung der Methylengruppe in eine Olefinfunktion aus [¹H-NMR; **6**: $\delta = 4.24$ (d, P-CH₂, ²J = 2.2 Hz); **8**: $\delta = 3.06$ (d, P-CH, ²J = 7.2 Hz); ¹³C-NMR; **6**: $\delta = 26.1$ (d, P-CH₂, ¹J = 22.9 Hz); **8**: $\delta = 46.5$ (d, P-CH, ¹J = 4.71 Hz)].

Die Kristallstrukturanalyse von **8** (Tab. 1, 4, 5; Abb. 2) ergibt zur Diskussion der Bindungssituation im Phosphinovinyl-Fragment wesentliche Hinweise [C(13)-C(14) 1.397(8), C(13)-P(1) 1.761(3) Å; C(14)-C(13)-P(1) 129.3(4)°]. Die ge-

Tabelle 5 Ausgewählte Bindungslängen/Å und -winkel/° von 8.

P(1)-C(13)	1.761(6)	N(2)-C(14)	1.364(8)
P(1)-C(7)	1.840(3)	N(2)-C(15)	1.412(7)
P(1)-C(1)	1.844(6)	C(13)-C(14)	1.397(8)
N(1)-C(14)	1.382(7)	C(15)-C(16)	1.334(10)
N(1)-C(16)	1.416(7)		
C(13)-P(1)-C(7)	104.2(2)	N(2)-C(14)-N(1)	105.4(5)
C(13)-P(1)-C(1)	101.6(3)	N(2)-C(14)-C(13)	123.3(5)
C(7)-P(1)-C(1)	98.5(2)	N(1)-C(14)-C(13)	131.3(5)
C(14)-N(1)-C(16)	109.4(5)	C(16)-C(15)-N(2)	107.4(5)
C(14)-N(2)-C(15)	110.2(5)	C(15)-C(16)-N(1)	107.6(5)
C(14)-C(13)-P(1)	129.3(4)		

genüber 1 (d C=C 1.357(3) Å [2]) deutliche Aufweitung der olefinischen Doppelbindung sowie die hiermit zusammenhängende, gegenüber den benachbarten Bindungen [P(1)-C(1) 1.844(6), P(1)-C(7) 1.840(3) Å] deutliche Verkürzung der PC-Bindung, zeigen eine entsprechende Verschiebung der π -Elektronendichte im Sinne von **8b** an. Tatsächlich erscheint, entsprechend der Vorhersage des VSEPR-Konzepts [14], der Bindungswinkel der beiden Phenylsubstituenten am Phosphoratom gegenüber den Nachbarwinkeln leicht verengt [C(1)-P(1)-C(7) 98.5(2), C(1)-P(1)-C(13) 101.6(3), C(7)-P(1)-C(13) 104.2(2)°]. Allerdings weisen die Substituenten des zentralen Olefinfragments eine nahezu koplanare Orientierung auf [Interplanarwinkel N(1)C(14)N(2)/ P(1)C(13)H(13) 3.1°]. Der für die Ladungsdelokalisation im Fünfring indikative Bindungswinkel N(1)-C(14)-N(2) ist gegenüber dem Imidazolium-Derivat 7 mit 105.4(5)° nur geringfügig verändert.

Diskussion und Ausblick

Angesichts der eingangs erwähnten Basizität des Enamins 1 überrascht die Bildung eines stabilen Phosphenium-Addukts nicht. Die kationischen Phosphane 6 und 7 entsprechen hinsichtlich ähnlicher NMR- und Strukturdaten weitgehend dem kürzlich veröffentlichen Betain 9, das gleichfalls durch Deprotonierung in eine Vinylphosphan-Komponente überführbar ist [15]; (Schema 4) zur Struktur eines protonierten Imidazolylmethyl-Phosphans vgl. [16].

Bedingt durch den starken +M-Effekt des heterozyklischen Fragments ist für 8 eine vergleichsweise hohe Polarisierung der zentralen C=C-Bindung sowie eine nennenswerte Elektronendelokalisation in die allgemein als schwacher π-Akzeptor geltende Phosphinogruppe zu erwarten. Tatsächlich zeigt ein Vergleich der Strukturdaten von 8 und Vinylphosphanen 10 (d C=C ca. 1.34, Ph₂P-C ca. 1.84 Å [17–19]) für die Titelverbindung eine charakteristische Aufweitung der olefinischen Doppelbindung bei gleichzeitiger Verkürzung der hieran angrenzenden P-C-Bindung. Die

Auswertung vorläufiger temperaturvariabler NMR-Daten nach der Koaleszenz-Methode [20] ergibt für **8** eine ungewöhnlich niedrige Anregungsenergie der Rotation um die C=C-Bindung ($T_c = 20.9$ °C, $\Delta\delta = 245$ Hz [-81.4 °C], $\Delta G^{\#} = 13.45$ kcal/mol), wie sie für 1,1-Endiamine sonst nur im Zusammenspiel mit starken Akzeptorsubstituenten wie NO₂, C(O)R, CO₂R oder CN gefunden wird [21].

Insgesamt bestätigen unsere Ergebnisse das Vorliegen einer markanten Elektronendelokalisation in **8** im Sinne eines *push-pull-*Effekts (**8b**), wie er auch für entsprechend substituierte Wittig-Ylide **11** (d P=C *ca.* 1.72, P-C *ca.* 1.78 Å) beobachtet wird [22,23]. Dies bekräftigt erneut die mit PR₃ verwandten Eigenschaften des Carbens **3** auch als Fragment in Ylid-artigen Verbindungen [5]. Der Aufbau von **8** findet eine Parallele im kürzlich beschriebenen Triphosphacyclopentadien-Derivaten **12** (d C=C 1.406(3), P-C 1.757(2) Å [24]) und **13** (d C=C 1.452(3), P-C 1.7130(19) Å [25]). Ein Strukturvergleich unter Einbezug von **8** ergibt für das Triphospholyl-Fragment gegenüber PPh2 eine deutlich erhöhte Akzeptorfähigkeit; jedoch ist in **12** und **13** der Einfluß der sterisch bedingten Verdrillung zu beachten.

Durch Oxidation des Phosphanzentrums in $\bf 8$ sollte sich eine weitere Verstärkung der P-C-Bindung im Sinne von $\bf 8b$ erreichen lassen. Über die Eigenschaften von $\bf 14$ ($\bf X=0$, S, Se) wollen wir demnächst berichten.

Experimenteller Teil

Sämtliche Versuche wurden in gereinigten Lösungsmitteln unter Schutzgas durchgeführt. 1,3,4,5-Tetramethyl-2-methylenimidazolin (1) [2] und 2,3-Dihydro-1,3-diisopropyl-4,5-dimethylimidazol-2-yliden (3, R=iso-Pr) [7] wurde nach Literaturangaben erhalten.

2-Diphenylphosphinomethyl-1,3,4,5-tetramethylimidazoliumchlorid (6). Eine Lösung von 0.83 ml (4.514 mmol) Chlordiphenylphosphan in 100 ml Diethylether wird bei -78 °C im Verlauf von 30 min mit einer auf 0 °C gekühlten Lösung von 0.62 g (4.486 mmol) **1** in

45 ml Diethylether versetzt und 12 h unter Rühren auf Raumtemperatur erwärmt. Der resultierende Niederschlag wird abgetrennt, 2 mal mit je 25 ml Diethylether gewaschen und i.Vak. getrocknet. Ausbeute: 1.463 g (91 %), farbloser Feststoff.

¹H-NMR (CD₂Cl₂): δ = 2.13 (s, 6 H, 4,5-Me), 3.45 (s, 6 H, 1,3-Me), 4.24 (d, 2 H, P-CH₂, ${}^{2}J$ = 2.2 Hz), 7.39 − 7.49 (m, 10 H, Ph). 13 C-NMR (CD₂Cl₂): δ = 9.0 (Im, 4,5-Me), 26.1 (d, P-CH₂, ${}^{1}J$ = 22.9 Hz), 32.5 (d, Im, 1,3-Me, ${}^{4}J$ = 4.7 Hz), 126.3 (Im, C4,5), 129.2 (d, Ph, C3,5, ${}^{3}J$ = 7.4 Hz), 130.3 (Ph, C4), 133.3 (d, Ph, C2,6, ${}^{2}J$ = 20.2 Hz), 135.2 (d, Ph, C1, ${}^{1}J$ = 14.2 Hz), 143.1 (d, Im, C2, ${}^{2}J$ = 6.1 Hz). 31 P-NMR (CD₂Cl₂): δ = −15.4.

MS (FAB, M = Kation): m/z (%) = 323 [100, M^+], 138 [37, M^+ - Ph_2P] und weitere Bruchstücke.

2-Diphenylphosphinomethyl-1,3,4,5-tetramethylimidazoliumtetra-fluoroborat (7). Eine Suspension von 0.408 g (1.266 mmol) **8** in 40 ml Diethylether wird mit 0.2 ml (1.464 mmol) einer 54-proz. Lösung von HBF₄ in Diethylether versetzt und 1 h bei Raumtemperatur gerührt. Der resultierende Feststoff wird abgetrennt, mit 40 ml Diethylether gewaschen und i.Vak. getrocknet. Ausbeute: 0.510 g (98 %), farblose Kristalle. NMR-Daten analog **6**.

2-Diphenylphosphinomethylen-1,3,4,5-tetramethylimidazolin (8). Eine Suspension von 1.382 g (3.851 mmol) **6** in 40 ml Diethylether wird bei 0 °C mit einer Lösung von 0.684 g (3.794 mmol) **1** in 80 ml Diethylether versetzt und 12 h bei Raumtemperatur gerührt. Die fültrierte Lösung wird i.Vak zur Trockne eingeengt. Ausbeute nach Umkristallisation aus Diethylether bei -28 °C: 1.116 g (91 %), hellgelber Feststoff.

Hierzu alternativ ist folgendes Verfahren möglich: Eine Lösung von 0.958 g (6.972 mmol) 1 in 70 ml Diethylether wird bei -78 °C im Verlauf von 10 min mit einer Lösung von 0.63 ml (3.4264 mmol) Chlordiphenylphosphan in 10 ml Diethylether versetzt und im Verlauf von 12 h auf Raumtemperatur erwärmt. Die filtrierte Lösung wird i.Vak. zur Trockne eingeengt. Ausbeute nach Umkristallisation aus Diethylether bei -28 °C: 0.884 g (80 %), hellgelbe Kristalle

 $^1\text{H-NMR}$ (CD₂Cl₂): $\delta = 1.96$ (s, 6 H, 4,5-Me), 3.06 (d, 1 H, P-CH, $^2J = 7.2$ Hz), 2.26, 3.24 (2 s, 6 H, 1,3-Me [-81.4 °C in Toluol-d₈]), 7.23 - 7.52 (m, 10 H, Ph).

¹³C-NMR (CD₂Cl₂): δ = 9.13 (Im, 4,5-Me), 46.5 (d, P-CH, ¹*J* = 4.71 Hz), 116.5 (Im, C4,5), 127.0 (Ph, C4), 128.1 (d, Ph, C3,5, ³*J* = 6.1 Hz), 132.0 (d, Ph, C2,6, ²*J* = 18.2 Hz), 146.7 (d, Ph, C1, ¹*J* = 9.4 Hz), 154.7 (d, Im, C2, ²*J* = 33.0 Hz), 1,3-Me bei Raumtemperatur nicht beobachtet (vgl. Text). ³¹P-NMR (CD₂Cl₂): δ = -24.2.

MS (FD): m/z (%) = 322 [100, M⁺], 138 [16, M⁺ - Ph₂P] und weitere Bruchstücke.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Literatur

- [1] Derivate des Imidazols, 46. 45. Teil dieser Serie: N. Kuhn, K. Eichele, M. Walker, Z. Anorg. Allg. Chem. 2001, 627, 2565.
- [2] N. Kuhn, H. Bohnen, J. Kreutzberg, D. Bläser, R. Boese, J. Chem. Soc., Chem. Commun. 1993, 1136.
- [3] N. Kuhn, H. Bohnen, G. Henkel, J. Kreutzberg, Z. Natur-forsch. 1996, 51b, 1267; N. Kuhn, M. Göhner, M. Steimann, Z. Anorg. Allg. Chem. 2001, 627, 2048.
- [4] N. Kuhn, H. Bohnen, D. Bläser, R. Boese, *Chem. Ber.* 1994, 127, 1405; H. Schumann, M. Glanz, J. Winterfeld, H. Hemling, N. Kuhn, H. Bohnen, D. Bläser, R. Boese, *J. Organomet. Chem.* 1995, 493, C14.

- [5] Übersicht: N. Kuhn, M. Göhner, G. Frenking, Yu Chen, *Physical Organometallic Chemistry*, Vol. 3, John Wiley & Sons, Chichester (U.K.), im Druck.
- [6] A. J. Arduengo, III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361; A. J. Arduengo, III, H. V. R. Diaz, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1992, 114, 5530.
- [7] N. Kuhn, Th. Kratz, Synthesis 1993, 561.
- [8] Übersicht: M. Regitz, Angew. Chem. 1996, 108, 791; Angew. Chem. Int. Ed. Engl. 1996, 35, 725; W. A. Herrmann, Ch. Köcher, Angew. Chem. 1997, 109, 2257; Angew. Chem. Int. Ed. Engl. 1997, 36, 2162; A. J. Arduengo, III, Acc. Chem. Res. 1999, 33, 913.
- [9] A. J. Arduengo, III, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall, B. Riegel, *Inorg. Chem.* 1997, 36, 2151.
- [10] A. J. Arduengo, III, R. Krafczyk, W. J. Marshall, R. Schmutzler, J. Am. Chem. Soc. 1997, 119, 3381.
- [11] N. Kuhn, J. Fahl, D. Bläser, R. Boese, Z. Anorg. Allg. Chem. 1999, 625, 729.
- [12] Vgl. hierzu S. Berger, S. Braun, H.-O. Kalinowski, NMR-Spektroskopie von Nichtmetallen, Band 3 (³¹P-NMR-Spektroskopie), Georg Thieme, Stuttgart 1993.
- [13] Vgl. z.B. N. Kuhn, G. Henkel, J. Kreutzberg, Z. Naturforsch. 1991, 46b, 1706; N. Kuhn, M. Göhner, M. Steimann, Z. Naturforsch., Teil B, im Druck.
- [14] R. J. Gillespie, I. Hargittai, The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston 1991.
- [15] K. S. Coleman, M. L. H. Green, S. L. Pascu, N. H. Rees, A. R. Cowley, L. H. Rees, J. Chem. Soc., Dalton Trans. 2001, 3384.
- [16] M. A. Jalil, S. Fujinami, H. Senda, H. Nishikawa, J. Chem. Soc., Dalton Trans. 1999, 1655.
- [17] D. Fenske, J. Löhns, Chem. Ber. 1975, 108, 3091; H. J. Becher,
 W. Bensmann, D. Fenske, D. Pfennig, Monatsh. Chem. 1978,
 109, 1023; P. G. Jones, M. C. Gimeno, Z. Kristallogr. 1994,
 209, 688.
- [18] H. Schmidbaur, R. Herr, J. Riede, *Chem. Ber.* 1984, 117, 2322;
 H. Schmidbaur, Ch. Paschalidis, G. Reber, G. Müller, *Chem. Ber.* 1988, 121, 1241;
 H. Schmidbaur, C. M. Frazao, G. Reber, G. Müller, *Chem. Ber.* 1989, 122, 259.
- [19] S. J. Berners-Price, L. A. Colquhoun, P. C. Healy, K. A. Byriel, J. V. Hanna, J. Chem. Soc., Dalton Trans. 1992, 3357; J. L. Bookham, F. Conti, H. C. E. McFarlane, W. McFarlane, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. 1994, 1791; J. L. Bookham, D. M. Smithies, M. Thornton-Pett, W. McFarlane, J. Chem. Soc., Dalton Trans. 1998, 811.
- [20] U. Weber, H. Thiele, NMR Spectroscopy: Modern Spectral Analysis, Wiley-VCH, Weinheim 1998.
- [21] Vgl. als Übersicht: J. Sandström, *The Chemistry of Enamines*, Part 1 (Z. Rapoport, Hrsg.), S. 405 ff, John Wiley & Sons, Chichester (UK) 1994.
- [22] H. Schmidbaur, U. Deschler, B. Milewski-Mahrla, Chem. Ber. 1983, 116, 1393; H. Schmidbaur, W. Graf, G. Müller, Angew. Chem. 1988, 100, 439; Angew. Chem. Int. Ed. Engl. 1988, 27, 417.
- [23] A. Schmidpeter, H. Nöth, G. Jochem, H.-P. Schrödel, K. Karaghiosoff, *Chem. Ber.* 1995, 128, 379; F. Breitsameter, A. Schmidpeter, A. Schier, *Eur. J. Inorg. Chem.* 1998, 381.
- [24] F. E. Hahn, L. Wittenbecher, Duc Le Van, R. Fröhlich, B. Wibbeling, Angew. Chem. 2000, 112, 2393; Angew. Chem. Int. Ed. Engl. 2000, 39, 2307.
- [25] S. B. Clendenning, P. B. Hitchcock, J. F. Nixon, L. Nyulaszi, Chem. Commun. 2000, 1305.