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Silver-mediated radical 5-exo-dig cyclization of 2-

alkynylbenzonitriles: Synthesis of phosphinylated 1-indenones  

Xiao-Tong Zhu
,a,b,c

 Qi Zhao,
a
 Feng Liu,

a
 Ai-Fang Wang,

a
 Pei-Jun Cai,*

,b
 Wen-Juan Hao,

a
 Shu-Jiang 

Tu,*
,a

 and Bo Jiang*
,a

A new silver-mediated 5-exo-dig cyclization of 2-

alkynylbenzonitriles with disubstituted phosphine oxide and H2O 

has been developed. The reaction enables multiple bond-forming 

events including C–P, C–C and C–O bonds under air conditions, 

leading to the concise and direct formation of 28 examples of 

phosphorus-containing 1-indenones with generally good yields. 

Functional 1-indenones are ubiquitous substructure in natural 

products (Figure 1, type I)
1
 and synthetically bioactive 

molecules (Figure 1, type II and III),
2
 which display a broad 

spectrum of extraordinary biological and pharmaceutical 

properties
3
 and also behave as key intermediates in the 

preparation of natural products
4
 and pharmaceuticals.

5
 

Consequently, substantial efforts have been made to develop 

powerful and reliable methods for the construction of 

indenone frameworks. Known procedures for indenone 

formation include traditional intramolecular Friedel–Crafts 

acylations,
6
 Grignard reactions,

7
 and Heck–Larock annulation

8
 

and related process
9
 as well as recently well-developed metal-

catalyzed C(sp
2
)–H activation of arenes.

10
 Besides, Zhang and 

Zhou et al. reported manganese(III)-mediated phosphonation-

cyclization of ynones for 1-indenone preparation (Scheme 

1a).
11a,b

 Despite these significant advances achieved in this 

field, new protocols for the assemble of diverse functionalized 

indenones with readily available substrates under mild 

conditions are still highly desirable.
11c,d 

Meanwhile, organophosphorus compounds have been 

extensively utilized in organic synthesis, medicinal chemistry, 

and materials science.
12

 Their synthesis has been attracted 

considerable attention. Specifically, P-centered radical-

triggered addition to unsaturated systems provides direct and  
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Figure 1. Some bioactive 1-indenone derivatives 
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Scheme 1. Profiles for P-centered radical-triggered cyclization 

atom economic approaches toward organophosphorus 

compounds with good functional group compatibility.
13

 Among 

them, di-substituted phosphine oxide radicals, in situ 

generated from HP(=O)R
1
R

2
 precursor, have exhibits high 

reactivity with unsaturated bonds and gradually become an 

ideal radical partner for forming organophosphorus 

compounds.
14

 For instance, Miura
14a

 and Duan
14b

 et al. 

independently reported the Ag-mediated arylphosphine oxide 

radical cyclization of symmetrical diarylalkynes for the direct 

preparation of benzo[b]phosphole oxides (Scheme 1b). On the 

basis of these studies, we questioned whether the reaction 

selectivity could be harnessed to establish a regioselective 

[3+2] cyclization by using unsymmetrical diarylalkynes 

(Scheme 1c). Interestingly, we found the expected 
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benzo[b]phosphole oxides cannot be generated as we 

originally planned. Instead, unexpected Ag-mediated 5-exo-dig 

cyclization occurred under oxidative conditions in the presence 

of water, leading to the direct formation of 3-phosphoryl 1-

indenones in a functional-group compatible manner (Scheme 

1d). To the best of our knowledge, this arylphosphine oxide 

radical-induced carbocyclization of 2-alkynylbenzonitriles for 

the construction of 1-indenones is virtually unexplored so far. 

Herein, we would like to elaborate this interesting 

transformation. This protocol represents the first domino 

procedure for the direct synthesis of these new 3-

phosphorylinden-1-ones through a mild Ag-mediated 

carbonylphosphinylation of internal alkynes. 

Table 1. Optimization of Reaction Condition for Product 3a
a
 

 
entry Ag salts (equiv) solvent t /(oC) yield (%)b 

1 AgNO3 (2.0) CH3CN 80 42c 

2 AgNO3 (2.0) CH3CN 80 67 

3 AgTFA (2.0) CH3CN 80 20 

4 Ag2CO3 (2.0) CH3CN 80 NRd 

5 AgOAc (2.0) CH3CN 80 trace 

6 Ag2O (2.0) CH3CN 80 NR 

7 AgNO3 (1.5) CH3CN 80 48 

8 AgNO3 (2.5) CH3CN 80 51 

9 AgNO3 (2.0) DCE 80 40 

10 AgNO3 (2.0) DCM 80 33 

11 AgNO3 (2.0) 1,4-dioxane  80 52 

12 AgNO3 (2.0) THF 80 trace 

13 AgNO3 (2.0) MeOH 80 40 

14 AgNO3 (2.0) EtOH 80 38 

15 AgNO3 (2.0) CH3CN 100 43 

16 AgNO3 (2.0) CH3CN 70 31 

17 AgNO3 (2.0) CH3CN 80 36e  

18 AgNO3 (2.0) CH3CN 80 44 f 

19 AgNO3 (0.1) CH3CN 80 37g 

20 AgNO3 (0.1) CH3CN 80 26h 

21 AgNO3 (0.1) CH3CN 80 35i 
a
Reaction conditions: 1a (0.2 mmol), 2a (0.8 mmol), Ag salt (X equiv), solvent 

(1.5 mL) and water (0.5 mL) for 4.0 hours, air conditions. 
b
Isolated yield of 

product 3a based on 1a. 
c
Without additional water.

 d
NR= No reaction.

 e
The 

ratio of 1a:2a in 1:3. 
f
The ratio of 1a:2a in 1:5. 

g
Use of TBHP (2.0 equiv).

 h
Use 

of DTBP (2.0 equiv).
i
Use of O2 (1.0 atm). 

Initially, 2-(phenylethynyl)benzonitrile (1a) and 

diphenylphosphine oxide (DPPO, 2a) were selected as the 

model substrates to identify the optimal reaction conditions, 

with different silver salts as radical promoters and acetonitrile 

(CH3CN) as the solvent. The results are summarized in Table 1. 

In the presence of 2.0 equivalents of silver nitrate, the reaction 

at 80 
o
C generated the unexpected 1-indenone product 3a in 

42% yield (Table 1, entry 1). Obvious improvement in the yield 

of 3a was achieved (67%) when the co-solvent of CH3CN and 

H2O was used as reaction media (entry 2), indicating water 

could facilitate this radical transformation. Other attempted 

silver salts like silver trifluoroacetate (AgTFA), silver carbonate 

(Ag2CO3), silver acetate (AgOAc) and silver oxide (Ag2O) all 

showed a lower catalytic capability and gave unsatisfactory 

results (entries 3-6). A decrease of the loading of silver nitrate 

resulted in a remarkably dropped yield of 3a and the similar 

outcome was observed with increase of the amount of silver 

nitrate (entries 7-8). Next, the investigation of the solvent 

effect revealed that other aprotic solvents, such as 1,2-

dichloroethane (DCE), dichloromethane (DCM), 1,4-dioxane, 

THF, MeOH, and ethanol (EtOH) proved to be far less effective 

than CH3CN. Besides, the reaction efficiency shows an 

important dependency on temperature. A lower conversion 

was observed with the reaction temperature at either 70 °C or 

100 °C (entry 2 vs. entries 15 and 16). Changing the substrate 

ratio to 1:3 or 1:5 did not improve the reaction process 

(entries 17 and 18). Next, we attempted to combine the 

catalytic amount of AgNO3 and additional oxidants such as 

tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP) 

and O2
15

 to improve the reaction efficiency (entries 19-21). The 

results revealed that all these attempts did not show any 

improvements with respect to the reaction yield. 

Having the optimized conditions in hand (Table 1, entry 2), we 

next investigated Ag-mediated 5-exo-dig cyclization of various 

alkynes with disubstituted phosphine oxide to evaluate the 

generality of the methodology. Upon repeating the reaction 

with diphenylphosphine oxide (2a), substrates 1 with different 

functional groups on the arylalkynyl moiety all work well, 

efficiently delivering the corresponding functionalized inden-1-

ones 3 with yields ranging from 54% to 76%. A variety of 

substituents on the aryl ring of the arylalkynyl moiety, such as 

fluoro (1b), chloro (1c-d), bromo (1e), methyl (1f-g), ethyl (1h), 

t-butyl (1i), and methoxy (1j-1k, PMP = p-methoxyphenyl) 

groups, can tolerate the oxidative conditions well. Generally, 

substrates bearing electron-poor groups showed better 

reactivity and higher yields than electron-donating ones. 

Alternatively, a sterically encumbered 4-chloronaphthalen-1-yl 

(4-ClNp) counterpart was proven to be a suitable reaction 

component, which underwent a similar diarylphosphine oxide-

enabled cyclization process toward 1-indenone 3l in 61% yield. 

However, an n-butyl substrate 1m proved to be ineffective for 

this reaction, which may be caused by its relative instability of 

the vinyl radical intermediate. Next, we evaluated the 

electronic nature of the internal arene ring of 2-

alkynylbenzonitriles. Different substituents like methyl, fluoro 

and chloro located at the 4- or 5-position of benzonitrile ring 

were compatible in these radical cyclization reactions, and the 

corresponding inden-1-ones 3n-x were afforded in 50%-73% 

yields. Regarding the scope of diaryl phosphine oxides, besides 

phenyl substrate, 4-methyl (2b) and 3,5-dimethylphenyl (2c) 

analogue could also be accommodated, thus confirming the 

reaction efficiency, as 1-indenones 3y-3bb were generated in 

good yields. Additionally, the reaction is also applicable to 
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diethyl phosphite, delivering the corresponding product 3cc in 

40% yield. Obviously, the current radical 5-exo-dig cyclization 

can tolerate structurally distinct substrates with steric bulk and 

a different electronic property, which provides a 

straightforward and practical pathway for forming richly 

decorated 1-indenones with generally good yields 

 

Scheme 2. Synthesis of 3-phosphoryl 1-Indenones (i) Reaction 

conditions: 1 (0.2 mmol), 2 (0.8 mmol), AgNO3 (0.4 mmol), H2O (0.5 mL), and 

CH3CN (1.5 mL) in the seal reaction tube under air conditions at 80 
o
C for 4.0 

hours. (ii) Isolated yields based on 1.  

The structures of the resulting 1-indenones 3 were determined 

by carrying out their NMR and HRMS analysis. Furthermore, in 

the case of 3f, its structure was further confirmed by X-ray 

diffraction (see Supporting Information). 
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Scheme 3. Control experiments 

To gain mechanistic insight of this transformation, AgNO3-

mediated reaction of 1a with 2a in the presence of, 2,2,6,6-

tetramethyl-1-piperidinyloxy (TEMPO) or butylhydroxytoluene 

(BHT), a radical scavenger, were performed under the standard 

condition (Scheme 3a), but no expected product 3a was 

observed. Among them, a BHT-P adduct was detected by LC-

MS and 
31

P NMR analysis,
16

 indicating the reaction involves a 

radical mechanism. Subsequently, the reaction was carried out 

under Ar conditions to access a 62% yield of 3a (Scheme 3b), 

suggesting that oxygen atom at the carbonyl unit comes from 

water. The reaction of 1a did not work without DPPO (2a) 

under the standard conditions, showing that phosphine oxide 

radicals triggered 5-exo-dig cyclization (Scheme 3c). 

On the basis of above observations and the literature survey,
14

 

a tentative mechanism for this transformation was proposed in 

Scheme 4. First, diphenylphosphine oxide (2a) reacts with 

AgNO3 to form diphenylphosphine oxide radical A through a 

single electron transfer (SET).
14

 After that, intermolecular 

addition of A into 1a gives the alkenyl radical B, which 

undergoes 5-exo-dig cyclization to give intermediate D (route 

i) rather than 5-endo-trig cyclization to form intermediate C 

(route ii). The reason may be that the polarized triple bond 

(cyano group) favors as radical acceptor more than phenyl ring 

because of its easy π-band breaking.
17

 Subsequently, the 

protonation of D occurs to yield intermediate E, which is 

converted into the target product 3a via silver(I)-catalyzed 

hydrolysis in the presence of H2O.
18
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Scheme 4. Plausible Reaction Pathway 

In summary, we have developed a new P-centered radical-

triggered addition-cyclization that offers a direct protocol 

toward phosphorus-containing 1-indenones via 

carbonylphosphinylation of 2-alkynylbenzonitriles. This 

transformation consists of P-centered radical addition, 5-exo-

dig cyclization and hydrolysis process, resulting in the 

successive multiple bond-forming events including C–P, C–C 

and C–O bonds in a one-pot manner. This reaction features 

flexible structural modification, broad substrate scope and 

high functional group tolerance as well as mild reaction 

conditions. Currently, experiments toward further biological 

application are underway in our laboratory. 
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Silver-mediated radical 5-exo-dig cyclization of 

2-alkynylbenzonitriles: Synthesis of phosphinylated 1-indenones  

Xiao-Tong Zhu, Qi Zhao, Feng Liu, Ai-Fang Wang, Pei-Jun Cai, Wen-Juan Hao, Shu-Jiang Tu, 

and Bo Jiang 

 

A new silver-mediated 5-exo-dig cyclization of 2-alkynylbenzonitriles with di-substituted 

phosphine oxide and H2O has been developed. 
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