View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: B. Jiang, X. Zhu, Q. Zhao, F. Liu, A. Wang, P. Cai, W. Hao and S. Tu, *Chem. Commun.*, 2017, DOI: 10.1039/C7CC01666B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 19 May 2017. Downloaded by Cornell University Library on 19/05/2017 16:47:50.

Journal Name

COMMUNICATION

Silver-mediated radical 5-*exo-dig* cyclization of 2alkynylbenzonitriles: Synthesis of phosphinylated 1-indenones

Received 00th January 20xx, Accepted 00th January 20xx

Xiao-Tong Zhu^{,a,b,c} Qi Zhao,^a Feng Liu,^a Ai-Fang Wang,^a Pei-Jun Cai,^{*,b} Wen-Juan Hao,^a Shu-Jiang Tu,^{*,a} and Bo Jiang^{*,a}

DOI: 10.1039/x0xx00000x

www.rsc.org/

A new silver-mediated 5-*exo-dig* cyclization of 2alkynylbenzonitriles with disubstituted phosphine oxide and H_2O has been developed. The reaction enables multiple bond-forming events including C–P, C–C and C–O bonds under air conditions, leading to the concise and direct formation of 28 examples of phosphorus-containing 1-indenones with generally good yields.

Functional 1-indenones are ubiquitous substructure in natural products (Figure 1, type I)¹ and synthetically bioactive molecules (Figure 1, type II and III),² which display a broad spectrum of extraordinary biological and pharmaceutical properties³ and also behave as key intermediates in the preparation of natural products⁴ and pharmaceuticals.⁵ Consequently, substantial efforts have been made to develop powerful and reliable methods for the construction of indenone frameworks. Known procedures for indenone formation include traditional intramolecular Friedel-Crafts acylations,⁶ Grignard reactions,⁷ and Heck–Larock annulation⁸ and related process⁹ as well as recently well-developed metalcatalyzed C(sp²)-H activation of arenes.¹⁰ Besides, Zhang and Zhou et al. reported manganese(III)-mediated phosphonationcyclization of ynones for 1-indenone preparation (Scheme 1a).^{11a,b} Despite these significant advances achieved in this field, new protocols for the assemble of diverse functionalized indenones with readily available substrates under mild conditions are still highly desirable.^{11c,d}

Meanwhile, organophosphorus compounds have been extensively utilized in organic synthesis, medicinal chemistry, and materials science.¹² Their synthesis has been attracted considerable attention. Specifically, P-centered radical-triggered addition to unsaturated systems provides direct and

^{b.} School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, P. R. China; email: pjcai@cumt.edu.cn

Figure 1. Some bioactive 1-indenone derivatives

Scheme 1. Profiles for P-centered radical-triggered cyclization atom economic approaches toward organophosphorus compounds with good functional group compatibility.¹³ Among them, di-substituted phosphine oxide radicals, in situ generated from HP(=O)R¹R² precursor, have exhibits high reactivity with unsaturated bonds and gradually become an ideal radical partner for forming organophosphorus compounds.¹⁴ For instance, Miura^{14a} and Duan^{14b} et al. independently reported the Ag-mediated arylphosphine oxide radical cyclization of symmetrical diarylalkynes for the direct preparation of benzo[*b*]phosphole oxides (Scheme 1b). On the basis of these studies, we questioned whether the reaction selectivity could be harnessed to establish a regioselective [3+2] cyclization by using unsymmetrical diarylalkynes (Scheme 1c). Interestingly, we found the expected

^{a.} School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China; email: jiangchem@jsnu.edu.cn; laotu@jsnu.edu.cn;

^c Department of Chemistry, Xuzhou Medical University, Xuzhou 221004, P. R. China † Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available. CCDC 1531083 (3f): [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

DOI: 10.1039/C7CC01666B

COMMUNICATION

Published on 19 May 2017. Downloaded by Cornell University Library on 19/05/2017 16:47:50.

benzo[b]phosphole oxides cannot be generated as we originally planned. Instead, unexpected Ag-mediated 5-*exo-dig* cyclization occurred under oxidative conditions in the presence of water, leading to the direct formation of 3-phosphoryl 1indenones in a functional-group compatible manner (Scheme 1d). To the best of our knowledge, this arylphosphine oxide radical-induced carbocyclization of 2-alkynylbenzonitriles for the construction of 1-indenones is virtually unexplored so far. Herein, we would like to elaborate this interesting transformation. This protocol represents the first domino procedure for the direct synthesis of these new 3phosphorylinden-1-ones through a mild Ag-mediated carbonylphosphinylation of internal alkynes.

Table 1. Optimization of Reaction Condition for Product 3a^a

	Ph		Р	h∼ <mark>/</mark> / / ~Ph
\square	+ H-P-Ph CN Ph	H ₂ O, Ag salt solvent, <i>t</i>	- 🗘	Ph
1a	2a		3	a Ö
entry	Ag salts (equiv)	solvent	<i>t /</i> (°C)	yield $(\%)^b$
1	AgNO ₃ (2.0)	CH ₃ CN	80	42°
2	AgNO ₃ (2.0)	CH ₃ CN	80	67
3	AgTFA (2.0)	CH ₃ CN	80	20
4	Ag ₂ CO ₃ (2.0)	CH ₃ CN	80	NR^d
5	AgOAc (2.0)	CH ₃ CN	80	trace
6	Ag ₂ O (2.0)	CH ₃ CN	80	NR
7	AgNO ₃ (1.5)	CH ₃ CN	80	48
8	AgNO ₃ (2.5)	CH ₃ CN	80	51
9	AgNO ₃ (2.0)	DCE	80	40
10	AgNO ₃ (2.0)	DCM	80	33
11	AgNO ₃ (2.0)	1,4-dioxane	80	52
12	AgNO ₃ (2.0)	THF	80	trace
13	AgNO ₃ (2.0)	MeOH	80	40
14	AgNO ₃ (2.0)	EtOH	80	38
15	AgNO ₃ (2.0)	CH ₃ CN	100	43
16	AgNO ₃ (2.0)	CH ₃ CN	70	31
17	AgNO ₃ (2.0)	CH ₃ CN	80	36 ^e
18	AgNO ₃ (2.0)	CH ₃ CN	80	44^{f}
19	AgNO ₃ (0.1)	CH ₃ CN	80	37 ^g
20	AgNO ₃ (0.1)	CH ₃ CN	80	26 ^h
21	AgNO ₃ (0.1)	CH ₃ CN	80	35 ⁱ

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.8 mmol), Ag salt (X equiv), solvent (1.5 mL) and water (0.5 mL) for 4.0 hours, air conditions. ^{*b*}Isolated yield of product **3a** based on **1a**. ^{*c*}Without additional water. ^{*d*}NR= No reaction. ^{*e*}The ratio of **1a:2a** in 1:3. ^{*f*}The ratio of **1a:2a** in 1:5. ^{*g*}Use of TBHP (2.0 equiv). ^{*b*}Use of DTBP (2.0 equiv). ^{*j*}Use of O₂ (1.0 atm).

Initially, 2-(phenylethynyl)benzonitrile (1a) and diphenylphosphine oxide (DPPO, 2a) were selected as the model substrates to identify the optimal reaction conditions, with different silver salts as radical promoters and acetonitrile (CH₃CN) as the solvent. The results are summarized in Table 1. In the presence of 2.0 equivalents of silver nitrate, the reaction

at 80 °C generated the unexpected 1-indenone product 3a in 42% yield (Table 1, entry 1). Obvious improvement in the yield of 3a was achieved (67%) when the co-solvent of CH₃CN and H₂O was used as reaction media (entry 2), indicating water could facilitate this radical transformation. Other attempted silver salts like silver trifluoroacetate (AgTFA), silver carbonate (Ag₂CO₃), silver acetate (AgOAc) and silver oxide (Ag₂O) all showed a lower catalytic capability and gave unsatisfactory results (entries 3-6). A decrease of the loading of silver nitrate resulted in a remarkably dropped yield of 3a and the similar outcome was observed with increase of the amount of silver nitrate (entries 7-8). Next, the investigation of the solvent effect revealed that other aprotic solvents, such as 1,2dichloroethane (DCE), dichloromethane (DCM), 1,4-dioxane, THF, MeOH, and ethanol (EtOH) proved to be far less effective than CH₃CN. Besides, the reaction efficiency shows an important dependency on temperature. A lower conversion was observed with the reaction temperature at either 70 °C or 100 °C (entry 2 vs. entries 15 and 16). Changing the substrate ratio to 1:3 or 1:5 did not improve the reaction process (entries 17 and 18). Next, we attempted to combine the catalytic amount of AgNO₃ and additional oxidants such as tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP) and O₂¹⁵ to improve the reaction efficiency (entries 19-21). The results revealed that all these attempts did not show any improvements with respect to the reaction yield.

Having the optimized conditions in hand (Table 1, entry 2), we next investigated Ag-mediated 5-exo-dig cyclization of various alkynes with disubstituted phosphine oxide to evaluate the generality of the methodology. Upon repeating the reaction with diphenylphosphine oxide (2a), substrates 1 with different functional groups on the arylalkynyl moiety all work well, efficiently delivering the corresponding functionalized inden-1ones 3 with yields ranging from 54% to 76%. A variety of substituents on the aryl ring of the arylalkynyl moiety, such as fluoro (1b), chloro (1c-d), bromo (1e), methyl (1f-g), ethyl (1h), *t*-butyl (1i), and methoxy (1j-1k, PMP = p-methoxyphenyl) groups, can tolerate the oxidative conditions well. Generally, substrates bearing electron-poor groups showed better reactivity and higher yields than electron-donating ones. Alternatively, a sterically encumbered 4-chloronaphthalen-1-yl (4-CINp) counterpart was proven to be a suitable reaction component, which underwent a similar diarylphosphine oxideenabled cyclization process toward 1-indenone 3I in 61% yield. However, an *n*-butyl substrate **1m** proved to be ineffective for this reaction, which may be caused by its relative instability of the vinyl radical intermediate. Next, we evaluated the electronic nature of the internal arene ring of 2alkynylbenzonitriles. Different substituents like methyl, fluoro and chloro located at the 4- or 5-position of benzonitrile ring were compatible in these radical cyclization reactions, and the corresponding inden-1-ones 3n-x were afforded in 50%-73% yields. Regarding the scope of diaryl phosphine oxides, besides phenyl substrate, 4-methyl (2b) and 3,5-dimethylphenyl (2c) analogue could also be accommodated, thus confirming the reaction efficiency, as 1-indenones 3y-3bb were generated in good yields. Additionally, the reaction is also applicable to

Journal Name

DOI: 10.1039/C7CC01666B COMMUNICATION

diethyl phosphite, delivering the corresponding product 3cc in 40% yield. Obviously, the current radical 5-exo-dig cyclization can tolerate structurally distinct substrates with steric bulk and different electronic property, which provides a а straightforward and practical pathway for forming richly decorated 1-indenones with generally good yields

Scheme 2. Synthesis of 3-phosphoryl 1-Indenones (i) Reaction conditions: 1 (0.2 mmol), 2 (0.8 mmol), AgNO₃ (0.4 mmol), H₂O (0.5 mL), and CH₃CN (1.5 mL) in the seal reaction tube under air conditions at 80 °C for 4.0 hours. (ii) Isolated yields based on 1.

The structures of the resulting 1-indenones 3 were determined by carrying out their NMR and HRMS analysis. Furthermore, in the case of 3f, its structure was further confirmed by X-ray diffraction (see Supporting Information).

To gain mechanistic insight of this transformation, AgNO3mediated reaction of 1a with 2a in the presence of 2,2,6,6tetramethyl-1-piperidinyloxy (TEMPO) or butylhydroxytoluene (BHT), a radical scavenger, were performed under the standard condition (Scheme 3a), but no expected product 3a was observed. Among them, a BHT-P adduct was detected by LC-MS and ³¹P NMR analysis,¹⁶ indicating the reaction involves a radical mechanism. Subsequently, the reaction was carried out under Ar conditions to access a 62% yield of 3a (Scheme 3b), suggesting that oxygen atom at the carbonyl unit comes from water. The reaction of 1a did not work without DPPO (2a) under the standard conditions, showing that phosphine oxide radicals triggered 5-exo-dig cyclization (Scheme 3c).

On the basis of above observations and the literature survey,¹⁴ a tentative mechanism for this transformation was proposed in Scheme 4. First, diphenylphosphine oxide (2a) reacts with AgNO₃ to form diphenylphosphine oxide radical A through a single electron transfer (SET).¹⁴ After that, intermolecular addition of A into 1a gives the alkenyl radical B, which undergoes 5-exo-dig cyclization to give intermediate D (route i) rather than 5-endo-trig cyclization to form intermediate C (route *ii*). The reason may be that the polarized triple bond (cyano group) favors as radical acceptor more than phenyl ring because of its easy $\pi\text{-band}$ breaking. 17 Subsequently, the protonation of **D** occurs to yield intermediate **E**, which is converted into the target product 3a via silver(I)-catalyzed hydrolysis in the presence of H_2O .¹⁸

Scheme 4. Plausible Reaction Pathway

In summary, we have developed a new P-centered radicaltriggered addition-cyclization that offers a direct protocol toward phosphorus-containing 1-indenones via carbonylphosphinylation of 2-alkynylbenzonitriles. This transformation consists of P-centered radical addition, 5-exodig cyclization and hydrolysis process, resulting in the successive multiple bond-forming events including C-P, C-C and C-O bonds in a one-pot manner. This reaction features flexible structural modification, broad substrate scope and high functional group tolerance as well as mild reaction conditions. Currently, experiments toward further biological application are underway in our laboratory.

We are grateful for financial support from the NSFC (No. 21232004, 21472071 and 21602087), PAPD of Jiangsu Higher Education

DOI: 10.1039/C7CC01666B

Journal Name

Institutions, the Outstanding Youth Fund of JSNU (YQ2015003), NSF of Jiangsu Province (BK20151163 and BK20160212), the Qing Lan Project and NSF of Jiangsu Education Committee (15KJB150006).

Notes and references

Published on 19 May 2017. Downloaded by Cornell University Library on 19/05/2017 16:47:50

- 1 (a) L. M. X. Lopes, M. Yoshida and O. R. Gottlieb, *Phytochem.*, 1984, **23**, 2021. (b) D. C. Harrowven, N. A. Newman and C. A. Knight, *Tetrahedron Lett.*, 1998, **39**, 6757.
- (a) G. M. Anstead, S. R. Wilson and J. A. Katzenellenbogen, J. Med. Chem., 1989, 32, 2163. (b) R. E. McDevitt, M. S. Malamas, E. S. Manas, R. J. Unwalla, Z. B. Xu, C. P. Miller and H. A. Harris, Bioorg. Med. Chem. Lett., 2005, 15, 3137. (c) C. H. Park, X. Siomboing, S. Yous, B. Gressier, M. Luyckx and P. Chavatte, Eur. J. Med. Chem., 2002, 37, 461.
- 3 (a) J. H. Ahn, M. S. Shin, S. H. Jung, S. K. Kang, K. R. Kim, S. Dal Rhee, W. H. Jung, S. D. Yang, S. J. Kim and J. R. Woo, J. Med. Chem., 2006, 49, 4781. (b) E. Kiselev, S. DeGuire, A. Morrell, K. Agama, T. S. Dexheimer, Y. Pommier and M. Cushman, J. Med. Chem., 2011, 54, 6106. (c) T. X. Nguyen, A. Morrell, M. Conda-Sheridan, C. Marchand, K. Agama, A. Bermingam, A. G. Stephen, A. Chergui, A. Naumova, R. Fisher, B. R. O'Keefe, Y. Pommier and M. Cushman, J. Med. Chem., 2012, 55, 4457. (d) F. J. Gamo, L. M. Sanz, J. Vidal, C. C. de, E. Alvarez, J. L. Lavandera, D. E. Vanderwall, D. V. Green, S. V. Kumar, S. Hasan, J. R. Brown, C. E. Peishoff, L. R. Cardon and J. F. Garcia-Bustos, Nature., 2010, 465, 305.
- 4 (a) W. Liu, M. Buck, N. Chen, M. Shang, N. J. Taylor, J. Asoud, X. Wu, B. B. Hasinoff and G. I. Dmitrienko, *Org. Lett.*, 2007, 9, 2915. (d) J. L. Jeffrey and R. Sarpong, *Org. Lett.*, 2009, 11, 5450.
- 5 (a) W. M. Clark, A. M. Tickner-Eldridge, G. K. Huang, L. N. Pridgen, M. A. Olsen, R. J. Mills, I. Lantos and N. H. Baine, J. Am. Chem. Soc., 1998, **120**, 4550. (b) A. Cappelli, G. L. Pericot Mohr, G. Giuliani, S. Galeazzi, M. Anzini, L. Mennuni, F. Ferrari, F. Makovec, E. M. Kleinrath, T. Langer, M. Valoti, G. Giorgi and S. Vomero, J. Med. Chem., 2006, **49**, 6451. (c) A. C. Glass, B. B. Morris, L. N. Zakharov and S. Y. Liu, Org. Lett., 2008, **10**, 4855. (d) C. H. Tseng, C. C. Tzeng, C. L. Yang, P. J. Lu, H. L. Chen, H. Y. Li, Y. C. Chuang, C. N. Yang and Y. L. Chen, J. Med. Chem., 2010, **53**, 6164.
- 6 (a) C. F. Koelsch, J. Am. Chem. Soc., 1932, 54, 2487. (b) R. L. Frank, H. Eklund, J. W. Richter, C. R. Vanneman and A. N. Wennerberg, J. Am. Chem. Soc., 1944, 66, 1. (c) M. B. Floyd, G. R. Allen, J. Org. Chem., 1970, 35, 2647.
- 7 (a) E. D. Bergmann, J. Org. Chem., 1956, 21, 461. (b) C. Manning, M. R. McClory and J. J. McCullough, J. Org. Chem., 1981, 46, 919. (c) G. M. Anstead, J. L. Ensign, C. S. Peterson and J. A. Katzenellenbogen, J. Org. Chem., 1989, 54, 1485.
- (a) W. Tao, L. J. Silverberg, A. L. Rheingold and R. F. Heck, Organometallics., 1989, 8, 2550. (b) R. C. Larock, M. J. Doty and S. Cacchi, J. Org. Chem., 1993, 58, 4579. (c) R. C. Larock, Q. Tian, A. A. Pletnev, J. Am. Chem. Soc., 1999, 121, 3238.
- 9 (a) J. Zhang, D. Wu, X. Chen, Y. Liu and Z. Xu, J. Org. Chem., 2014, 79, 4799. (b) S. Chen, J. Yu, Y. Jiang, F. Chen and J. Cheng, Org. Lett., 2013, 15, 4754. (c) M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang and Y. Chen, J. Org. Chem., 2015, 80, 11360. (d) Y. Harada, J. Nakanishi, H. Fujihara, M. Tobisu, Y. Fukumoto and N. Chatani, J. Am. Chem. Soc., 2007, 129, 5766. (e) S. V. Gagnier and R. C. Larock, J. Am. Chem. Soc., 2003, 125, 4804. (f) P. Zhao, F. Wang, K. Han and X. Li, Org. Lett., 2012, 14, 5506. (g) B. Suchand and G. Satyanarayana, J. Org. Chem., 2017, 82, 372.
- (a) Y. Kuninobu, T. Matsuki and K. Takai, Org. Lett., 2010, 12, 2948.
 (b) B. J. Li, H. Y. Wang, Q. L. Zhu and Z. J. Shi, Angew. Chem., Int. Ed., 2012, 51, 3948.
 (c) S. Chen, J. T. Yu, Y. Jiang, F. Chen and J. Cheng, Org. Lett., 2013, 15, 4754.
 (d) Z. Qi, M.

Wang and X. Li, *Org. Lett.*, 2013, **15**, 5440. (e) X. Yan, S. Zou, P. Zhao and C. Xi, *Chem. Commun.*, 2014, **50**, 2775. (f) P. Zhao and Y. Liu, C. Xi, *Org. Lett.*, 2015, **17**, 4388.

- (a) X. Q. Pan, J. P. Zou, G. L. Zhang and W. Zhang, *Chem. Commun.*, 2010, 46, 1721. (b) J. Zhou, G. L. Zhang, J. P. Zou and W. Zhang, *Eur. J. Org. Chem.*, 2011, 2011, 3412. (c) C. Pan, B. Huang, W. Hu, X. Feng and J. T. Yu, *J. Org. Chem.*, 2016, 81, 2087. (d) X. S. Zhang, J. Y. Jiao, X. H. Zhang, B. L. Hu and X. G. Zhang, *J. Org. Chem.*, 2016, 81, 5710.
- 12 (a) D. E. C. Corbridge, Phosphorus: Chemistry, Biochemistry and Technology, CRC Press, London, 2013. (b) D. T. Kolio, Chemistry and Application of H-Phosphonates, Elsevier Science, Oxford, 2006. (c) S. Sivendran, V. Jones, D. Sun, Y. Wang, A. E. Grzegorzewicz, M. S. Scherman, A. D. Napper, J. A. McCammon, R. E. Lee, S. L. Diamond and M. McNeil, Bioorg. Med. Chem., 2010, 18, 896. (d) S. Kirumakki, J. Huang, A. J. Subbiah, A. Yao, B. Rowland, A. Smith, S. Samarajeewa and A. Clearfield, J. Mater. Chem., 2009, 19, 2593.
- 13 For selected examples, see: (a) Y. M. Li, M. Sun, H. L. Wang, Q. P. Tian and S. D. Yang, Angew. Chem., Int. Ed., 2013, 52, 3972. (b) X. Q. Pan, J. P. Zou, G. L. Zhang and W. Zhang, Chem. Commun., 2010, 46, 1721. (c) X. Q. Pan, L. Wang, J. P. Zou and W. Zhang, Chem. Commun., 2011, 47, 7875. (d) C. Zhang, Z. Li, L. Zhu, L. Yu, Z. Wang and C. Li, J. Am. Chem. Soc., 2013, 135, 14082. (e) X. Q. Chu, Y. Zi, H. Meng, X.-P. Xu and S.-J. Ji, Chem. Commun., 2014, 50, 7642. (f) X. Mi, C. Wang, M. Huang, J. Zhang, Y. Wu and Y. Wu, Org. Lett., 2014, 16, 3356. (g) J.-M. Liu, S-S. Zhao, W.-W. Song, R. Li, X.-Y. Guo, K.-L. Zhuo and Y.-Y. Yue, Adv. Synth. Catal., 2017, 359, 609. (h) S. Chen, P.-B. Zhang, W.-Y. Shu, Y.-Z. Gao, G. Tang and Y.-F. Zhao, Org. Lett., 2016, 18, 5712. (i) C.-X. Li, D.-S. Tu, R. Yao, H. Yan and C.-S. Lu, Org. Lett., 2016, 18, 4928. (j) R.-J. Song, Y. Liu, Y.-X. Xie and J.-H. Li, Synthesis, 2015, 47, 1195.
- 14 (a) Y. Unoh, K. Hirano, T. Satoh and M. Miura, Angew. Chem., Int. Ed., 2013, 52, 12975. (b) Y. R. Chen and W. L. Duan, J. Am. Chem. Soc., 2013, 135, 16754. (c) D. Ma, W. Chen, G. Hu, Y. Zhang, Y. Gao, Y. Yin and Y. Zhao, Green Chem., 2016, 18, 3522. (d) P. Zhang, Y. Gao, L. Zhang, Z. Li, Y. Liu, G. Tang and Y. Zhao, Adv. Synth. Catal., 2016, 358, 138. (e) V. Quint, F. Morlet-Savary, J. F. Lohier, J. Lalevee, A. C. Gaumont and S. Lakhdar, J. Am. Chem. Soc., 2016, 138, 7436. (f) Z.-Z. Zhou, D.-P. Jin, L. H. Li, Y. T. He, P. X. Zhou, X. B. Yan, X. Y. Liu and Y. M. Liang, Org. Lett., 2014, 16, 5616. (g) Y.-L. Zhu, D.-C. Wang, B. Jiang, W.-J. Hao, P. Wei, A.-F. Wang, J.-K. Qiu and S.-J. Tu, Org. Chem. Front., 2016, 3, 385.
- 15 W. Wei and J.-X. Ji, Angew. Chem., Int. Ed., 2011, **50**, 9097.
- 16 (a) Y. Gao, G. Lu, P. Zhang, L. Zhang, G. Tang and Y. Zhao, Org. Lett., 2016, 18, 1242. (b) J. Sun, J.-K. Qiu, Y.-N. Wu, W.-J. Hao, C. Guo, G. Li, S.-J. Tu and B. Jiang, Org. Lett., 2017, 19, 754.
- 17 (a) S.-S. Wang, H. Fu, Y. Shen, M. Sun and Y.-M. Li, *J. Org. Chem,.* 2016, **81**, 2920. (b) H. Fu, S.-S. Wang and Y.-M. Li, *Adv. Synth. Catal.*, 2016, **358**, 3616. (c) S. Wang, X. Huang, Q. Wang, Z. Ge, X. Wang and R. Li, *RSC Adv.*, 2016, **6**, 11754.
- 18 (a) B. Liu, C.-Y. Wang, M. Hu, R.-J. Song, F. Chen and J.-H. Li, *Chem. Commun.*, 2017, **53**, 1265. (b) Y.-M. Li, S.-S. Wang, F. Yu, Y. Shen and K.-J. Chang, *Org. Biomol. Chem.*, 2015, **13**, 5376.

Silver-mediated radical 5-*exo-dig* cyclization of 2-alkynylbenzonitriles: Synthesis of phosphinylated 1-indenones

Xiao-Tong Zhu, Qi Zhao, Feng Liu, Ai-Fang Wang, Pei-Jun Cai, Wen-Juan Hao, Shu-Jiang Tu, and Bo Jiang

A new silver-mediated 5-exo-dig cyclization of 2-alkynylbenzonitriles with di-substituted phosphine oxide and H_2O has been developed.